
API Documentation MatrixSSL 1.8

Page 1 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

MatrixSSL Public API documentation
One of the primary development goals in MatrixSSL was to create a simple and small
public application programming interface for users to integrate with their client or server
applications. The public interface and structures are contained in the matrixSsl.h and
matrixCommon.h header files at the root of the source tree distribution. The following
API documentation describes the entire set of functions an application would need to use
in order to get the full benefits of secure socket communications using MatrixSSL.

Commercial Version
Some functions or features described in this document are available only in the
commercially licensed version of MatrixSSL. Sections of this document that refer to the
commercial version will be noted and shaded.

MatrixSSL Public API documentation...1

Integer sizes...2
Structures ..3

sslBuf_t ...3
sslCertInfo_t ..4

Functions...6
matrixSslOpen...6
matrixSslClose ..6
matrixSslReadKeys ...7
matrixRsaReadKeysEx ..9
matrixSslReadKeysMem ...10
matrixRsaParseKeysMem..10
matrixSslFreeKeys...11
matrixSslNewSession ..12
matrixSslDeleteSession ...13
matrixSslDecode..14
matrixSslHandshakeIsComplete ..16
matrixSslEncode..17
matrixSslEncodeClosureAlert ..18
matrixSslEncodeClientHello ..19
matrixSslEncodeHelloRequest...20
matrixSslSetSessionOption..21
matrixSslGetSessionId...22
matrixSslFreeSessionId ...23
matrixSslSetCertValidator ...24
matrixSslGetAnonStatus..26
matrixSslAssignNewKeys ...27
matrixSslSetResumptionFlag ...28
matrixSslGetResumptionFlag ..29

API Documentation MatrixSSL 1.8

Page 2 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Integer sizes
MatrixSSL was designed with the assumption that integer sizes are 32-bit. This
assumption is clarified with the use of int32 and uint32 type definitions. These have been
defined in the matrixCommon.h header file of the MatrixSSL distribution. This layer was
introduced to enable global redefintions for platforms that do not support 32-bit integer
types in the native int type. Although this document will continue to use the int type, the
source code will reflect the use of int32.

API Documentation MatrixSSL 1.8

Page 3 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Structures
There are five structure types used in the MatrixSSL public API set. However, only the
members of the sslBuf_t and sslCertInfo_t structures have been exposed to the user. The
ssl_t, sslSessionId_t and sslKeys_t structures have been defined in the matrixCommon.h
public header file to be opaque integer types because their members are not accessed by
the user.

sslBuf_t
 Definition

 typedef struct {
 unsigned char *buf;
 unsigned char *start;
 unsigned char *end;
 int size;

 } sslBuf_t;

 Context
 Client and Server

 Description

This structure is used for input and output message buffers for the set of public
APIs that decode and encode data. The start and end pointers in the buffer will be
modified by the MatrixSSL APIs to indicate the data that was parsed or written to
the buffer. Specific details are given in the API descriptions.

To get an idea of how to work with these buffers, here are some examples of
common buffer arithmetic:

b.end – b.start Number of bytes of valid data in the

buffer
(b.buf + b.size) – b.end Number of bytes available in the buffer.
if (b.start > b.buf) If there are unused bytes at the start of

the buffer…

 Members

buf Pointer to the start of the buffer
start Pointer to the first valid byte of data
end Pointer one byte beyond the last valid

byte of data.
size Size of buffer in bytes

API Documentation MatrixSSL 1.8

Page 4 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

sslCertInfo_t
Definition

 typedef struct sslCertInfo {
 int verified;
 unsigned char *serialNumber;
 int serialNumberLen;
 char *notBefore;
 char *notAfter;
 char *sigHash;
 int sigHashLen;
 sslSubjectAltName_t subjectAltName;
 sslDistinguishedName_t subject;
 sslDistinguishedName_t issuer;
 struct sslCertInfo *next

 } sslCertInfo_t;

 typedef struct {
 char *country;
 char *state;
 char *locality;
 char *organization;
 char *orgUnit;
 char *commonName;

 } sslDistinguishedName_t;

 typedef struct {
 char *dns;
 char *uri;
 char *email;

 } sslSubjectAltName_t;

Context
Client.
Relevant to Server in commercial version as part of client authentication.

Description
This structure is passed to a user defined callback routine set by the application to
perform custom validation checks on a certificate. The default MatrixSSL
validation check performs the raw RSA authentication to determine whether or
not the supplied certificate authority certificate has signed the server certificate.
The application code is responsible for any other validation checks that are
necessary for the implementation. The matrixSslSetCertValidator API is used to
register the callback function that will receive the sslCertInfo_t information.

API Documentation MatrixSSL 1.8

Page 5 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Members
verified Status of the default RSA validation

check. The value will be -1 if the
validation failed or 1 if it succeeded.

serialNumber Serial number assigned by the issuer as
a char stream

serialNumberLen Length of valid bytes in serialNumber
member

notBefore Start date of certificate validity
notAfter End date of certificate validity
sigHash The MD5 or SHA1 hash of the

certificate signature
sigHashLen The length of the sigHash member.

Either 16 for MD5 or 20 for SHA1.
subjectAltName The X509v3 subjectAltName extension

often used in Web client applications for
validating the FQDN

subject The distinguished name (DN) info for
the certificate being validated

issuer The distinguished name (DN) info of the
issuer for the certificate being validated

next Pointer to the next sslCertInfo_t
structure that represents the parent of the
current certificate. NULL if there is no
parent.

API Documentation MatrixSSL 1.8

Page 6 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Functions
The public API specifications follow. Applications should include the matrixSsl.h file
when compiling. For sample usage, see the example code provided in the source code
distribution.

matrixSslOpen
Prototype
int matrixSslOpen();

Context
Client and Server

Description
This function performs the one-time initialization for MatrixSSL. Applications
should call this function once as part of their own initialization to load the cipher
suites and perform any operating system specific set up.

Parameters
None

Return Value
0 Success
< 0 Failure

matrixSslClose
Prototype
void matrixSslClose();

Context
Client and Server

Description
This function performs the one-time final cleanup for MatrixSSL. Applications
should call this function as part of their own final cleanup.

Parameters
None

Return Value
None

API Documentation MatrixSSL 1.8

Page 7 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslReadKeys
 Prototype
 int matrixSslReadKeys(sslKeys_t **keys, char *certFile, char *privFile,
 char *privPass, char *trustedCAcertFiles);

 Context
 Client and Server

Commercial users implementing memory pools should use matrixRsaReadKeysEx

 Description

This important function is called to load the certificates and private key files from
disk that are needed for SSL client-server authentication. The key material is
loaded into the keys output parameter for input into subsequent session creation
APIs.

The GNU MatrixSSL supports one-way authentication (client authenticates
server) so the parameters to this function are specific to the client/server role of
the application. The certFile, privFile, and privPass parameters are server
specific and should identify the certificate and private key file for that server. The
trustedCAcertFiles are client specific and should identify the trusted root
certificates that will be used to validate the certificates received from a server.
Any key file or password parameter that does not apply to the application context
should be passed in as NULL.

Certificate Chaining
It is not uncommon for a server to work from a certificate chain in which a series
of certificates form a child-to-parent hierarchy. It is even more common for a
client to load multiple trusted CA certificates if numerous servers are being
supported. There are two ways to pass multiple certificates to the
matrixSslReadKeys API. The first way is to pass a semi-colon delimited list of
files to the certFile or trustedCAcertFiles parameters. The second way is to
simply append several PEM certificates into a single file and pass that file to
either of the two parameters. Regardless of which way is chosen, the certFile
parameter MUST be given in a child-to-parent order. That is, the first file or
entry in the multi-cert file MUST be the childmost certificate and each subsequent
cert must be the parent of the former. The maximum length of a certificate chain
is controlled by the MAX_CHAIN_LENGTH define in matrixCommon.h and is
set to 8 by default. There must only ever be one private key file passed to this
routine and it must correspond with the childmost certificate.

Encrypted Private Keys
It is strongly recommended that private keys be password protected. The
privPass parameter of this API is the plaintext password that will be used if the
private key is encrypted. MatrixSSL supports the standard 3DES_CBC
encryption mechanism. The most common way a password is retrieved is through

API Documentation MatrixSSL 1.8

Page 8 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

user input during the initialization of an application. MatrixSSL does not provide
this functionality.

Client Authentication
The commercial version of MatrixSSL supports two-way authentication (often
called client authentication). If this functionality is desired, the certFile and
privFile parameters are used to specify the certificate of the local entity on both
the client and server sided. Likewise, each entity will need to supply a
trustedCAcertFile parameter that lists the trusted CAs so that the certificates may
be authenticated. It is easiest to simply think of client authentication as a mirror
image of the normal server authentication when considering how certificate and
CA files are deployed.

In the commercial version the MatrixSSL library must be compiled with
USE_CLIENT_AUTH defined in matrixConfig.h for client authentication
support.

The sslKeys_t output parameter from this function is used as the input parameter
when starting a new SSL session via matrixSslNewSession. The sslKeys_t type
has been defined in the public matrixCommon.h file to simply be an opaque
integer type since applications do not need access to any of the structure
members.

Calling this function is a relatively expensive operation because of the file access
and parsing required when extracting the key material. For this reason, it is
typical that this function is only called once per set of key files for a given
application. All new sessions associated with that certificate can reuse the
returned key pointer. This function is separate from matrixSslOpen because some
Web servers support virtual servers in which each will use different key pairs.
The user must free the key structure using matrixSslFreeKeys.

Parameters
keys Output parameter for storing the key material
certFile The filename (including path) of the certificate. Server only

in GNU version.
privKeyFile The filename (including path) of the private key file. Server

only in GNU version.
privKeyPass The password used to encrypt the private key file if used.

Only 3DES CBC encryption is supported. Server only in
GNU version.

trustedCAcertFile The filename (including path) of a trusted root certificate.
Multiple files may be passed in a semicolon delimited list.
Client only in GNU version.

API Documentation MatrixSSL 1.8

Page 9 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Return Value
0 Success. A valid key pointer will be returned in the keys

parameter for use in a subsequent call to matrixSslNewSession
<0 Failure

matrixRsaReadKeysEx
Prototype
int matrixRsaReadKeysEx(psPool_t *pool, sslKeys_t **keys, char *certFile,

char *privFile, char *privPass, char *trustedCAcertFiles);

Context
Client and Server commercial version

Header File
Include “src/pki/matrixPki.h”

Description
This extended version adds a psPool_t parameter so a user implementing memory
pools may specify the pool. Otherwise, it is identical in every way to the
parameter inputs, return codes, and usage described above. The
matrixSslReadKeys function will allocate the key structure from the
PEERSEC_BASE_POOL. If an implementation requires an indefinite number of
key reads and the extended version is not used, the base pool will become
exhausted.

For more information on Memory Pools, see the MatrixSSL Deterministic
Memory document.

For more information on the PKI API set, see the PeerSec PKI API document.

API Documentation MatrixSSL 1.8

Page 10 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslReadKeysMem
Prototype
int matrixSslReadKeysMem(sslKeys_t **keys, unsigned char *certBuf,

int certLen, unsigned char *privBuf, int32 privLen,
unsigned char *trustedCABuf, int32 trustedCALen);

Context
Client and Server
Commercial users implementing memory pools should use
matrixRsaParseKeysMem

Description
An in-memory version of the matrixSslReadKeys function. This version can be
used in environments where the certificate material is not stored on disk. Reads
an entire set of certificate, private key, and CA certificate buffers for an SSL
session and returns the sslKeys_t structure to be passed to matrixSslNewSession.
The keys parameter must be freed with a call to matrixSslFreeKeys.

The buffers for the certificates and private key must be in ASN.1 standard format.
For certificates, this is the X.509 standard. For private keys, this is the PKCS #8
specification. Chains of certificates must be presented in child-to-parent order.

matrixRsaParseKeysMem
Prototype
int matrixRsaParseKeysMem(psPool_t *pool, sslKeys_t **keys,

unsigned char *certBuf, int certLen, unsigned char *privBuf,
int32 privLen, unsigned char *trustedCABuf, int32 trustedCALen);

Context
Client and Server

Header File
Include “src/pki/matrixPki.h”

Description
This extended version of matrixSslReadKeysMem adds a psPool_t parameter so a
user implementing memory pools may specify the pool. Otherwise, it is identical
in every way to the parameter inputs, return codes, and usage as described in the
matrixSslReadKeysMem API above. The matrixSslReadKeysMem function will
allocate the key structure from the PEERSEC_BASE_POOL. If an
implementation requires an indefinite number of key reads and the extended
version is not used, the base pool will become exhausted.

API Documentation MatrixSSL 1.8

Page 11 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

For more information on Memory Pools, see the MatrixSSL Deterministic
Memory document.

For more information on the PKI API set, see the PeerSec PKI API document.

matrixSslFreeKeys
Prototype
void matrixSslFreeKeys(sslKeys_t *keys);

Context
Client and Server

Description
This function is called to free the key structure and elements allocated from a
previous call to matrixSslReadKeys (or any of the variants).

Parameters
keys A pointer to an sslKeys_t value returned from a previous call

to matrixSslReadKeys

Return Value
None

API Documentation MatrixSSL 1.8

Page 12 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslNewSession
Prototype
int matrixSslNewSession(ssl_t **ssl, sslKeys_t *keys, sslSessionId_t *sesssionId,

int flags);

 Context
 Client and Server

 Description

This API is called to start a new SSL session, or resume a previous one, with a
client or server. The session is returned in the output parameter ssl. This function
requires a pointer to an sslKeys_t value returned from a previous call to
matrixSslReadKeys and the flags parameter to specify whether this is a server side
implementation. The sessionId parameter is specific to client implementations
only. If the client is resuming a prior session, this parameter will be the value
returned from a call to matrixSslGetSessionId. Otherwise, this parameter must be
NULL. The client must pass 0 as the flags parameter. A client will make a call to
this function prior to calling matrixSslEncodeClientHello.

When a server application has received notice that a client is requesting a secure
socket connection (a socket accept on a secure port), this function should be
called to initialize the new session structure. The sessionId parameter must be set
to NULL for server side implementations.

The server must pass the SSL_FLAGS_SERVER mask in the flags parameter;
otherwise the resulting SSL session will be initialized to parse the client side
protocol.

Commercial users may optionally include the SSL_FLAGS_CLIENT_AUTH
parameter if client authentication is desired. The MatrixSSL library must be
compiled with USE_CLIENT_AUTH defined for client authentication support.

The output parameter is an ssl_t structure that will be used as input parameters to
the matrixSslDecode and matrixSslEncode family of APIs for decrypting and
encrypting messages. The ssl_t type has been defined in the public matrixSsl.h
file to simply be an opaque integer type since users do not need access to any of
the structure members. The user must free the ssl_t structure using
matrixSslDeleteSession.

 Parameters

ssl Output. The new SSL session created by this call
keys The opaque key material pointer returned from a call to

matrixSslReadKeys
sessionId Prior session id obtained from matrixSslGetSessionId if

client is resuming a session. NULL otherwise.

API Documentation MatrixSSL 1.8

Page 13 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

flags SSL_FLAGS_SERVER for server and 0 for client. Servers
may optionally include SSL_FLAGS_CLIENT_AUTH in
the commercial version.

 Return Value

0 Success. A newly allocated session structure will be returned
in the ssl parameter for use as the input parameter on session
related decoding and encoding APIs

<0 Failure

matrixSslDeleteSession
Prototype
void matrixSslDeleteSession(ssl_t *session);

Context
Client and Server

Description
This function is called at the conclusion of an SSL session that was created using
matrixSslNewSession. This function will free the allocated memory associated
with the session. It should be called after the corresponding socket has been
closed.

A client wishing to reconnect later to the same server may choose to call
matrixSslGetSessionId prior to calling this delete session function to save aside
the session id for later use with matrixSslNewSession.

Parameters
session The ssl_t session pointer returned from the call to

matrixSslNewSession

Return Value
None

API Documentation MatrixSSL 1.8

Page 14 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslDecode
Prototype
int matrixSslDecode(ssl_t *session, sslBuf_t *in, sslBuf_t *out,

unsigned char *error, unsigned char *alertLevel,
unsigned char *alertDescription);

Context
Client and Server

Description
This is a powerful function used to decode all messages received from a peer,
including handshake and alert messages. The input parameters include the ssl_t
session from the previous call to matrixSslNewSession and an sslBuf_t input
buffer containing the message received from the client or server. This function is
typically called in a loop during the handshake process. The return value
indicates the type of message received and the out buffer parameter may contain
an encoded message to send to the other side or a decoded message for the
application to process. The in buffer may have its start pointer moved forward to
indicate the bytes that were successfully decoded. The out buffer end pointer may
be modified to reflect the output data written to the buffer.

Please consult the MatrixSSL Developers Guide to see a detailed explanation on
how to implement this API.

 Parameters

session The ssl_t session structure associated with this instance.
Created by the call to matrixSslNewSession

in The sslBuf_t buffer containing the input message from the
other side of the client/server communication channel

out The output buffer after returned to the application
error On SSL_ERROR conditions, this output parameter specifies

the error description associated with the error
alertLevel On SSL_ALERT conditions, this output parameter specifies

the alert level associated with the client alert message
alertDescription On SSL_ALERT conditions, this output parameter specifies

the alert description associated with the client alert message

 Return Value

SSL_SUCCESS A handshake message was successfully decoded and
handled. No additional action is required for this
message. matrixSslDecode can be called again
immediately if more data is expected. This return
code gives visibility into the handshake process and
can be used in conjunction with
matrixSslHandshakeIsComplete to determine when

API Documentation MatrixSSL 1.8

Page 15 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

the handshake is complete and application data can
be sent.

SSL_SEND_RESPONSE This value indicates the input message was part of the
SSLv3 internal protocol and a reply is expected. The
application should send the data in the out buffer to
the other side and then call matrixSslDecode again to
see if any more message data needs to be decoded.

SSL_ERROR This value indicates there has been an error while
attempting to decode the data or that a bad message
was sent. The application should attempt to send the
contents of out buffer, if any (likely an error alert) to
the other side as a reply and then close the
communication layer (i.e. close the socket).

SSL_ALERT This value indicates the message was an alert sent
from the other side and the application should close
the communication layer (i.e. close the socket).

SSL_PARTIAL This value indicates that the input buffer was an
incomplete message or record. The application must
retrieve more data from the communications layer
(socket) and call matrixSslDecode again when more
data is available.

SSL_FULL This value indicates the output buffer was too small
to hold the output message. The application should
grow the output buffer and call matrixSslDecode
again with the same input buffer. The maximum size
of the buffer output buffer will never exceed 16K per
the SSLv3 standard.

SSL_PROCESS_DATA This value indicates that the message is application
specific data that does not require a response from the
server. This message is an implicit indication that
SSLv3 handshaking is complete. The decoded data
has been written to the output buffer for application
consumption.

API Documentation MatrixSSL 1.8

Page 16 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslHandshakeIsComplete
Prototype
int matrixSslHandshakeIsComplete(ssl_t *session);

Context
Client and Server

Description
This function returns whether or not the handshake portion of the session is
complete. This API can be used to test when it is OK to send the first application
data record on an SSL connection. This API is used in close conjunction with the
matrixSslDecode handshake loop logic.

For more information on how to implement this API, consult the httpsReflector or
httpsClient example applications.

Parameters
session The ssl_t session identifier for this session

Return Value
1 Handshake is complete
0 Handshake is NOT complete

API Documentation MatrixSSL 1.8

Page 17 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslEncode
Prototype
int matrixSslEncode(ssl_t *session, unsigned char *in, int inLen, sslBuf_t *out);

Context
Client and Server

Description
This function is used by the application to generate encrypted messages to be sent
to the other side of the client/server communication channel. Only application
level messages should be generated with this API. Handshake messages are
generated internally as part of matrixSslDecode. It is the responsibility of the
application to actually transmit the generated output buffer to the other side.

 Parameters

session The ssl_t session identifier for this
session.

in The plain-text message buffer to encrypt
inLen The length of valid data in the input

buffer to encrypt
out The encrypted message to be passed to

the other side

 Return Value

>= 0 Success. The value is the length of the
encrypted data.

SSL_ERROR Error. The connection should be closed,
and session deleted.

SSL_FULL The output buffer is not big enough to
hold the encrypted data. Grow the
buffer and retry.

API Documentation MatrixSSL 1.8

Page 18 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslEncodeClosureAlert
Prototype
int matrixSslEncodeClosureAlert(ssl_t *session, sslBuf_t * out);

Context
Client and Server

Description
An optional function call made before closing the communication channel with a
peer. This function alerts the peer that the connection is about to close. Some
implementations simply close the connection without an alert, but per spec, this
message should be sent first.

 Parameters

session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the client.

 Return Value

0 Success
SSL_FULL The output buffer is not big enough to

hold the encrypted data. Grow the
buffer and retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.8

Page 19 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslEncodeClientHello
Prototype
int matrixSslEncodeClientHello(ssl_t *session, sslBuf_t * out,

unsigned short cipherSuite);

Context
Client

Description
This function builds the initial CLIENT_HELLO message to be passed to a server
to begin SSL communications. This function is called once by the client before
entering into the matrixSslDecode handshake loop.

The cipherSuite parameter can be used to force the client to send a single cipher
to the server rather than the entire set of supported ciphers. Set this value to 0 to
send the entire cipher suite list. Otherwise the value is the two byte value of the
cipher suite specified in the standards. The supported values can be found in
matrixInternal.h.

This function may also be called by a client at the conclusion of the initial
handshake at any time to initiate a re-handshake. A re-handshake is a complete
SSL handshake protocol performed on an existing connection to derive new
symmetric key material and/or to change the cipher spec of the communications.
All re-handshake messages will be encrypted using the previously negotiated
cipher suite. If the caller wants to assure that a new session id is used for the re-
handshake, the function matrixSslDeleteCurrentSessionId should be called prior
to calling matrixSslEncodeClientHello. It is always at the discretion of the server
whether or not to resume on a session id passed in by the client in the
CLIENT_HELLO message. However, the client can force a new session if the
session id is not passed in originally.

 Parameters

session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the

client.
cipherSuite The two byte cipher suite identifier

 Return Value

0 Success
SSL_FULL The output buffer is not big enough to

hold the encrypted data. Grow the
buffer and retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.8

Page 20 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslEncodeHelloRequest
Prototype
int matrixSslEncodeHelloRequest(ssl_t *session, sslBuf_t * out);

Context
Server

Description
This function is called on the server side to build a HELLO_REQUEST message
to be passed to a client to initiate a re-handshake. This is the only mechanism in
the SSL protocol that allows the server to initiate a handshake. A re-handshake
can be done on an existing session to derive new symmetric cryptographic keys,
perform client authentication, or to change the cipher spec. All messages
exchanged during a re-handshake are encrypted under the currently negotiated
cipher suite.

If the server wishes to change any session options for the re-handshake it should
call matrixSslSetSessionOption to modify the handshake behavior.

Note: The SSL specification allows clients to ignore a HELLO_REQUEST
message. The MatrixSSL client does not ignore this message and will send a
CLIENT_HELLO message with the current session id.

Parameters
session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the

client.

Return Value
0 Success
SSL_FULL The output buffer is not big enough to

hold the data. Grow the buffer and
retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.8

Page 21 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslSetSessionOption
Prototype
void matrixSslSetSessionOption(ssl_t *session, int option, void *arg);

Context
Client and Server

Description
The matrixSslSetSessionOption function is used to modify the behavior of the
SSL handshake protocol for a re-handshake. This function is only meaningful to
call on an existing SSL session before initiating a re-handshake to give the client
or server control over which handshake type to perform (full, resumed, or client
authentication).

A server initiated re-handshake is done by sending the HELLO_REQUEST
message which can be constructed by calling matrixSslEncodeHelloRequest. Prior
to sending this message, the server may wish to disallow a resumed re-handshake
by passing the option of SSL_OPTION_DELETE_SESSION as the option
parameter to this function. This will delete the current session information from
the local cache so it will not be found if the client passes a session id in the
subsequent CLIENT_HELLO message.

In the commercial version the server also has the ability to enable or disable a
client authentication re-handshake by passing the option
SSL_OPTION_ENABLE_CLIENT_AUTH or
SSL_OPTION_DISABLE_CLIENT_AUTH as the option parameter to this
function.

A client initiated re-handshake is done by simply sending a new
CLIENT_HELLO message over an existing connection. If the client application
wishes a full re-handshake to be performed, it should call this function with
SSL_OPTION_DELETE_SESSION.

In both the client and server cases, a resumed re-handshake may be performed by
excluding any calls to this function before sending the HELLO_REQUEST or
CLIENT_HELLO messages.

For more information about re-handshaking, see the Re-handshake section of the
MatrixSSL Developers Guide.

Parameters
session The ssl_t session identifier for a currently connected

session
option If server, one of: SSL_OPTION_DELETE_SESSION,

SSL_OPTION_DISABLE_CLIENT_AUTH, or

API Documentation MatrixSSL 1.8

Page 22 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

SSL_OPTION_ENABLE_CLIENT_AUTH (commercial
version only for CLIENT_AUTH options)

If client: SSL_OPTION_DELETE_SESSION

arg NULL. Reserved for future use.

Return Value
None

matrixSslGetSessionId
Prototype
int matrixSslGetSessionId(ssl_t *session, sslSessionId_t **sessionId);

Context
Client

Description
This function is used by a client application to extract the session id from an
existing session for use in a subsequent call to matrixSslNewSession wishing to
resume a session. A resumed session is much faster to negotiate because the
public key encryption process does not need to be performed and two handshake
messages are bypassed. The sessionId return parameter of this function is valid
even after matrixSslDeleteSession has been called on the current session. This
function should only be called by a client SSL session after the handshake is
complete (session id is established).

The sslSessionId_t structure has been defined in the public header as an opaque
integer type since the contents of the structure do not need to be accessed by the
application. The session id must be freed with a call to matrixSslFreeSessionId.

Parameters
session The ssl_t session identifier for this session
sessionId Output. The returned session id for the given SSL session

Return Value
0 Success. An allocated session id is returned in

sessionId
<0 Failure (sessionId unavailable)

API Documentation MatrixSSL 1.8

Page 23 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslFreeSessionId
Prototype
void matrixSslFreeSessionId(sslSessionId_t *sessionId);

Context
Client

Description
This function is used by a client application to free a session id returned from a
previous call to matrixSslGetSessionId..

Parameters
sessionId The sslSession_t identifier

Return Value
None

API Documentation MatrixSSL 1.8

Page 24 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslSetCertValidator
Prototype
void matrixSslSetCertValidator(ssl_t *session,
 int (*certValidator)(sslCertInfo_t*, void *arg), void *arg);

Context
Client.
Relevant to Server in the commercial version for client authentication.

 Description

This function is used by applications to register a callback routine that will be
invoked during the certificate validation process. This optional (but highly
recommended) registration will enable the application to perform custom
validation checks or to pass certificate information on to end users wishing to
manually validate certificates.

In the commercial version this functionality may be used on the server side if
client authentication is being used (the MatrixSSL library must be compiled with
USE_CLIENT_AUTH defined and the SSL_FLAGS_CLIENT_AUTH must be
passed to matrixSslNewSession.)

The registered function must have the following prototype:

 int appCertValidator(sslCertInfo_t *certInfo, void *arg);

The certInfo parameter is the incoming sslCertInfo_t structure containing
information about the certificate. This certificate information is read-only from
the perspective of the validating callback function. The structure members are
available in the Structures section in this document and in the matrixCommon.h
public header file.

The verified member of certInfo will indicate whether or not the certificate passed
the default RSA validation checks. If the subjectCert is a chain, the parent
member will link to the next certificate in the chain. A typical callback
implementation might be to check the value of the verified member and pass the
certificate information along to the user if it had not passed the default validation
checks.

The callback function should return a value >= 0 if the custom validation check is
successful and the certificate is determined to be acceptable. The callback
function must return a negative value if the validation checks fails for any reason.
The negative return code will be passed back to the MatrixSSL library and the
handshake process will terminate.

API Documentation MatrixSSL 1.8

Page 25 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Anonymous Connections
The callback may also choose to return SSL_ALLOW_ANON_CONNECTION if
an anonymous connection is desired. The handshake will continue in the
anonymous case and the application data will be encrypted as usual. It is not
typically adviced to allow anonymous connections in a standard use case, but may
sometimes be desired. See the API description for matrixSslGetAnonStatus for
more information on anonymous connections.

Additional tests a callback may want to perform on the certificate information
might include date validation and hostname (common name) verification.

The arg parameter is a user specific argument that was specified in the arg
parameter to the matrixSslSetCertValidator routine. This argument can be used to
give session context to the callback if needed.

Parameters
session The ssl_t session identifier for this session
certValidator The function callback that will be invoked to validate the

certificate
arg Implementation specific data that will be received by the

callback. Use to give session context if needed, NULL
otherwise.

Return Value

 None

API Documentation MatrixSSL 1.8

Page 26 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslGetAnonStatus
Prototype
void matrixSslGetAnonStatus(ssl_t *session, int *anonArg);

Context
Client.
Relevant to Server in the commercial version for client authentication.

Description
This function returns whether or not the provided session is anonymous in the
anonArg output parameter. A value of 1 indicates the connection is anonymous
and a value of 0 indicates the connection has been authenticated. An anonymous
connection in this case means the calling entity (client or server) explicitly
allowed the SSL handshake to continue despite not being able to authenticate the
certificate supplied by the other side with an available Certificate Authority. The
mechanism to allow an anonymous connection is for the certificate validation
callback function (see matrixSslSetCertValidator) to return
SSL_ALLOW_ANON_CONNECTION.

The matrixSslGetAnonStatus is only meaningful to call after the successful
completion of a full SSL handshake to determine if the existing connection is
anonymous. This function can not be relied upon for determining whether an
entity is anonymous after the completion of a resumed handshake. For the
resumed handshake scenario, some additional logic will be required. Because the
client is responsible for determining whether or not to initiate a resumed
handshake, it is the responsibility of the implementation to determine whether
subsequent resumed handshakes will be allowed.

For the server case in which client authentication is being supported, the user
should use this function in coordination with the matrixSslGetResumptionFlag
and matrixSslSetResumptionFlag APIs. Look at the provided httpsReflector.c
example to see how anonymous status is determined for a resumed session.

Anonymous connections are not normally recommended but can be useful in a
scenario in which encryption is the primary security concern. Other reasons the
caller may choose to use anonymous connections might be to allow a subset of the
normal functionality to anonymous connectors or to temporarily accept a
connection while a certificate upgrade is being performed.

The anonymous status is only relevant to the entity that calls this routine. For
example, calling this routine from the server side is meaningless for an
implementation that has not performed client authentication because the server
can not know if it is anonymous to the client or not. Therefore, it is not possible
for one side of the connection to know if the other side believes the connection to
be anonymous from their standpoint. This is an easy rule to remember if you

API Documentation MatrixSSL 1.8

Page 27 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

recall the mechanism to allow anonymous connections is controlled through the
certificate validation callback routine when the
SSL_ALLOW_ANON_CONNECTION define is returned. Client authentication
is only available in the commercial version of MatrixSSL.

 Parameters

session The ssl_t session identifier for this session
anonArg Return status of the connection. 1 if anonymous.

 Return Value
 None

matrixSslAssignNewKeys
Prototype
void matrixSslAssignNewKeys(ssl_t *session, sslKeys_t *keys);

Context
Client and Server

Description
This routine is used to change the underlying certificate or certificate authority
information for an existing, open connection. This function is intended to help
the process of upgrading certificate material between two SSL entities that are
currently connected. The keys parameter is an sslKeys_t type that was created by
a call to matrixSslReadKeys. The new key material is associated with the passed
in session.

The user should have freed any previously allocated keys with a call to
matrixSslFreeKeys before assigning new keys to the session with this routine.
Once the new keys are associated with the session, the application may initiate a
re-handshake over the existing connection to authenticate with the new key
material. In the client case, a new CLIENT_HELLO message
(matrixSslEncodeClientHello) should be sent to kick off the re-handshake. In the
server scenario, a HELLO_REQUEST (matrixSslEncodeHelloRequest) message
would be sent. The benefit of this method is that the current connection does not
have to be closed in order to upgrade certificate material.

Parameters
session The ssl_t session identifier for this session
keys New keys returned from a previous call to matrixSslReadKeys

Return Value
None

API Documentation MatrixSSL 1.8

Page 28 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

matrixSslSetResumptionFlag
Prototype
int matrixSslSetResumptionFlag(ssl_t *session, char flag);

Context
Server

Description
This server side function allows the user to associate a custom flag value to the
session resumption table for the open connection specified in the session
parameter. This flag value can be later retrieved for a resumed session using the
matrixSslGetResumptionFlag function. The server may only use this routine at
the completion of the handshake.

The default value for the flag is 0 and so this value should not be set by a user to
hold any meaningful session information.

The utility of this feature is best described with an example scenario. Say a server
is configured for client authentication and will allow both authenticated and non-
authenticated clients to connect. The authenticated clients are allowed to access
private data on the server that the non-authenticated clients are not. This is simple
to track during the initial full handshake when the identity of the client status is
established during certificate authorization. However, during a resumed
handshake the certificate authentication is not performed and there is no easy way
for the server to determine if the client has been previously authenticated and thus
eligible to access the private data. This pair of APIs allows the server to set a flag
value for a connected client that can later be retrieved on the resumed session.

Although the scenario above uses the example of client authentication
(commercial version only) this feature can also be used in any case where the user
would like to associate information with a session that is not available during the
shorter resumed handshake process.

A typical implementation using the client authentication feature in the commercial
version is to use this function in conjunction with the matrixSslGetAnonStatus
API call to determine if the client has been authenticated. See the httpsReflector.c
sample code for an example of this usage.

Parameters
session The ssl_t session identifier for this session
flag Any user defined char value. The internal default value for the

flag is 0 and so this value should not be set by a user to hold any
meaningful session information.

API Documentation MatrixSSL 1.8

Page 29 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Return Value
A 0 return value indicates the session was found and the flag value was set
correctly. A -1 return value indicates an error and the flag value was not set.

matrixSslGetResumptionFlag
Prototype
int matrixSslGetResumptionFlag(ssl_t *session, char *flag);

Context
Server

Description
This server side function allows the user to retrieve the custom flag value for a
resumed session. The flag value will have been originally set by the
matrixSslSetResumptionFlag function.

The internal default value for the flag is 0 and so this value should not be
interpreted by a user to hold any meaningful session information.

The utility of this feature is best described with an example scenario. Say a server
is configured for client authentication and will allow both authenticated and non-
authenticated clients to connect. The authenticated clients are allowed to access
private data on the server that the non-authenticated clients are not. This is simple
to track during the initial full handshake when the identity of the client is
determined during certificate authentication. However, during a resumed
handshake the certificate authentication is not performed and there is no easy way
for the server to determine if the client has been previously authenticated and thus
eligible to access the private data. This pair of APIs allows the server to set a flag
value for a connected client that can later be retrieved on the resumed session.

Although the scenario above uses the example of client authentication
(commercial version only) this feature can also be used in any case where the user
would like to associate session data that is not available during the shorter
resumed handshake process.

The user should call this routine at the completion of the handshake process to
determine if there have been any flags associated with the session.

Parameters
session The ssl_t session identifier for this session
flag The value set by a previous call to matrixSslSetResumptionFlag.

The internal default value for the flag is 0 and so this value should
not be interpreted by a user to hold any useful session information.

API Documentation MatrixSSL 1.8

Page 30 of 30 Copyright ©2002-2006 PeerSec Networks, Inc.

Return Value
A 0 return value indicates this session was successfully retrieved and the value of
the output flag parameter is valid. A -1 return value indicates this session was not
found in the session resumption table and the flag value has not been returned.

