xkeyval package

Documentation

Version v1.4, 2004/08,/24

Hendri Adriaens
http://stuwww.uvt.nl/~hendri/downloads/xkeyval.html
Center for Economic Research
Tilburg University, the Netherlands

August 25, 2004

Contents
1 Introduction 1 9 Known issues 12
2 Installation 3 | 10 Acknowledgements 13
3 Defining and checking keys 3 11 Copyright 13
4 Setting keys 4 12 Version history 14
5 Pointers 6 13 Implementation 14
6 Declaring and setting class 13.1 T/;EX prograin 14
or package options 9 13.2 B IEX pr.og?a.m 25
13.3 keyval primitives 28
7 Error messages 11 13.4 TgX header 29
8 Examples 12 Index 30

1 Introduction

This package is an extension of the keyval package [2] and offers more flexible
macros for defining and setting keys. Both keys defined using the keyval and the
xkeyval package can be set by the latter package. The xkeyval macros allow for
scanning multiple families for keys. This can, for example, be used to create local
families for custom macros and environments which may not access keys meant
for other macros and environments, while at the same time, allowing the use of a
single command to set all of the keys from the different families globally.

Moreover, the package supplies macros to set up options systems for packages or
classes. Options systems created by xkeyval nicely integrate into standard IXTEX.

Global options can be copied by packages from the \documentclass command
and xkeyval deletes key=value options from the list of \documentclass options
to avoid problems for packages which are loaded subsequently and which are not
using xkeyval. Packages that do use xkeyval can access the original input to the
\documentclass command.

The package is compatible to plain TEX and overwrites several keyval macro to
provide an easy way to switch between using keyval and xkeyval. This might be
useful for package writers that cannot yet rely on the availability of xkeyval in a
certain distribution.

After loading xkeyval, loading keyval is prevented to make sure that the extended
macros of xkeyval will not be redefined. Some basic keyval macros are supplied in
keyval.tex to guarantee compatibility to packages that use those macros.

The macros described in section 6 are only available to I#TEX users. These
macros integrate xkeyval macros into the IXTEX options system. To load xkey-
val, TEX users do \input xkeyval.tex. ITEX users do \usepackage{xkeyval}
or \RequirePackage{xkeyvall}. It is mandatory for INTEX users to load xkeyval
at any point after the \documentclass command. Loading xkeyval from the class
which is the document class itself is possible.

In this documentation, often will be referred to the term ‘options list’. This is a
list of the form:

Ezample
keya= test a, keyb={test b,c,d}, ,keyc , keyd=end

From values consisting entirely of a { } group, the outer braces will be stripped
off. This allows the user to ‘hide’ any commas or equality signs that appear in the
value of a key. This means that when using braces, xkeyval will not terminate the
key=value pair when it encounters a comma. For instance, see the value of keyb
in the example above. Notice further that any white space around ‘=" and *,’ is
ignored. Finally, keyc did not get a value. If no default value has been defined
for this key, an error will be generated. More details about this can be found in
sections 3, 4 and 5.

Throughout this documentation, you will find some examples with a short de-
scription. More examples can be found in some example files that come with this
package. See section 8 for more information.

Note that the macros \setkeys, \setrmkeys and \ExecuteoptionsX can take
fragile commands as values for keys. These will only be expanded at the moment
that keys are actually set. Setting keys can be postponed by using \setkeys*
and \setrmkeys or by defining keys that define a macro which can be used later.
The macro \ProcessOptionsX cannot protect fragile commands. The reason is,

that this macro gets the options specified by the user from KTEX which already
expands fragile commands.

Note finally, that both [{arg)] and <(arg)> denote optional arguments to macros
for this package. The package uses this syntax to identify the different optional
arguments when they appear next to each other.

2 Installation

This package is included in the MiKTeX distribution and can be installed for
you by this program. It is also available from CTAN (http://www.ctan.org/
tex-archive/macros/generic/xkeyval) and can also be installed manually. The
package includes pre-generated run and doc files, but you can reproduce them from
the source if necessary. See the first lines of xkeyval.dtx for information on how
to do this. The files keyval.tex, xkeyval.def, xkeyval.tex and xkeyval.sty
should go into a directory searched by TEX or KTEX. See the documentation
of your ITEX distribution or the TeX Frequently Asked Questions [4] for more
information on installing xkeyval into your EXITEX distribution.

3 Defining and checking keys

This section describes how to define keys and check whether keys already exist.

’ \define@key [{prefix)]{(family)}{(key)} [{default)]1{(function)} ‘

This defines a macro \prefix@family@key with one argument holding (function).
The default value for (prefiz) is KV. This is the standard throughout the package
to simplify mixing keyval and xkeyval keys. When (key) is used in an options
list containing key=value, the macro \prefix@family@key receives value as its
argument. The argument can be accessed by (function) by using #1 inside the
function.

Ezample
\define@key{family}{key}{The input is: #1}

xkeyval will generate an error when the user omits =value for a key in the options
list. To avoid this, the optional argument can be used to specify a default value.

Ezample
\define@key{family}{key} [none]l {The input is: #1}

This will additionally define a macro \prefix@family@key@default as a macro
with no arguments and definition \prefix@family@key{none} which will be used
when =value is missing for key.

Keys can also be used to define macros which can be used later.

Ezample
\define@key{family}{key}{\def\mymacro{#1}}

When (prefiz) is specified and empty, the macros created by \define@key will
have the form \family@key. When (family) is empty, the resulting form will be
\prefix@key. When both (prefiz) and (family) are empty, the form is \key.

The intended use for (family) is to create distinct sets of keys. This can be used
to avoid a macro setting keys meant for another macro only. The optional (prefiz)
can be used to identify keys specifically for your package. Using a package specific
prefix reduces the probability of multiple packages defining the same key macros.
This optional argument can also be used to set keys of some existing packages
which use a system based on keyvall.

To further reduce the probability of redefining existing macros using \define@key,
xkeyval can perform some checks.

\define@key* [(prefiz)]{(family) 3 (key)} [{default)] {{function)} ‘

This macro works just as \define@key except that it first checks whether
\prefix@family@key has already been defined. If this is the case, it will pro-
duce an error. You might use this when debugging your package, but it is advised
to use \def ine@key when releasing your package to avoid incomprehensible errors
for users of your package to appear, for instance when an earlier loaded package
uses the same key macros as your package (which you might not have known).
These errors can generally be avoided however by selecting a proper prefix for
your package macros and keys.

’ \XKVeifkul[({prefix)]{{families)}{(key)I{{undefined) }{{defined)} ‘

This macro executes (undefined) when (key) is not defined in a family listed in
(families) using (prefiz) (which is KV by default) and (defined) when it is.

Ezample
\XKV@ifku{familya,familyb}{keya}{‘keya’ not defined}{‘keya’ defined}

4 Setting keys

This section describes the available macros for setting keys. All of the macros
in this section have an optional argument (prefix) which determines part of the
form of the keys that the macros will be looking for. See section 3. This optional
argument takes the value KV be default. The examples in this section assume the
existence of some keys, defined as, for instance

11ike PSTricks, which uses a system originating from keyval, but which has been modified to
use no families and psset as prefix.

Ezample
\define@key [my] {familya}{keya}{#1}
\define@key [my]{familya}{keyb}{#1}
\define@key [my]{familyb}{keyb}{#1}

’ \setkeys [{prefix)]{(families)} [{na)] {(keys)} ‘

This macro sets keys of the form \prefix@family@key where family is an element
of the list (families) and key is an element of the options list (keys) and not of
(na). The latter list can be used to specify keys that should be ignored by the
macro. If a key is defined by more families in the list (families), the first family
from the list defining the key will set it. No errors are produced when (keys) is
empty. If family is empty, the macro will set keys of the form \prefix@key. If
(prefiz) is specified and empty, the macro will set keys of the form \family@key.
If both (prefiz) and family are empty, the macro will set keys of the form \key.
This is in line with how key macros are constructed (see section 3).

Ezample
\setkeys[my]l{familya,familyb}{keya=test}
\setkeys[my] {familya,familyb}{keyb=test}
\setkeys [my] {familyb,familya}{keyb=test}

In the example above, line 1 will set keya in family familya. The next line will
set keyb in familya. The last one sets keyb in family familyb.

’ \setkeysx* [(prefiz)]{{families)} [{na)]{{keys)} ‘

The stared version of \setkeys sets keys which it can locate in the families given
and will not produce errors when it cannot find a key. Instead, these keys and
their values will be appended to a list of remaining keys in the macro \XKV@rm
after the use of \setkeys*. Keys listed in (na) will be ignored fully and will not
be appended to the \XKV@rm list.

Ezample
\setkeys* [my] {familyb}{keya=test}

Since keya is not defined in familyb, the value in the example above will be stored
for later use and no errors are raised.

\setrmkeys [{prefix)]{(families)} [(na)] ‘

The macro \setrmkeys sets the remaining keys given by the list \XKV@rm stored
previously by a \setkeys* (or \setrmkeys*) command in (families). (na) again
lists keys that should be ignored. It will produce an error when a key cannot be
located.

Ezample

\setrmkeys [my]{familya}

This submits keya=test from the previous \setkeys* command to familya. keya
will be set.

\setrmkeys* [(prefiz)]{(families)} [{na)] ‘

The macro \setrmkeys* acts as the \setrmkeys macro but now, as with
\setkeys*, it ignores keys that it cannot find and puts them again on the list
stored in \XKV@rm. Keys listed in (na) will be ignored fully and will not be ap-
pended to the list in \XKV@rm.

Ezample
\setkeys* [my] {familyb}{keya=test}
\setrmkeys* [my] {familyb}

\setrmkeys [my]{familya}

In the example above, the second line tries to set keya in familyb again and no
errors are generated on failure. The last line finally sets keya.

\setkeys+[(prefiz)]{{families)} [{na)]{{keys)}
\setkeysx*+[(prefiz)] {(families)} [{na)]{{keys)}
\setrmkeys+ [(prefiz)]{(families)} [{na)]
\setrmkeys*+[(prefiz)]{{families)} [(na)]

These macros act as their counterparts without the +. However, when a key
in (keys) is defined by multiple families, this key will be set in all families in
(families). This can, for instance, be used to set keys defined by your own package
and by another package with the same name but in different families with a single
command.

Ezample
\setkeys+[my]{familya,familyb}{keyb=test}

The example above sets keyb in both families. See also section 8 for more exam-
ples.

5 Pointers

The xkeyval package allows to use pointers in key values. These pointers can point
to a key for which previously a value has been recorded. The value for a key
named key will be stored in the macro \XKV@key@value. The syntax of a pointer
is “{pointer}. The following example will demonstrate how to use pointers (using
the keys defined in section 4).

Ezample

\recordkeyvalstrue

\setkeys [my]{familya}{keya=test}
\recordkeyvalsfalse

\setkeys [my] {familyb}{keyb="{keya}}

The value submitted to keyb points to keya. This has the effect that the value
recorded for keya will replace “{keya} and this value (here test) will be sub-
mitted to the key macro keyb. Notice that recording key values in macros can
consume big amounts of memory and hence, recording is turned off by default.
You can turn it on by \recordkeyvalstrue and off again \recordkeyvalsfalse
when you don’t need to record key values anymore. An error will be raised in the
case that a key value points to a key for which no value has been stored.

It is possible to nest pointers as the next example shows.

Ezample

\recordkeyvalstrue

\setkeys [my]{familya}{keya=test}
\setkeys [my] {familyb}{keyb="{keya}}
\recordkeyvalsfalse

\setkeys [my]{familya}{keyb="{keybl}}

This works as follows. First xkeyval records the value test in a macro based on
the key name, keya, but not on the family name. Then, keyb uses that value.
Besides that, the value submitted to keyb, namely ~{keya} will be recorded in
another macro. Finally, keyb from family familya will use the value recorded
previously for keyb, namely ~{keya}. That in turn points to the value saved for
keya and that value will be used.

A word of caution is necessary here. You might get into an infinite loop if pointers
are not applied with care, as the example below shows.

Ezample

\recordkeyvalstrue
\setkeys [my]{familya}{keya="{keyal}}

Luckily, TgX will immediately warn you with the message TeX capacity exceeded
when this is happening. At this point, you might be wondering why the previous
example actually worked. If we have a quick look at that example again, we see
that keyb="{keyb} works there since a value has been saved for a key named keyb
and because recording of key values has been turned off before issuing the com-
mand. This avoids xkeyval overwriting the saved value for keyb, namely ~{keya},
by “{keyb}. This is another reason to turn off key value recording as soon as you
don’t need it anymore.

It should also be noted that pointers cannot be read from inside grouped material,
{...}, if this group is not around the entire key (since that will be stripped off,
see section 1). The following, for instance, will not work.

Ezample

\recordkeyvalstrue

\setkeys[my] {familya}{keya=test}
\recordkeyvalfalse

\setkeys [my]{familyb}{keyb=\parbox{2cm}{ {keya}}}

The following is a working alternative for this situation.

Ezample
\recordkeyvalstrue

\setkeys [my] {familya}{keya=test}
\recordkeyvalfalse

\setkeys [my]{familyb}{keyb=\begin{minipage}{2cm}~{keya}t\end{minipage}}

In case there is no appropriate alternative, we can work around the restriction, for
instance by using a value macro directly

Ezample
\recordkeyvalstrue

\setkeys [my]{familya}{keya=test}
\recordkeyvalfalse

\setkeys [my] {familyb}{keyb=\parbox{2cm}{\XKV@keya@valuel}}

or by doing

Ezample
\define@key [my] {tempfamily}{tempkey}{\def\tempval{#1}}
\recordkeyvalstrue

\setkeys[my] {familya}{keya=test}

\recordkeyvalfalse

\setkeys [my]{tempfamily}{tempkey="{keyal}}

\setkeys [my] {familyb}{keyb=\parbox{2cm}{\tempvall}}

Pointers can also be used in default values. We finish this section with an example
which demonstrates this.

Ezample
\define@key{fam}{keya}{keya: #1\par}
\def ine@key{fam}{keyb} ["{keya}]{keyb: #1\par}
\define@key{fam}{keyc} ["{keyb}]{keyc: #1\par}
\recordkeyvalstrue

\setkeys{fam}{keya=test}

\setkeys{fam}{keyb}

\recordkeyvalsfalse

\setkeys{fam}{keyc}

6 Declaring and setting class or package options

The macros in this section can be used to build KTEX class or package options sys-
tems using xkeyval. They are comparable to the standard ETEX macros without
the trailing X. See for more information about these IXTEX macros the documenta-
tion of the source [1] or a ITEX manual (for instance, the ITEX Companion [3]).
The macros in this section have been built using \define@key and \setkeys and
are not available to TEX users.

The macros below allow for specifying the (family) (or (families)), on which the
macros should act, as an optional argument. This could be useful if you want
to define global options which can reused later (and set locally by the user) in a
macro or environment that you define. If no (family) (or (families)) is specified,
the macro will insert the default family name which is the filename of the file that
is calling the macros. The macros in this section also allow for setting an optional
prefix. When using the filename as family, uniqueness of key macros is already
guaranteed. In that case, you can omit the optional (prefiz). However, when you
use a custom prefix for other keys in your package and you want to be able to
reset all of the keys later with a single command, you can use the custom prefix
also for the class or package options system.

At loading, xkeyval performs two actions. These require xkeyval to be loaded at any
point after \documentclass or by the document class itself. First, it retrieves the
document class and stores that (including the class extension) into the following
mMacro.

\XKV@documentclass

This macro could for instance contain article.cls and can be useful when using
\ProcessOptionsX* in a class. See page 11.

Second, the global options stored in \@classoptionslist are copied to the fol-
lowing macro.

’ \XKV@classoptionslist

This macro will be used by \ProcessOptionsX. Options containing an equality
sign are deleted from the original list in \@classoptionslist to avoid packages,
which do not use xkeyval and which are loaded later, running into problems when
trying to copy global options using I TEX’s \ProcessOptions.

\DeclareOptionX [(prefiz)] <{family)>{(key)} [{default)]{{function)} ‘

Declares an option (i.e., a key). This macro is comparable to the standard BTEX
macro \DeclareOption, but with this command, the user can pass a value to the
option as well. Reading that value can be done by using #1 in (function). This
will contain (default) when no value has been specified for the key. The value of
the optional argument (default) is empty by default. This implies that when the

user does not assign a value to (key) and when no default value has been defined,
no error will be produced. The optional argument (family) can be used to specify
a custom family for the key. When the argument is not used, the macro will insert
the default family name.

Ezample

\newif\iflandscape
\DeclareOptionX{landscape}{\landscapetrue}
\DeclareOptionX{parindent}{\setlength{\parindent}{#1}}

The first option does not use the value that might have been submitted to it. The
second option uses the value to set \parindent.

’ \DeclareOptionX*{(function)} ‘

This macro can be used to process any unknown inputs. It is comparable to the
ETEX macro \DeclareOption*. Use \CurrentOption within this macro to get
the entire input from which the key is unknown, for instance unknownkey=value
or somevalue. These values (possibly including a key) could for example be passed
on to another class or package or could be used as an extra class or package option
specifying for instance a style that should be loaded.

Ezample
\DeclareOptionX*{\PackageWarning{mypackagel}{‘\Currentoption’ ignored}}

The example produces a warning when the user issues an option that has not been
declared.

’ \ExecuteOptionsX [(prefiz)] <(families)>[(na)]{{keys)} ‘

This macro sets keys created by \DeclareOptionX. The optional argument
(na) specifies keys that should be ignored. The optional argument (families)
can be used to specify a list of families which define (keys). When the ar-
gument is not used, the macro will insert the default family name. No-
tice that when \ExecuteOptionsX is called in between \DeclareOptionX and
\ProcessOptionsX commands and if \DeclareOptionX* has been used, un-
known keys in \ExecuteOptionsX will be set using the macro created by
\DeclareOptionXx.

Ezample

\ExecuteOptionsX{parindent=0Opt}

This initializes \parindent.

\ProcessOptionsX [(prefiz)]1<(families)> [{na)] ‘

This macro processes the keys and values passed by the user to the class or package.
The optional argument (na) can be used to specify keys that should be ignored.

10

The optional argument (families) can be used to specify the families that have
been used to define the keys. Note that this macro will not protect fragile user
inputs (like \thepage) as explained in section 1. When used in a class file, this
macro will ignore unknown keys or options (using \setkeys#*). This allows the
user to use global options in the \documentclass command which can be copied
by packages loaded afterwards.

\ProcessOptionsX* [{prefiz)]<(families)>[(na)] ‘

The stared version works like \ProcessOptionsX except that it also copies user
input from the \documentclass command. When the user specifies an op-
tion in the document class which also exists in the local family (or families)
of the package issuing \ProcessOptionsX*, the local key will be set as well.
In this case, #1 in the \DeclareOptionX macro will contain the value entered
in the \documentclass command for this key. First the global options from
\documentclass will set local keys and afterwards, the local options, specified
with \usepackage, \RequirePackage or \LoadClass (or friends), will set local
keys, which could overwrite the global options again, depending on the way the
options sections are constructed. This macro reduces to \ProcessOptionsX only
when issued from the class which forms the document class for the file at hand to
avoid setting the same options twice, but not for classes loaded later using for in-
stance \LoadClass. Class options that do not have a counterpart in local families
will be skipped.

The use of \ProcessOptionsX* in a class file might be tricky since the class could
also be used as a basis for another package or class using \LoadClass. In that case,
depending on the options system of the document class, the behavior of the class
loaded with \LoadClass could change compared to the situation when it is loaded
by \documentclass. But since it is technically possible to create two classes that
cooperate, the xkeyval package allows for the usage of \ProcessOptionsX* in class
files. Notice that using XTEX’s \ProcessOptions or \ProcessOptions*, a class
file cannot copy document class options.

In case you want to verify whether your class is loaded with \documentclass
or \LoadClass, you can use the \XKV@documentclass macro which contains the
current document class.

7 Error messages

There are several points where xkeyval performs a check and could produce an
error. These points are listed below. The macros producing the error are listed
in between brackets. Numbers of code lines have been supplied for the interested
reader. Refer to section 13 for the source code documentation.

1) A key has already been defined (\setkeys*). See code line 132.

11

2) An option or key is not defined (\setkeys, \setrmkeys, \ExecuteOptionsX,
\ProcessOptionsX or \ProcessOptionsX*). See code lines 166, 172 and
436.

3) A value has been given, but no key (idem). See code line 193.

4) No value has been recorded for a key to which a pointer was used (idem).
See code line 214.

5) No value is given for the key and no default value has been defined (idem).
See code lines 251 and 450.

6) xkeyval is loaded before \documentclass. This concerns only IETEX users.
See code line 355.

7) \RequirePackage or \LoadClass is used within the options section of a
package or class. This concerns only INTEX users. See code lines 368 and 381.

8 Examples

This package includes a zip-file xkvex.zip which contains a number of example
files. The file xkvex1.tex provides an example for IATEX users for the macros
described in sections 3, 4 and 5. The file xkvexTeX.tex provides an example for
TEX users for the same macros. The files xkvex2.tex, xkveca.cls, xkvecb.cls,
xkvesa.sty, xkvesb.sty and xkvesc.sty together form an example for the
macros described in section 6. These also demonstrate the possibilities of in-
teraction between packages or classes not using xkeyval and packages or classes
that do use xkeyval to set options.

9 Known issues

This package redefines keyval’s \define@key and \setkeys. This is risky in gen-
eral. However, since xkeyval extends the possibilities of these commands while still
allowing for the keyval syntax and use, there should be no problems for packages
using these commands after loading xkeyval. The package prevents keyval to be
loaded afterwards to avoid these commands from being redefined again into the
simpler versions. For packages using internals of keyval, like \KV@errx and \KV@do,
these are provided separately in keyval.tex.

The advantage of redefining these commands instead of making new commands is
that it is much easier for package authors to start using xkeyval instead of keyval.
Further, it eliminates the confusion of having multiple commands doing similar
things.

A potential problem lies in other packages that redefine either \define@key or
\setkeys or both. Hence particular care has been spend to check packages for
this. Only one package has been found to do this, namely pst-key. This package
implements a custom version of \setkeys which is specialized to set PSTricks

12

keys of the form \psset@somekey. xkeyval also provides the means to set these
kind of keys (see page 4) and work is going on to convert PSTricks packages to
be using a specialization of xkeyval instead of pst-key. However, since a lot of
authors are involved and since it requires a change of policy, this might take some
time. Hence, at the moment of writing, xkeyval will conflict with pst-key and the
PSTricks packages using pst-key, which are pst-3dplot, pst-abspos, pst-circ, pst-eucl,
pst-fr3d, pst-geo, pst-gr3d, pst-labo, pst-lens, pst-ob3d, pst-optic, pst-osci, pst-poly,
pst-stru, pst-uml| and pst-vue3d.

10 Acknowledgements

I want to thank Josselin Noirel, Till Tantau and Herbert Vof} for help and sugges-
tions. I want to thank Donald Arseneau for contributing the \@ifnextcharacter
macro. Special thanks go to Uwe Kern for his ideas for improving the functionality
of this package, a lot of useful comments on the package and the documentation
and for contributing the \@selective@sanitize macro.

References

[1] Johannes Braams, David Carlisle, Alan Jeffrey, Leslie Lamport, Frank Mit-
telbach, Chris Rowley, and Rainer Schopf. The ETEX 2¢ Sources. http:
//www.ctan.org/tex-archive/macros/latex/base, 2003.

[2] David Carlisle. keyval. http://www.ctan.org/tex-archive/macros/latex/
required/graphics, 1999.

[3] Frank Mittelbach and Michel Goosens, with Johannes Braams, David Carlisle,
and Chris Rowley. The EBTpX Companion, Second Edition. Addison-Wesley,
2004.

[4] TEX FAQ - Installing packages. http://www.tex.ac.uk/cgi-bin/
texfaq2html?label=instpackages.

11 Copyright

Copyright (© 2004 by Hendri Adriaens.

This file may be distributed and/or modified under the conditions of the LaTeX
Project Public License, either version 1.2 of this license or (at your option) any
later version. The latest version of this license is in: http://www.latex-project.
org/lppl.txt and version 1.2 or later is part of all distributions of LaTeX version
1999/12/01 or later.

13

12 Version history

v1.0 (2004/04/29)

General: Initial release 1

vl.1l (2004,/30/04)
\XKVedex: Made to insert an
empty default value if none

present for \DeclareOptionX 26

v1.2 (2004/05/08)

General: Change to \DeclareOptionXf;

macro is now replaced 1

v1.3 (2004/05/09)

General: Moved the options sec-
tion to the end of the package
to allow it to use xkeyval option
MACTOS « v oo e e e e e 28
Revision of documentation ... 1
vl.4 (2004/08/24)
\@ifnextcharacter: Added ro-
bust next character check .. 15

13 Implementation

13.1 TgX program

Adjust some catcodes to safely define macros.

1 %<*tex>

2 \edef\XKVAtCode{\the\catcode‘\@}
3 \edef\XKVHatCode{\the\catcode‘\"}
4 \catcode‘\@=11\relax

5 \catcode ‘\"=12\relax

Load IMTEX primitives if necessary.
6 \ifx\XKeyValLoaded\Qundefined

General: Added keyval primitives 28
Added + option to macros 6
Added pointer syntax 6
Added prefix options to macros

.................. 3,4,9
Changed package options 11
Made package TEX compatible 1
Renamed macros to keyval

NAMES . . v oot v e e 1

\define@key: Added optional

check 18

\ProcessOptionsX: Fixed macro

for \LoadClass case 27

\XKVe@filterclassoptions: Fixed

small bug 25

\XKV@split: Made macro more ef-

ficient 20

7 \message{xkeyval: key=value parser, v1.4, 2004/08/24 (HA)}

8 \input xkeyval.def
9 \fi

Check whether keyval has been loaded and if not, load keyval primitives, define
\KV@err and \KV@errx which are used by several packages and prevent keyval

from being loaded after xkeyval.

10 \expandafter\ifx\csname ver@keyval.sty\endcsname\relax

11 \input keyval.tex
12 \def\KV@errx#1{\XKV@err{#1}}
13 \let\KV@err\KV@errx

14 \expandafter\def\csname ver@keyval.sty\endcsname{1999/03/16}

15 \fi

Initializations.

\ifreckeyvals

\@ifnextcharacter
\@ifncharacter

\@selective@sanitize

\@@selective@sanitize

16 \newif\ifXKV@st
17 \newif\ifXKV@pl
18 \newif\ifXKV@knf
19 \1let\XKV@rm\empty

This if can be used to force \setkeys and \setrmkeys to save values submitted
to keys.

20 \newif\ifrecordkeyvals

Check the next character independently of its catcode. This will be used to safely
perform \@ifnextcharacter+ and \@ifnextcharacter*. This avoids errors in
case any other package changes the catcode of these characters.

Contributed by Donald Arseneau.

21 \long\def\@ifnextcharacter#1#2#3{J,

22 \@ifnextchar\bgroup

23 {\@ifnextchar{#1}{#2}{#3}}/,

24 {\@ifncharacter{#1}{#2}{#3}}/,

25

26 \long\def\Q@ifncharacter#1#2#3#4{/,

27 \if\string#1\string#4J,

28 \expandafter\@firstoftwo
29 \else

30 \expandafter\@secondoftwo
31 \fi

32 {#2}{#3}#4%

33 }

{(character string)}{{cmd)>}

Converts selected characters, given by (character string), within the first-level ex-
pansion of (¢md) to category code 12, leaving all other tokens (including grouping
braces) untouched. Thus, macros inside {¢md) do not lose their function, as it is
the case with \@onelevel@sanitize. The resulting token list is again saved in
(emd).

Example: \def\cs{ “{\fi}"} and \@selective®@sanitize{! " }\cs will change
the catcode of ‘~’ to other within \cs, while \fi and ‘~’ will remain unchanged.
As the example shows, unbalanced conditionals are allowed.

Remarks: (c¢md) should not contain the control sequence \bgroup; however,
\csname bgroup\endcsname and \egroup are possible.

Contributed by Uwe Kern.

34 \def\@selective@sanitize#1#2,

35 {\begingroup

36 \toks@\expandafter{#2}}

37 \def#2{#1}\@onelevel@sanitize#2Y

38 \edef#2{{#2}{\the\toks@}}%

39 \expandafter\@@selective@sanitize\expandafter#2#2

40 \expandafter\endgroup\expandafter\def\expandafter#2\expandafter{#2}}

{{cmd)}{ (sanitized character string)}{(token list)}

15

\XKV@err

Performs the main work. Here, the characters in (sanitized character string) are
already converted to catcode 12, (token list) is the first-level expansion of the
original contents of (¢md). The macro basically steps through the (token list),
inspecting each single token to decide whether it has to be sanitized or passed to
the result list. Special care has to be taken to detect spaces, grouping characters
and conditionals (the latter may disturb other expressions). However, it is easier
and more efficient to look for TEX primitives in general — which are characterized
by a \meaning that starts with a backslash — than to test whether a token equals
specifically \if, \else, \fi, etc. Note that \@@selective@sanitize is being
called recursively if (token list) contains grouping braces.

41 \def\@0selective@sanitize#1#2#3,

42 {\def\@i{\futurelet\@@tok\@iil}%

43 \def\@ii

44 {\expandafter\@iii\meaning\@@tok\relax

45 \ifx\@@tok\@@selective@sanitize

46 \let\@@cmd\@gobble

47 \else

48 \ifx\@@tok\@sptoken

49 \toks@\expandafter{#1}\edef#1{\the\toks@\spacel}’
50 \def\@@cmd{\afterassignment\@i\let\Q@@tok= 1}/,

51 \else

52 \let\@@cmd\@iv

53 \fi

54 \fi\@@cmd}y,

55 \def\Q@iii##1##2\relax{\if##1\@backslashchar\let\@@tok\relax\fil}V
56 \def\@iv##1,

57 {\toks@\expandafter{#1}\@temptokena{##1}J,

58 \ifx\@@tok\bgroup

59 \begingroup

60 \def#1{\expandafter\@@selective@sanitize

61 \csname\string#1\endcsname{#2}1}J,

62 \expandafter#l\expandafter{\the\@temptokenal},

63 \expandafter\@temptokena\expandafter\expandafter\expandafter
64 {\csname\string#1\endcsnamel}y,

65 \expandafter\endgroup\edef#1{\the\toks@{\the\Q@temptokenal}}y,

66 \let\@0cmd\0@i

67 \else

68 \edef#1{\expandafter\string\the\@temptokenal},

69 \expandafter\in@\expandafter{#1}{#2}%

70 \edef#1{\the\toks@\ifin@#1\else

71 \ifx\@0tok\@sptoken\space\else\the\Qtemptokena\fi\fil}y,
72 \edef\0@@cmd{\noexpand\@i\ifx\@@tok\@sptoken\the\@temptokena\fil}},
73 \fi

74 \@@cmd}’,
75 \let#1\Qempty \Q@i#3\@@selective@sanitizel}’,

Error macro.
76 \def\XKVQ@err#1{\errmessage{xkeyval error: #1}}

16

\XKV@ifstar
\XKV@ifplus

\XKV@Q@zs@def

\XKV@whilist

\XKV@wh@list

\XKV@wh@l@st

Checks whether the following token is a * or +. Use \XKV@ifnextchar to perform
the action safely.

77 \def\XKV@ifstar#1{\@ifnextcharacter*{\@firstoftwo{#1}}}

78 \def\XKV@ifplus#1{\@ifnextcharacter+{\@firstoftwo{#1}}}

(emd)(token)

Defines (c¢md) as (token) after expanding (token) and deleting any spaces within
(token).

79 \def\XKVQ@0zs@def#1#2{\edef#1{\expandafter\zap@space#2 \emptyl}}

(emd) :=(list)\do(if)\fi(function)

Based on \@for. The macro executes (function) while (if) is valid. At every
iteration, the first element will be taken from (list) and (cmd) will be defined to
expand to this element. Execution stops when the list has ran out of elements.
Hence this macro is a combination of \@for and \@whilesw. When using \iftrue
for (if), the execution of the macro is the same as that of \@for, but contains
an additional check and is hence less efficient than \@for in that situation. This
macro does not use temporary macros.

80 \long\def\XKV@whilist#1:=#2\do#3\fi#4{%

Check whether the list is non-empty and the condition true and start iteration.

81 \ifx\empty#2\empty\else

82 #3\expandafter\XKVO@wh@list#2,\0@nil, \@nil\@@#1#3\fi{#4}\fi
83 \fi

84 }

Performs iteration and checks extra condition. This macro is not optimized for
the case that the list contains a single element.

85 \long\def\XKV@wh@list#1,#2\Q0#3#4\fi#5{},
Define the running (cmd).

86 \def#3{#1})

If we find the end of the list, stop.

87 \ifx#3\@nnil

88 \expandafter\XKVOwh@l@st

89 \else

If the condition is met, execute {function) and continue. Otherwise stop.

90 #4

91 #5\expandafter\expandafter\expandafter\XKV@wh@list
92 \else

93 \expandafter\expandafter\expandafter\XKVOwh@1l@st
94 \fi

95 \fi

96 #2\0O#3#4\fi{#5}Y,

97 }

Macro to gobble remaining input.
98 \long\def\XKV@wh@l@st#1\Qo#2#3\fi#4{}

17

\XKV@makepf

\XKV@makehd

\XKV@testopta
\XKV@t@stopta
\XKVeot@st@pta
\XKV@@t@st@pta

\defineQkey
\XKV@def ineQkey

\XKV@def ine@key

This macro creates the prefix, like prefix@ in \prefix@family@key. First it
deletes spaces from the input and checks wether it is empty. If not empty, an
@-sign is added.

99 \def\XKV@makepf#1{Y

100 \XKV@Qzs@def\XKVeprefix{#1}%

101 \ifx\XKV@prefix\empty\else

102 \edef\XKV@prefix{\XKV@prefix @}

103 \fi

104 }

Creates the header, like prefix@family@ in \prefix@family@key. If family is
empty, the header reduces to prefix@.

105 \def\XKV@makehd#1{%

106 \XKV@@zs@def\XKVQ@resa{#1}%

107 \ifx\XKV@resa\empty
108 \edef\XKV@header{\XKV@prefix}/

109 \else

110 \edef\XKV@header{\XKV@prefix\XKVQ@resa @1}
111 \fi

112 }

Macros for \setkeys and \setrmkeys for testing for optional arguments and in-
serting default values. These also perform some necessary initializations.

113 \def\XKV@testopta#1{y,

114 \XKV@ifstar{\XKV@sttrue\XKV@t@stopta#1}{\XKV@stfalse\XKV@tO@stopta#1l}/,
115 }

116 \def\XKVet@stopta#1{%

117 \XKV@ifplus{\XKV@pltrue\XKV@t@st@pta#1}{\XKVeplfalse\XKVQt@stCpta#1}Y
118 }

119 \def\XKV@tO@st@pta#1{\@ifnextchar [{\XKVe0t@stOpta#1}{\XKVeet@st@pta#1 [KV]}}
120 \def\XKVe@t@stOpta#l [#2] #3{%

121 \XKV@makepf{#2}%

122 \XKV@@zs@def \XKV@fams{#3}/,

123 \@ifnextchar [#1{#1[1}%

124 }

Macro to define a key in a family. Original but modified keyval code. Notice the
use of the KV prefix as default prefix. This is done to allow setting both keyval and
xkeyval keys with a single command.

125 \def\define@key{\XKV@ifstar{\XKV@sttrue\XKV@define@key}{\XKV@stfalse\XKV@define@keyl}}
126 \def\XKV@define@key{\@ifnextchar [\XKVQ@dQfine@key{\XKV@d@fine@key [KV]}}

Workhorse for \define@key.

127 \def\XKVedefineQkey [#1]#2#3{%
Set prefix.

128 \XKV@makepf{#11}/

Set header.

129 \XKV@makehd{#2}Y

18

\XKV@d@ef ine@kQy

\setkeys

\XKV@setkeys

\XKV@s@tkeys

Check whether key macro already exists.
130 \ifXKVe@st

131 \expandafter\ifx\csname\XKV@header#3\endcsname\relax\else

132 \XKV@err{redefining existing macro ‘\@backslashchar\XKV@header#3’}J,
133 \fi

134 \fi

Define the key macro.

135 \@ifnextchar [{\XKV@d@fine@k@y{#3}}{%
136 \expandafter\def\csname\XKV@header#3\endcsname####11}7
137 }

Defines a key macro and a default value macro.

138 \def\XKVQdQfineQkQy#1 [#2]{%
139 \expandafter\def\csname\XKV@header#1@default\expandafter\endcsname

140 \expandafter{\csname\XKV@header#1\endcsname{#2}1}/,
141 \expandafter\def\csname\XKV@header#1\endcsname##1/,
142 }

Set keys. The stared version does not produce errors, but appends keys that
cannot be located to the list in \XKV@rm. The plus version sets keys in all families
that are supplied. Use \XKV@testopta to handle optional arguments.

143 \def\setkeys{\XKV@testopta\XKV@setkeys}

Workhorse for \setkeys. It starts the loop over the options list.

144 \def\XKV@setkeys [#1]1#2{%
145 \XKVQ@Qzs@def\XKVQ@keysnot{#1}%
146 \let\XKV@rm\empty

Sanitize the input and start the loop over keys. We do not use \@for since that
expands fragile macros. Instead we adopt the methodology of the keyval package.
147 \def\XKV@tempa{#2}%

148 \@selective@sanitize”\XKV@tempa

149 \expandafter\XKV@s@tkeys\XKV@tempa,\@nil,?%
150 }

Workhorse for \XKV@setkeys.

151 \def\XKV@s@tkeys#1,{%
152 \ifx\@nil#1\empty\else

153 \XKV@knftrue

Split key and value.

154 \XKV@split#1==\@nil

Check whether the key has been found.
155 \ifXKV@knf

156 \ifx\XKV@inpox\Qundefined

If not in the options section, raise an error or add the key to the list in \XK@rm
when \setkeys* has been used.

157 \ifXKV@st

19

158 \1fx\XKV@rm\empty

159 \toks@{#1}%

160 \xdef\XKVe@rm{\the\toks@}/,

161 \else

162 \toks@\expandafter{\XKVQrm, #1}

163 \xdef\XKVe@rm{\the\toks@}/,

164 \fi

165 \else

166 \XKV@err{ ‘\XKV@tkey’ undefined in families ‘\XKV@fams’l}},
167 \fi

168 \else

We are in the options section. Try to use the macro defined by \DeclareOptionXx.
169 \ifx\XKV@doxs\relax

For classes, ignore unknown (possibly global) options. For packages, raise the
standard I¥TEX error.

170 \ifx\@currext\@clsextension\else
171 \let\CurrentOption\XKV@tkey
172 \@unknownoptionerror

173 \fi

174 \else

Pass the option through \DeclareOptionXx.

175 \def\CurrentOption{#1}%

176 \XKV@doxs

Remove the option from \@unusedoptionlist.
177 \XKV@useoption\CurrentOption
178 \fi

179 \fi

180 \else

Remove global options set by the document class from \@unusedoptionlist.
Global options set by other packages or class will be removed by \ProcessOptionsX*.

181 \ifx\XKV@inpox\Qundefined\else\ifx\XKV@testclass\XKV@documentclass
182 \XKV@useoption{#1}/

183 \fi\fi

184 \fi

185 \expandafter\XKV@sQtkeys

186 \fi

187 }

\XKVesplit Macro that splits keys and values.
188 \def\XKV@split#1=#2=#3\0nil{Y%
Remove spaces from key input.
189 \XKVQQ@zs@def\XKVQtkey{#11}/,
If the key is empty and a value has been specified, generate an error.

190 \ifx\XKV@tkey\empty
191 \ifx\empty#2\empty\else

20

\XKV@replacepointers

\XKV@1lf@setkey@infam

192 \toks@{#2}%

193 \XKV@err{No key specified for value ‘\the\toks@’}J
194 \fi

195 \XKV@knffalse

196 \else

If in the \XKV@keysnot list, ignore the key.

197 \in@{\expandafter, \XKV@tkey, }{\expandafter, \XKV@keysnot, }%
198 \ifin@\XKV@knffalse\else

199 \KV@@sp@def \XKVQ@tempa{#2}/,

200 \toks@\expandafter{\XKV@tempa}y

Save key values if requested.

201 \ifrecordkeyvals

202 \expandafter\xdef\csname XKVO@\XKV@tkey @value\endcsname{\the\toks@}/,
203 \fi

Replace pointers by saved value and start the loop over families.

204 \expandafter\XKV@replacepointers\the\toks@ {}\@nil
205 \expandafter\XKV@lf@setkey@infam\the\toks@\@nil{#3}/,
206 \fi

207 \fi

208 }

Replaces all pointers safely by their saved value. The result is stored in \toks@.
We feed that every time to the macro itself to replace nested pointers. It stops
when no pointers are found anymore.

209 \def\XKV@replacepointers#1~#2#3\0@nil{}

210 \toks@{#11}%

211 \ifx\empty#2\empty\else

212 \expandafter\let\expandafter\XKV@resa\csname XKV@#2@value\endcsname
213 \ifx\XKV@resa\relax

214 \XKV@err{No value recorded for key ‘#2’1}J

215 \XKV@knffalse

216 \else

217 \edef\XKV@resb{\the\toks@}}

218 \toks@\expandafter\expandafter\expandafter

219 {\expandafter\XKV@resb\XKVQ@resa#3}/

220 \expandafter\XKV@replacepointers\the\toks@\@nil
221 \fi

222 \fi

223 }

Contains the loops over families. The kind of loop depends on the use of + in the
command.
224 \def \XKV@1lf@setkey@infam#1\Onil#2{%
225 \ifx\XKV@fams\empty

If the family list is empty, only check the empty family for keys.
226 \XKV@makehd{}Y
227 \XKV@setkey@infam{#1}{#2}/,
228 \else

21

If a command with a + is used, set keys in all families on the list. Since there is
no danger of expanding fragile macros, we use \@for.

229 \ifXKVepl

230 \@for\XKV@tfam:=\XKV@fams\do{’
231 \XKV@makehd\XKV@tfam

232 \XKV@setkey@infam{#1}{#2}Y
233 o

234 \else

Else, scan the families on the list but stop when the key is found or when the list
has run out.

235 \XKV@whilist\XKV@tfam:=\XKV@fams\do\ifXKV@knf\fi{%
236 \XKV@makehd\XKV@tfam

237 \XKV@setkey@infam{#1}{#2}Y

238 Y

239 \fi

240 \fi

241 }

\XKV@setkey@infam Sets a key in a family. Based on keyval code.

242 \def\XKV@setkey@infam#1#2{Y

243 \expandafter\let\expandafter\XKV@tempa
244 \csname\XKV@header\XKV@tkey\endcsname
Check whether the key macro is defined.

245 \ifx\XKV@tempa\relax\else
246 \XKV@knffalse
247 \ifx\empty#2\empty

No value given, use default.

248 \expandafter\let\expandafter\XKV@tempb

249 \csname\XKV@header\XKV@tkey @default\endcsname
250 \ifx\XKV@tempb\relax

251 \XKV@err{No value specified for key ‘\XKV@tkey’}J
252 \else

Execute key with the default value.

253 \expandafter\XKV@default\XKVQ@tempb\@nil
254 \fi
255 \else

Execute key with submitted value.

256 \XKV@tempa{#1}\relax
257 \fi

258 \fi

259 }

\XKVedefault This macro checks the \prefix@fam@key@default macro. If the macro has the
form as defined by keyval or xkeyval, it is possible to extract the default value and
safe that (if requested) and replace pointers. If the form is incorrect, just execute
the macro and forget about possible pointers. The reason for this check is that

22

\setrmkeys

certain packages (like fancyvrb) abuse the ‘default value system’ to execute code

instead of setting keys by redefining default value macros. These macros do not

actually contain a default value and trying to extract that would not work.

260 \def\XKV@default#1#2\@nil{%

Retrieve the name of the first token in the macro.

261 \expandafter\edef\expandafter\XKV@resa\expandafter{\expandafter\@gobble\string#1}%
Construct the name that we expect on the basis of the keyval and xkeyval syntax

of default values.

262 \edef\XKV@resb{\XKV@header\XKV@tkeyl}’

Sanitize \XKV@resb to reset catcodes for comparison with \XKV@resa.

263 \@onelevel@sanitize\XKV@resb
264 \ifx\XKV@resa\XKV@resb

If it is safe, extract the value. We temporarily redefine the key macro to save the
default value in a token. Saving the default value itself directly to a macro would
of course be easier, but a lot of packages rely on this system created by keyval, so
we have to support it here.

265 \begingroup

266 \expandafter\def\csname\XKV@header\XKVQtkey\endcsname##1{},
267 \global\toks@{##1}/,

268 Y

269 \XKV@tempb

270 \endgroup

Save the default value to a macro and sanitize the input.

271 \edef\XKV@tempb{\the\toks@}%
272 \@selective@sanitize”\XKV@tempb

Safe the default value to a value macro if requested.

273 \ifrecordkeyvals

274 \expandafter\expandafter\expandafter\gdef

275 \expandafter\expandafter\csname XKVQ@\XKV@tkey @value\endcsname
276 \expandafter{\XKV@tempb}/

277 \fi

Replace the pointers.

278 \expandafter\XKV@replacepointers\XKV@tempb~{}\@nil

Execute the default value macro with the (possibly changed) default value.
279 \expandafter\XKV@tempa\expandafter{\the\toks@l}y,

280 \else

Execute the default value macro without any features.

281 \XKV@tempb\relax
282 \fi
283 }

Set remaining keys stored in \XKV@rm. The stared version creates a new list in
\XKV@rm in case there are still keys that cannot be located in the families specified.

23

\XKV@setrmkeys

\XKV@ifku

\XKVeifk@

Care is taken again not to expand fragile macros. Use \XKV@testopa again to

handle optional arguments.

284 \def\setrmkeys{\XKV@testopta\XKV@setrmkeys}
Submits the keys in \XKV@rm to \XKV@setkeys.
285 \def \XKV@setrmkeys [#1]{/

286
287
288

289 }

This macro allows checking if a key is defined in a family from a list of families.

\tok
\ede
\ XKV

s@\expandafter{\XKV@rm}/,
f\XKV@tempa{\noexpand\XKV@setkeys [#1]{\the\toks@}}%
Qtempa

290 \def\XKV@ifku{\@ifnextchar [\XKVQ@ifk@{\XKV@ifk@ [KV]}}
Workhorse for \XKV@ifku.

291 \long\def\XKVQifke [#1]#2#3#4#5{Y

Set the prefix.

292
293
294

\XKV
\ XKV
\ XKV

Q@knftrue
@makepf{#11}%
Q@@zs@def\XKVefams{#2}%

Treat the case that the list of families is empty independently.

295

\ifx

\XKV@fams\empty

Set the header.
\XKV@makehd{}%
Check whether the macro for the key is defined.

296

297
298
299
300

\expandafter\ifx\csname\XKV@header#3\endcsname\relax\else

\fi

\els

\XKV@knffalse
i
e

Loop over possible families.
\XKV@whilist\XKV@tfam:=\XKV@fams\do\ifXKV@knf\fi{}
Set the header.

301

302

\XKV@makehd\XKV@tfam

Check whether the macro for the key is defined.

303
304
305
306
307

Y
\fi

\expandafter\ifx\csname\XKV@header#3\endcsname\relax\else
\XKV@knffalse
\fi

Execute one of the final two arguments depending on state of \XKV@knf.
\ifXKV@knf#4\else#5\fi

308

309 }

Finalize.
310 \catcode ‘\@=\XKVAtCode\relax
311 \catcode‘\"=\XKVHatCode\relax
312 (/tex)

24

\XKV@err

\XKV@testoptb
\XKV@t@stoptb
\XKV@t@st@ptb

\XKV@getdocumentclass

\XKVe@filterclassoptions

13.2 ETgX program

Initialize the package.
313 J<xlatex>

314 \NeedsTeXFormat{LaTeX2e}[1995/12/01]
315 \ProvidesPackage{xkeyval}[2004/08/24 v1.4 key=value parser (HA)]

Initializations. Load xkeyval.tex. Avoid loading keyval later on.
316 \def\XKeyValLoaded{}
317 \input{xkeyval.tex}

318 \let\XKV@doxs\relax
319 \@namedef{ver@keyval.sty}{1999/03/16}

Error macro.
320 \def\XKV@err#1{\PackageError{xkeyval}{#1}\@ehc}

Macros for \ExecuteOptionsX and \ProcessOptionsX for testing for optional
arguments and inserting default values.

321 \def\XKV@testoptb#1{\Q@testopt{\XKVO@t@stoptb#1}{KV}}

322 \def \XKV@t@stoptb#1 [#2]{%

323 \@ifnextchar<{\XKVOt@stOptb#1 [#2] }{\XKVOt@st@ptb#1 [#2] <\@currname>}}

324 }

325 \def \XKV@tQ@st@ptb#1 [#2] <#3>{/,

326 \@ifnextchar [{#1 [#2]{#3}}{#1[#2]1{#3}[1})

327 }

Retrieve the document class from \@filelist. This is the first filename in the list
with a class extension. Use a while loop to scan the list and stop when we found
the first filename which is a class. Also stop in case the list is scanned fully.

328 \def\XKV@getdocumentclass{/
329 \XKV@whilist\XKV@tempa:=\@filelist\do\ifx\XKV@documentclass\@undefined\fi{}

330 \filename@parse\XKV@tempa

331 \ifx\filename@ext\@clsextension

332 \edef\XKV@documentclass{\filename@base.\filename@ext}/,
333 \fi

334}

335 }

Code to filter key=value pairs from \@classoptionslist. Notice that no attempt
is being made to protect fragile macros.

336 \def\XKV@filterclassoptions{’

337 \let\XKV@tempa\empty

338 \@for\XKV@tempb:=\@classoptionslist\do{’

339 \ifx\XKV@tempb\empty\else

340 \@expandtwoargs\in@{=}{\XKV@tempbl}’
341 \ifin@\else

342 \edef\XKV@tempa{,

343 \XKV@tempa

344 \ifx\XKV@tempa\empty\else, \fi
345 \XKV@tempb

25

346 Y

347 \fi

348 \fi

349 Y%

350 \let\@classoptionslist\XKV@tempa
351 }

At loading, retrieve document class, copy \@classoptionslist to \XKV@classoptionslist
and filter key=value pairs from the original.
352 \1ifx\XKV@documentclass\@undefined

353 \XKV@getdocumentclass
354 \ifx\XKV@documentclass\@undefined

355 \XKV@err{xkeyval loaded before \@backslashchar documentclassl}/,
356 \let\XKV@documentclass\empty

357 \let\XKV@classoptionslist\empty

358 \else

359 \let\XKV@classoptionslist\@classoptionslist

360 \XKV@filterclassoptions

361 \fi

362 \fi

\XKV@getoption Retrieves option from option=value.
363 \def\XKV@getoption#1=#2\@nil{\def\CurrentOption{#1}}
\XKV@useoption Removes an option from \@unusedoptionlist.

364 \def\XKVQuseoption#1{}%
365 \@expandtwoargs\@removeelement{#1}\Qunusedoptionlist\Qunusedoptionlist
366 }

Macros for class and package writers. These are mainly shortcuts to \define@key
and \setkeys. The ETEX macro \@fileswith@pti@ns is set to generate an error.
This is the case when a class or package is loaded in between \DeclareOptionX
and \ProcessOptionsX commands.

\DeclareOptionX Declare an option.
367 \def\DeclareOptionX{/
368 \let\@fileswith@pti@ns\@badrequireerror
369 \XKV@ifstar\XKV@dox\XKV@d@x
370 }

\XKVedox This macro defines \XKV@doxs to be used for unknown options.
371 \long\def\XKV@dox#1{\toks@{#1}\edef\XKV@doxs{\the\toks@}}

\XKvedex Insert default prefix and family name (which is the filename of the class or package)
\Xkveedex and add empty default value if none present. Execute \define@key.

\XKVQQQd@x 375 \def\XKV@dox{\Ctestopt\XKVOQdex{KV}}
373 \def \XKV@@dOx [#1] {\@ifnextchar<{\XKVee@dox [#1] }{\XKVeeedex [#1] <\@currname>}}
374 \def\XKVeoedex [#1]<#2>#3{\Ctestopt{\defineCkey [#1] {#2}{#3}}{}}

\ExecuteOptionsX This macro sets keys to specified values and uses \setkeys to do the job. Insert

26

\ProcessOptionsX
\XKV@pox

\XKV@p@x

default prefix and family name if none provided. Use \XKV@testoptb to handle
optional arguments.

375 \def \ExecuteOptionsX{\XKV@testoptb\setkeys}

Processes class or package using xkeyval. The stared version copies class options
submitted by the user as well, given that they are defined in the local families
which are passed to the macro. Use \XKV@testoptb again to handle optional
arguments.

376 \def\ProcessOptionsX{\XKV@ifstar{\XKV@sttrue\XKV@pox}{\XKV@stfalse\XKV@poxl}}
377 \def \XKV@pox{\XKV@testoptb\XKV@p@x}

Workhorse for \ProcessOptionsX and \ProcessOptionsXx.
378 \def \XKVepOx [#1]#2 [#3]{%
379 \let\XKV@tempa\empty

Set \XKV@inpox: indicates that we are in \ProcessOptionsX to invoke a special
routine in \XKV@s@tkeys.
380 \let\XKV@inpox\empty

Set \@fileswith@pti@ns again in case no \DeclareOptionX has been used. This
will be used to identify a call to \setkeys from \ProcessOptionsX.

381 \let\@fileswith@pti@ns\@badrequireerror
382 \edef\XKV@testclass{\@currname.\@currext}y,

If xkeyval is loaded by the document class, initialize \@unusedoptionlist.

383 \ifx\XKV@testclass\XKV@documentclass
384 \let\Qunusedoptionlist\XKV@classoptionslist
385 \else

Else, if the stared version is used, copy global options in case they are defined in
local families. Do not execute this in the document class to avoid setting keys
twice.

386 \ifXKVest

387 \@for\XKV@tempb:=\XKV@classoptionslist\do{%
388 \expandafter\XKV@getoption\XKV@tempb=\0nil
389 \XKV@ifku [#1]{#2}{\CurrentOption}{\relax}{/

If the option also exists in local families, add it to the list for later use and remove
it from \@unusedoptionlist.
390 \XKV@useoption\XKV@tempb
391 \edef \XKV@tempa{\XKV@tempa\XKV@tempb, }7
392 Y
393 Yh
394 \fi
395 \fi

Set options. We can be certain that global options can be set since the definitions
of local options have been checked above. Note that \DeclareOptionX* will not
consume global options when \ProcessOptionsX* is used.
396 \edef\XKV@tempb{’
397 \noexpand\setkeys [#1]{#2} [#3] {\XKV@tempa\@ptionlist{\@currname.\Qcurrext}}/,

27

308}
399 \XKV@tempb

Reset the macro created by \DeclareOptionX* to avoid processing future un-
known keys using \XKV@doxs.

400 \let\XKV@doxs\relax
Reset the \XKV@rm macro to avoid processing remaining options with \setrmkeys.
401 \let\XKV@rm\empty
Reset \XKV@inpox: not in \ProcessOptionsX anymore.
402 \let\XKV@inpox\@undefined
Reset \@fileswith@pti@ns to allow loading of classes or packages again.
403 \let\@fileswith@pti@ns\@0fileswith@ptilns

404 \AtEndOfPackage{\let\Qunprocessedoptions\relax}/,
405 }

The options section. Postponed to the end to allow for using xkeyval options
macros. All options are silently ignored.

406 \DeclareOptionX*{\PackageWarning{xkeyval}{Unknown option ‘\CurrentOption’}}
407 \ProcessOptionsX

408 (/latex)

13.3 keyval primitives

Since the xkeyval macros handle input in a very different way than keyval macros, it
is not wise to redefine keyval primitives (like \KV@do and \KV@split) used by other
packages as a back door into \setkeys. Instead, we load the original primitives
here for compatibility to existing packages using (parts of) keyval. Most of the
code is original, but slightly adapted to xkeyval. See the keyval documentation for
information about the macros below.

409 %<*keyval>

410 %h

411 %% Taken from keyval.sty.

412 %h

413 \def\XKV@tempa#1{Y

414 \def\KV@@sp@def##1##2{},

415 \futurelet\XKV@resa\KV@@spQ@d##2\@nil\@nil#1\Onil\relax##1}J

416 \def\KV@@sp@d{’

417 \ifx\XKV@resa\@sptoken

418 \expandafter\KV@@sp@b

419 \else

420 \expandafter\KV@@sp@b\expandafter#1,
421 \filt}

422 \def\KV@@sp@b#1##1 \O@nil{\KV@@spQc##1}
423 }

424 \XKV@tempa{ }
425 \def\KV@@sp@c#1\@nil#2\relax#3{\toks@{#1}\edef#3{\the\toks@}}
426 \def \KVedo#1,{%

28

427 \ifx\relax#1l\empty\else

428 \KV@split#l==\relax

429 \expandafter\KV@do\fi}

430 \def\KV@split#1=#2=#3\relax{/,
431 \KV@@sp@def\XKV@tempa{#1}V,
432 \ifx\XKV@tempa\empty\else

433 \expandafter\let\expandafter\XKV@tempc
434 \csname\KV@prefix\XKV@tempa\endcsname
435 \ifx\XKV@tempc\relax

436 \XKV@err{‘\XKV@tempa’ undefined}/,

437 \else

438 \ifx\empty#3\empty

439 \KV@default

440 \else

441 \KV@@sp@def \XKV@tempb{#2}/

442 \expandafter\XKV@tempc\expandafter{\XKV@tempb}\relax
443 \fi

444 \fi

445 \fi}

446 \def\KvVe@default{’
447 \expandafter\let\expandafter\XKV@tempb

448 \csname\KV@prefix\XKV@tempa @default\endcsname

449 \ifx\XKV@tempb\relax

450 \XKV@err{No value specified for key ‘\XKVQ@tempa’}/,
451 \else

452 \XKV@tempb\relax

453 \fi}

454 (/keyval)

13.4 TEX header

This section generates xkeyval.def which contains some standard XTEX macros
taken from latex.ltx. This will only be loaded when not using xkeyval.sty.

455 J<*¥header>

456 %h

457 %% Taken from latex.ltx.

458 %

459 \def\@nnil{\@nil}

460 \newtoks\@temptokena

461 \long\def\@firstoftwo#1#2{#1}
462 \long\def\@secondoftwo#1#2{#2}
463 \long\def\@ifnextchar#1#2#3{J,
464 \let\reserved@d=#1Y

465 \def\reserved@a{#2}Y

466 \def\reserved@b{#3}V,

467 \futurelet\@let@token\@ifnch}
468 \def\@ifnch{’

469 \ifx\@let@token\@sptoken

470 \let\reserved@c\@xifnch

29

471 \else

472 \ifx\@let@token\reserved@d
473 \let\reserved@c\reserved@a
474 \else

475 \let\reserved@c\reserved@b
476 \fi

477 \fi

478 \reserved@c}

479 \def\:{\let\@sptoken= } \:

480 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
481 \def\@fornoop#1\00#2#3{}

482 \long\def\@for#1:=#2\do#3{%

483 \expandafter\def\expandafter\@fortmp\expandafter{#2}/,

484 \ifx\@fortmp\empty \else

485 \expandafter\@forloop#2,\@nil, \@nil\Q@@#1{#3}\fi}

486 \long\def\@forloop#1,#2,#3\00#4#5{\def#4{#1}\ifx #4\0nnil \else

487 #5\def#4{#2}\ifx #4\@nnil \else#5\Q@iforloop #3\Q@#4{#5}\fi\fi}
488 \long\def\@iforloop#1, #2\00#3#4{\def#3{#1}\ifx #3\@nnil

489 \expandafter\@fornoop \else

490 #4\relax\expandafter\Q@iforloop\fi#2\Q0o#3{#4}}

491 \long\def \@gobble #1{}

492 \edef\@backslashchar{\expandafter\@gobble\string\\}
493 \newif\ifin®@

494 \def\in@#1#2{J,

495 \def\in@Q##1#1##2##3\in@0{Y,

496 \ifx\in@##2\in@false\else\in@true\fi}y

497 \in@@#2#1\in@\in0e}

498 \def\zap@space#1 #2{J,

499 #17,
500 \ifx#2\empty\else\expandafter\zap@space\fi
501 #2}

502 \def\strip@prefix#1>{}

503 \def \Qonelevel@sanitize #1{%

504 \edef #1{\expandafter\strip@prefix
505 \meaning #13}%

506 }

507 (/header)

Index
Numbers written in italic refer to the page where the corresponding entry is de-

scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols 481, 485-488, 490 \@@selective@sanitize
\: 479, 480 \@ecmd 46, 50, e 39, 41
\@ 2, 4, 310 52, 54, 66, 72, T4 \eetok 42, 44, 45, 48,
\e@ .. 82,85, 96, 98, \@0fileswith@pti@ns 403 50, 55, 58, 71, 72

30

\@backslashchar
55, 132, 355, 492

\@badrequireerror
368, 381
\@classoptionslist .

338, 350, 359
\@clsextension 170, 331
\@currext . 170, 382, 397
\@currname
. 323, 373, 382, 397
............ 320
\@empty 75
\@expandtwoargs 340, 365
\@filelist 329
\@fileswith@pti®ns

368, 381, 403

\@firstoftwo

28, 77, 78, 461
230, 338, 387, 482
485, 486

\@for .
\@forloop
\@fornoop 481, 489
\@fortmp 483, 484
\@gobble 46, 261, 491, 492
\@i . 42, 50, 66, 72, 75
\@ifnch ... 467, 468, 480
\@ifncharacter 21
\@ifnextchar
22,23, 119, 123,
126, 135, 290,
323, 326, 373, 463
\@ifnextcharacter
21, 77,78
\@iforloop 487, 488, 490
\@ii 42, 43

. 467, 469, 472, 480
\@namedef 319
\@nil 82, 149, 152, 154,

188, 204, 205

209, 220, 224,

253, 260, 278,

363, 388, 415,

422, 425, 459, 485
\@nnil . 87, 459, 486—488
\@onelevel@sanitize
37, 263, 503
397
... 365

\@ptionlist
\@removeelement

\@secondoftwo 30, 462
\@selective@sanitize

..... 34, 148, 272
\@sptoken 48,

71,72, 417, 469, 479

\@temptokena
57, 62, 63,

65, 68, 71, 72, 460

\@testopt . 321, 372, 374
\@undefined
... 6,156, 181,

329, 352, 354, 402

\@unknownoptionerror

\@unusedoptionlist .
365, 384
470, 480
492
3, 5, 311

\afterassignment .. 50
\AtEndOfPackage . 404

B
\begingroup .
\bgroup

35, 59, 265
22, 58

\catcode .. 2-5, 310, 311
\CurrentOption
171, 175,
177, 363, 389, 406

D
\DeclareOptionX
26, 367, 406
\define@key ... 125, 374

E
\endgroup 40, 65, 270
\errmessage 76
\ExecuteOptionsX 26, 375

F
\filename@base . 332
\filename@ext 331, 332
\filename@parse . 330

31

\gdef 274
\global 267
I
\if .. 27, 55
\ifin@ . 70, 198, 341, 493
\ifreckeyvals 15

\ifrecordkeyvals

..... 20, 201, 273
\ifXKV@knf 18,

155, 235, 301, 308
\ifXKvepl 17, 229
\ifXKvV@st

16, 130, 157, 386
\in@ 69, 197,

340, 494, 496, 497
\inG@ 495, 497
\in@false 496
\in@true 496
\input 8, 11, 317

K
\KV@@sp@b . 418, 420, 422
\KV@@spQc 422,425
\KV@@sp@d 415, 416
\KV@@sp@def

. 199, 414, 431, 441
\KV@default ... 439, 446
\KVedo 426, 429
\KV@err 13
\KV@errx 12, 13
\KV@prefix 434, 448
\KV@split 428, 430

M
\meaning 44, 505
\message 7

N
\NeedsTeXFormat 314

P
\PackageError 320
\PackageWarning 406
\ProcessOptionsX

“““““ 376, 407
\ProvidesPackage .. 315

R
\reserved@a ... 465, 473

\reserved@ ... 466, 475
\reserved@c

. 470, 473, 475, 478
\reserved@d ... 464, 472
S
\setkeys 19, 143, 375, 397
\setrmkeys 23, 284
\strip@prefix . 502, 504
T

\toks@ 36, 38, 49, 57,
65, 70, 159, 160,
162, 163, 192,
193, 200, 202,
204, 205, 210,
217, 218, 220,
267, 271, 279,
286, 287, 371, 425
X
\XKeyValLoaded .. 6, 316
\XKV@0@dOx 372
\XKvVeedex 372
\XKV@et@st@pta . 113
\XKV@@zs@def

17,79, 100, 106,

122, 145, 189, 294
\XKVQclassoptionslist

. 357, 359, 384, 387
\XKV@def ine@kQy
19, 135, 138
\XKV@define@key 126, 127
\XKVedex 369, 372
\XKV@default .. 253, 260
\XKV@define@key . 125
\XKV@documentclass .

181, 329, 332,

352, 354, 356, 383
\XKV@dox 26, 369, 371
\XKV@doxs 169,

176, 318, 371, 400
\XKV@err .12, 16,

25, 76, 132, 166,

193, 214, 251,

320, 355, 436, 450
\XKV@fams 122,

166, 225, 230,

235, 294, 295, 301
\XKVefilterclassoptions
336, 360

\XKV@getdocumentclass
25, 328, 353
\XKV@getoption

26, 363, 388

\XKV@header
108, 110, 131,
132, 136, 139-
141, 244, 249,
262, 266, 297, 303
\XKV@ifk@ 24, 290, 291
\XKV@ifku 290, 389
\XKVe@ifplus . 17, 78, 117
\XKVe@ifstar .. 17, 77,
114, 125, 369, 376
\XKV@inpox
. 156, 181, 380, 402
\XKV@keysnot .. 145, 197
\XKV@knffalse

195, 198,
215, 246, 298, 304
\XKV@knftrue .. 153, 292
\XKV@lf@setkey@infam
205, 224
\XKV@makehd 18
105, 129, 226,
231, 236, 296, 302
\XKV@makepf 18
99, 121, 128, 293
\XKVep@x 27, 377, 378
\XKV@plfalse 117
\XKV@pltrue
\XKV@pox
\XKV@prefix
100-102, 108, 110
\XKV@replacepointers
21,
204, 209, 220, 278
\XKV@resa
106, 107, 110,
212, 213, 219,
261, 264, 415, 417
\XKV@resb
. 217, 219, 262-264
\XKVerm 19,
146, 158, 160,
162, 163, 286, 401
\XKV@s@tkeys .. 149, 151
\XKV@setkey@infam
. 227, 232, 237, 242
\XKV@setkeys

143, 144, 287

32

\XKV@setrmkeys .
24, 284, 285
154, 188

\XKV@split
\XKV@stfalse
114, 125, 376
\XKV@sttrue 114, 125, 376
\XKV@t@st@pta 113
\XKVet@st@ptb 321
\XKVet@stopta 113
\XKV@t@stoptb 321
\XKV@tempa
199,
245,
287,
330,
344,
391,
424,
434,
\XKV@tempb
250,
271,
278,
340,
388,
396,

147-149,
200, 243,
256, 279,
288, 329,
337, 342-
350, 379,
397, 413,
431, 432,
436, 448, 450
248,
269,
276,
338-
387,

253,
272,
281,
345,
390, 391,
399, 441,
442, 447, 449, 452
\XKV@tempc 433, 435, 442
\XKV@testclass
181, 382, 383
\XKV@testopta
113, 143, 284
\XKV@testoptb
321, 375, 377
230, 231,
236, 301, 302
166, 171,
190, 197,
244, 249,
251, 262, 266, 275
\XKV@useoption 26,
177, 182, 364, 390
\XKV@wh@l@st

\XKVetfam
235,

\XKV@tkey
189,
202,

17, 88, 93, 98
\XKV@wh@list 82, 85
\XKV@whilist

80, 235, 301, 329
\XKVAtCode
\XKVHatCode

\zap@space 79, 498, 500

