
NumPy User Guide
Release 1.22.0

Written by the NumPy community

January 14, 2022

CONTENTS

1 What is NumPy? 3

2 NumPy quickstart 5

3 NumPy: the absolute basics for beginners 29

4 NumPy fundamentals 63

5 Miscellaneous 147

6 NumPy for MATLAB users 153

7 Building from source 165

8 Using NumPy C-API 171

9 NumPy How Tos 217

10 For downstream package authors 225

11 F2PY user guide and reference manual 229

12 Glossary 279

13 Under-the-hood Documentation for developers 287

14 Reporting bugs 299

15 Release notes 301

16 NumPy license 521

Python Module Index 523

Index 525

i

ii

NumPy User Guide, Release 1.22.0

This guide is an overview and explains the important features; details are found in reference.

CONTENTS 1

NumPy User Guide, Release 1.22.0

2 CONTENTS

CHAPTER

ONE

WHAT IS NUMPY?

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidi-
mensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for
fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier
transforms, basic linear algebra, basic statistical operations, random simulation and much more.
At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of homogeneous data
types, with many operations being performed in compiled code for performance. There are several important differences
between NumPy arrays and the standard Python sequences:

• NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically). Changing the size
of an ndarray will create a new array and delete the original.

• The elements in a NumPy array are all required to be of the same data type, and thus will be the same size in
memory. The exception: one can have arrays of (Python, including NumPy) objects, thereby allowing for arrays
of different sized elements.

• NumPy arrays facilitate advanced mathematical and other types of operations on large numbers of data. Typically,
such operations are executed more efficiently and with less code than is possible using Python’s built-in sequences.

• A growing plethora of scientific and mathematical Python-based packages are using NumPy arrays; though these
typically support Python-sequence input, they convert such input to NumPy arrays prior to processing, and they
often output NumPy arrays. In other words, in order to efficiently use much (perhaps even most) of today’s scien-
tific/mathematical Python-based software, just knowing how to use Python’s built-in sequence types is insufficient
- one also needs to know how to use NumPy arrays.

The points about sequence size and speed are particularly important in scientific computing. As a simple example, consider
the case of multiplying each element in a 1-D sequence with the corresponding element in another sequence of the same
length. If the data are stored in two Python lists, a and b, we could iterate over each element:

c = []
for i in range(len(a)):

c.append(a[i]*b[i])

This produces the correct answer, but if a and b each contain millions of numbers, we will pay the price for the inef-
ficiencies of looping in Python. We could accomplish the same task much more quickly in C by writing (for clarity we
neglect variable declarations and initializations, memory allocation, etc.)

for (i = 0; i < rows; i++): {
c[i] = a[i]*b[i];

}

This saves all the overhead involved in interpreting the Python code and manipulating Python objects, but at the expense
of the benefits gained from coding in Python. Furthermore, the coding work required increases with the dimensionality
of our data. In the case of a 2-D array, for example, the C code (abridged as before) expands to

3

NumPy User Guide, Release 1.22.0

for (i = 0; i < rows; i++): {
for (j = 0; j < columns; j++): {
c[i][j] = a[i][j]*b[i][j];

}
}

NumPy gives us the best of both worlds: element-by-element operations are the “default mode” when an ndarray is
involved, but the element-by-element operation is speedily executed by pre-compiled C code. In NumPy

c = a * b

does what the earlier examples do, at near-C speeds, but with the code simplicity we expect from something based on
Python. Indeed, the NumPy idiom is even simpler! This last example illustrates two of NumPy’s features which are the
basis of much of its power: vectorization and broadcasting.

1.1 Why is NumPy Fast?

Vectorization describes the absence of any explicit looping, indexing, etc., in the code - these things are taking place, of
course, just “behind the scenes” in optimized, pre-compiled C code. Vectorized code has many advantages, among which
are:

• vectorized code is more concise and easier to read
• fewer lines of code generally means fewer bugs
• the code more closely resembles standard mathematical notation (making it easier, typically, to correctly code
mathematical constructs)

• vectorization results in more “Pythonic” code. Without vectorization, our code would be littered with inefficient
and difficult to read for loops.

Broadcasting is the term used to describe the implicit element-by-element behavior of operations; generally speaking,
in NumPy all operations, not just arithmetic operations, but logical, bit-wise, functional, etc., behave in this implicit
element-by-element fashion, i.e., they broadcast. Moreover, in the example above, a and b could be multidimensional
arrays of the same shape, or a scalar and an array, or even two arrays of with different shapes, provided that the smaller
array is “expandable” to the shape of the larger in such a way that the resulting broadcast is unambiguous. For detailed
“rules” of broadcasting see Broadcasting.

1.2 Who Else Uses NumPy?

NumPy fully supports an object-oriented approach, starting, once again, with ndarray. For example, ndarray is a class,
possessing numerous methods and attributes. Many of its methods are mirrored by functions in the outer-most NumPy
namespace, allowing the programmer to code in whichever paradigm they prefer. This flexibility has allowed the NumPy
array dialect and NumPy ndarray class to become the de-facto language of multi-dimensional data interchange used in
Python.

4 1. What is NumPy?

CHAPTER

TWO

NUMPY QUICKSTART

2.1 Prerequisites

You’ll need to know a bit of Python. For a refresher, see the Python tutorial.
To work the examples, you’ll need matplotlib installed in addition to NumPy.
Learner profile
This is a quick overview of arrays in NumPy. It demonstrates how n-dimensional (n >= 2) arrays are represented and
can be manipulated. In particular, if you don’t know how to apply common functions to n-dimensional arrays (without
using for-loops), or if you want to understand axis and shape properties for n-dimensional arrays, this article might be of
help.
Learning Objectives
After reading, you should be able to:

• Understand the difference between one-, two- and n-dimensional arrays in NumPy;
• Understand how to apply some linear algebra operations to n-dimensional arrays without using for-loops;
• Understand axis and shape properties for n-dimensional arrays.

2.2 The Basics

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the
same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axes.
For example, the array for the coordinates of a point in 3D space, [1, 2, 1], has one axis. That axis has 3 elements
in it, so we say it has a length of 3. In the example pictured below, the array has 2 axes. The first axis has a length of 2,
the second axis has a length of 3.

[[1., 0., 0.],
[0., 1., 2.]]

NumPy’s array class is called ndarray. It is also known by the alias array. Note that numpy.array is not the
same as the Standard Python Library class array.array, which only handles one-dimensional arrays and offers less
functionality. The more important attributes of an ndarray object are:
ndarray.ndim

the number of axes (dimensions) of the array.

5

https://docs.python.org/tutorial/

NumPy User Guide, Release 1.22.0

ndarray.shape
the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a
matrix with n rows andm columns, shapewill be (n,m). The length of the shape tuple is therefore the number
of axes, ndim.

ndarray.size
the total number of elements of the array. This is equal to the product of the elements of shape.

ndarray.dtype
an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python
types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and numpy.float64 are some
examples.

ndarray.itemsize
the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize
8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.
itemsize.

ndarray.data
the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we
will access the elements in an array using indexing facilities.

2.2.1 An example

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>

6 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

2.2.2 Array Creation

There are several ways to create arrays.
For example, you can create an array from a regular Python list or tuple using the array function. The type of the
resulting array is deduced from the type of the elements in the sequences.

>>> import numpy as np
>>> a = np.array([2, 3, 4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

A frequent error consists in calling array with multiple arguments, rather than providing a single sequence as an argu-
ment.

>>> a = np.array(1, 2, 3, 4) # WRONG
Traceback (most recent call last):

...
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
>>> a = np.array([1, 2, 3, 4]) # RIGHT

array transforms sequences of sequences into two-dimensional arrays, sequences of sequences of sequences into three-
dimensional arrays, and so on.

>>> b = np.array([(1.5, 2, 3), (4, 5, 6)])
>>> b
array([[1.5, 2. , 3.],

[4. , 5. , 6.]])

The type of the array can also be explicitly specified at creation time:

>>> c = np.array([[1, 2], [3, 4]], dtype=complex)
>>> c
array([[1.+0.j, 2.+0.j],

[3.+0.j, 4.+0.j]])

Often, the elements of an array are originally unknown, but its size is known. Hence, NumPy offers several functions to
create arrays with initial placeholder content. These minimize the necessity of growing arrays, an expensive operation.
The function zeros creates an array full of zeros, the function ones creates an array full of ones, and the function
empty creates an array whose initial content is random and depends on the state of the memory. By default, the dtype
of the created array is float64, but it can be specified via the key word argument dtype.

>>> np.zeros((3, 4))
array([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]])

>>> np.ones((2, 3, 4), dtype=np.int16)
array([[[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1]],

[[1, 1, 1, 1],

(continues on next page)

2.2. The Basics 7

NumPy User Guide, Release 1.22.0

(continued from previous page)
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)

>>> np.empty((2, 3))
array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260], # may vary

[5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])

To create sequences of numbers, NumPy provides thearange function which is analogous to the Python built-inrange,
but returns an array.

>>> np.arange(10, 30, 5)
array([10, 15, 20, 25])
>>> np.arange(0, 2, 0.3) # it accepts float arguments
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

When arange is used with floating point arguments, it is generally not possible to predict the number of elements
obtained, due to the finite floating point precision. For this reason, it is usually better to use the function linspace that
receives as an argument the number of elements that we want, instead of the step:

>>> from numpy import pi
>>> np.linspace(0, 2, 9) # 9 numbers from 0 to 2
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])
>>> x = np.linspace(0, 2 * pi, 100) # useful to evaluate function at lots of␣
↪→points
>>> f = np.sin(x)

See also:
array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace,
numpy.random.Generator.rand, numpy.random.Generator.randn, fromfunction, fromfile

2.2.3 Printing Arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with the following layout:
• the last axis is printed from left to right,
• the second-to-last is printed from top to bottom,
• the rest are also printed from top to bottom, with each slice separated from the next by an empty line.

One-dimensional arrays are then printed as rows, bidimensionals as matrices and tridimensionals as lists of matrices.

>>> a = np.arange(6) # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>>
>>> b = np.arange(12).reshape(4, 3) # 2d array
>>> print(b)
[[0 1 2]
[3 4 5]
[6 7 8]
[9 10 11]]

>>>
>>> c = np.arange(24).reshape(2, 3, 4) # 3d array
>>> print(c)
[[[0 1 2 3]

(continues on next page)

8 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

(continued from previous page)
[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

See below to get more details on reshape.
If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints the corners:

>>> print(np.arange(10000))
[0 1 2 ... 9997 9998 9999]
>>>
>>> print(np.arange(10000).reshape(100, 100))
[[0 1 2 ... 97 98 99]
[100 101 102 ... 197 198 199]
[200 201 202 ... 297 298 299]
...
[9700 9701 9702 ... 9797 9798 9799]
[9800 9801 9802 ... 9897 9898 9899]
[9900 9901 9902 ... 9997 9998 9999]]

To disable this behaviour and force NumPy to print the entire array, you can change the printing options using
set_printoptions.

>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported

2.2.4 Basic Operations

Arithmetic operators on arrays apply elementwise. A new array is created and filled with the result.

>>> a = np.array([20, 30, 40, 50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10 * np.sin(a)
array([9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a < 35
array([True, True, False, False])

Unlike in many matrix languages, the product operator * operates elementwise in NumPy arrays. The matrix product
can be performed using the @ operator (in python >=3.5) or the dot function or method:

>>> A = np.array([[1, 1],
... [0, 1]])
>>> B = np.array([[2, 0],
... [3, 4]])
>>> A * B # elementwise product
array([[2, 0],

(continues on next page)

2.2. The Basics 9

NumPy User Guide, Release 1.22.0

(continued from previous page)
[0, 4]])

>>> A @ B # matrix product
array([[5, 4],

[3, 4]])
>>> A.dot(B) # another matrix product
array([[5, 4],

[3, 4]])

Some operations, such as += and *=, act in place to modify an existing array rather than create a new one.

>>> rg = np.random.default_rng(1) # create instance of default random number␣
↪→generator
>>> a = np.ones((2, 3), dtype=int)
>>> b = rg.random((2, 3))
>>> a *= 3
>>> a
array([[3, 3, 3],

[3, 3, 3]])
>>> b += a
>>> b
array([[3.51182162, 3.9504637 , 3.14415961],

[3.94864945, 3.31183145, 3.42332645]])
>>> a += b # b is not automatically converted to integer type
Traceback (most recent call last):

...
numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from␣
↪→dtype('float64') to dtype('int64') with casting rule 'same_kind'

When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise
one (a behavior known as upcasting).

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0, pi, 3)
>>> b.dtype.name
'float64'
>>> c = a + b
>>> c
array([1. , 2.57079633, 4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c * 1j)
>>> d
array([0.54030231+0.84147098j, -0.84147098+0.54030231j,

-0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'

Many unary operations, such as computing the sum of all the elements in the array, are implemented as methods of the
ndarray class.

>>> a = rg.random((2, 3))
>>> a
array([[0.82770259, 0.40919914, 0.54959369],

[0.02755911, 0.75351311, 0.53814331]])
>>> a.sum()
3.1057109529998157

(continues on next page)

10 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> a.min()
0.027559113243068367
>>> a.max()
0.8277025938204418

By default, these operations apply to the array as though it were a list of numbers, regardless of its shape. However, by
specifying the axis parameter you can apply an operation along the specified axis of an array:

>>> b = np.arange(12).reshape(3, 4)
>>> b
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[0, 1, 3, 6],

[4, 9, 15, 22],
[8, 17, 27, 38]])

2.2.5 Universal Functions

NumPy provides familiar mathematical functions such as sin, cos, and exp. In NumPy, these are called “universal func-
tions” (ufunc). Within NumPy, these functions operate elementwise on an array, producing an array as output.

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([1. , 2.71828183, 7.3890561])
>>> np.sqrt(B)
array([0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([2., 0., 6.])

See also:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj,
corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, invert, lexsort, max, maximum,
mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose,
var, vdot, vectorize, where

2.2. The Basics 11

https://docs.python.org/dev/library/functions.html#max
https://docs.python.org/dev/library/functions.html#min
https://docs.python.org/dev/library/re.html#module-re
https://docs.python.org/dev/library/functions.html#round

NumPy User Guide, Release 1.22.0

2.2.6 Indexing, Slicing and Iterating

One-dimensional arrays can be indexed, sliced and iterated over, much like lists and other Python sequences.

>>> a = np.arange(10)**3
>>> a
array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([8, 27, 64])
>>> # equivalent to a[0:6:2] = 1000;
>>> # from start to position 6, exclusive, set every 2nd element to 1000
>>> a[:6:2] = 1000
>>> a
array([1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729])
>>> a[::-1] # reversed a
array([729, 512, 343, 216, 125, 1000, 27, 1000, 1, 1000])
>>> for i in a:
... print(i**(1 / 3.))
...
9.999999999999998
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999998

Multidimensional arrays can have one index per axis. These indices are given in a tuple separated by commas:

>>> def f(x, y):
... return 10 * x + y
...
>>> b = np.fromfunction(f, (5, 4), dtype=int)
>>> b
array([[0, 1, 2, 3],

[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])

>>> b[2, 3]
23
>>> b[0:5, 1] # each row in the second column of b
array([1, 11, 21, 31, 41])
>>> b[:, 1] # equivalent to the previous example
array([1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],

[20, 21, 22, 23]])

When fewer indices are provided than the number of axes, the missing indices are considered complete slices:

>>> b[-1] # the last row. Equivalent to b[-1, :]
array([40, 41, 42, 43])

12 2. NumPy quickstart

https://docs.python.org/tutorial/introduction.html#lists

NumPy User Guide, Release 1.22.0

The expression within brackets in b[i] is treated as an i followed by as many instances of : as needed to represent the
remaining axes. NumPy also allows you to write this using dots as b[i, ...].
The dots (...) represent as many colons as needed to produce a complete indexing tuple. For example, if x is an array
with 5 axes, then

• x[1, 2, ...] is equivalent to x[1, 2, :, :, :],
• x[..., 3] to x[:, :, :, :, 3] and
• x[4, ..., 5, :] to x[4, :, :, 5, :].

>>> c = np.array([[[0, 1, 2], # a 3D array (two stacked 2D arrays)
... [10, 12, 13]],
... [[100, 101, 102],
... [110, 112, 113]]])
>>> c.shape
(2, 2, 3)
>>> c[1, ...] # same as c[1, :, :] or c[1]
array([[100, 101, 102],

[110, 112, 113]])
>>> c[..., 2] # same as c[:, :, 2]
array([[2, 13],

[102, 113]])

Iterating over multidimensional arrays is done with respect to the first axis:

>>> for row in b:
... print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

However, if one wants to perform an operation on each element in the array, one can use the flat attribute which is an
iterator over all the elements of the array:

>>> for element in b.flat:
... print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40

(continues on next page)

2.2. The Basics 13

https://docs.python.org/tutorial/classes.html#iterators

NumPy User Guide, Release 1.22.0

(continued from previous page)
41
42
43

See also:
Indexing on ndarrays, arrays.indexing (reference), newaxis, ndenumerate, indices

2.3 Shape Manipulation

2.3.1 Changing the shape of an array

An array has a shape given by the number of elements along each axis:

>>> a = np.floor(10 * rg.random((3, 4)))
>>> a
array([[3., 7., 3., 4.],

[1., 4., 2., 2.],
[7., 2., 4., 9.]])

>>> a.shape
(3, 4)

The shape of an array can be changed with various commands. Note that the following three commands all return a
modified array, but do not change the original array:

>>> a.ravel() # returns the array, flattened
array([3., 7., 3., 4., 1., 4., 2., 2., 7., 2., 4., 9.])
>>> a.reshape(6, 2) # returns the array with a modified shape
array([[3., 7.],

[3., 4.],
[1., 4.],
[2., 2.],
[7., 2.],
[4., 9.]])

>>> a.T # returns the array, transposed
array([[3., 1., 7.],

[7., 4., 2.],
[3., 2., 4.],
[4., 2., 9.]])

>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)

The order of the elements in the array resulting from ravel is normally “C-style”, that is, the rightmost index “changes
the fastest”, so the element after a[0, 0] is a[0, 1]. If the array is reshaped to some other shape, again the array
is treated as “C-style”. NumPy normally creates arrays stored in this order, so ravel will usually not need to copy its
argument, but if the array was made by taking slices of another array or created with unusual options, it may need to be
copied. The functions ravel and reshape can also be instructed, using an optional argument, to use FORTRAN-style
arrays, in which the leftmost index changes the fastest.
The reshape function returns its argument with a modified shape, whereas the ndarray.resize method modifies
the array itself:

14 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

>>> a
array([[3., 7., 3., 4.],

[1., 4., 2., 2.],
[7., 2., 4., 9.]])

>>> a.resize((2, 6))
>>> a
array([[3., 7., 3., 4., 1., 4.],

[2., 2., 7., 2., 4., 9.]])

If a dimension is given as -1 in a reshaping operation, the other dimensions are automatically calculated:

>>> a.reshape(3, -1)
array([[3., 7., 3., 4.],

[1., 4., 2., 2.],
[7., 2., 4., 9.]])

See also:
ndarray.shape, reshape, resize, ravel

2.3.2 Stacking together different arrays

Several arrays can be stacked together along different axes:

>>> a = np.floor(10 * rg.random((2, 2)))
>>> a
array([[9., 7.],

[5., 2.]])
>>> b = np.floor(10 * rg.random((2, 2)))
>>> b
array([[1., 9.],

[5., 1.]])
>>> np.vstack((a, b))
array([[9., 7.],

[5., 2.],
[1., 9.],
[5., 1.]])

>>> np.hstack((a, b))
array([[9., 7., 1., 9.],

[5., 2., 5., 1.]])

The function column_stack stacks 1D arrays as columns into a 2D array. It is equivalent to hstack only for 2D
arrays:

>>> from numpy import newaxis
>>> np.column_stack((a, b)) # with 2D arrays
array([[9., 7., 1., 9.],

[5., 2., 5., 1.]])
>>> a = np.array([4., 2.])
>>> b = np.array([3., 8.])
>>> np.column_stack((a, b)) # returns a 2D array
array([[4., 3.],

[2., 8.]])
>>> np.hstack((a, b)) # the result is different
array([4., 2., 3., 8.])
>>> a[:, newaxis] # view `a` as a 2D column vector

(continues on next page)

2.3. Shape Manipulation 15

NumPy User Guide, Release 1.22.0

(continued from previous page)
array([[4.],

[2.]])
>>> np.column_stack((a[:, newaxis], b[:, newaxis]))
array([[4., 3.],

[2., 8.]])
>>> np.hstack((a[:, newaxis], b[:, newaxis])) # the result is the same
array([[4., 3.],

[2., 8.]])

On the other hand, the function row_stack is equivalent to vstack for any input arrays. In fact, row_stack is an
alias for vstack:

>>> np.column_stack is np.hstack
False
>>> np.row_stack is np.vstack
True

In general, for arrays with more than two dimensions, hstack stacks along their second axes, vstack stacks along
their first axes, and concatenate allows for an optional arguments giving the number of the axis along which the
concatenation should happen.
Note
In complex cases, r_ and c_ are useful for creating arrays by stacking numbers along one axis. They allow the use of
range literals :.

>>> np.r_[1:4, 0, 4]
array([1, 2, 3, 0, 4])

When used with arrays as arguments, r_ and c_ are similar to vstack and hstack in their default behavior, but allow
for an optional argument giving the number of the axis along which to concatenate.
See also:
hstack, vstack, column_stack, concatenate, c_, r_

2.3.3 Splitting one array into several smaller ones

Using hsplit, you can split an array along its horizontal axis, either by specifying the number of equally shaped arrays
to return, or by specifying the columns after which the division should occur:

>>> a = np.floor(10 * rg.random((2, 12)))
>>> a
array([[6., 7., 6., 9., 0., 5., 4., 0., 6., 8., 5., 2.],

[8., 5., 5., 7., 1., 8., 6., 7., 1., 8., 1., 0.]])
>>> # Split `a` into 3
>>> np.hsplit(a, 3)
[array([[6., 7., 6., 9.],

[8., 5., 5., 7.]]), array([[0., 5., 4., 0.],
[1., 8., 6., 7.]]), array([[6., 8., 5., 2.],
[1., 8., 1., 0.]])]

>>> # Split `a` after the third and the fourth column
>>> np.hsplit(a, (3, 4))
[array([[6., 7., 6.],

[8., 5., 5.]]), array([[9.],

(continues on next page)

16 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

(continued from previous page)
[7.]]), array([[0., 5., 4., 0., 6., 8., 5., 2.],
[1., 8., 6., 7., 1., 8., 1., 0.]])]

vsplit splits along the vertical axis, and array_split allows one to specify along which axis to split.

2.4 Copies and Views

When operating and manipulating arrays, their data is sometimes copied into a new array and sometimes not. This is
often a source of confusion for beginners. There are three cases:

2.4.1 No Copy at All

Simple assignments make no copy of objects or their data.

>>> a = np.array([[0, 1, 2, 3],
... [4, 5, 6, 7],
... [8, 9, 10, 11]])
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same ndarray object
True

Python passes mutable objects as references, so function calls make no copy.

>>> def f(x):
... print(id(x))
...
>>> id(a) # id is a unique identifier of an object
148293216 # may vary
>>> f(a)
148293216 # may vary

2.4.2 View or Shallow Copy

Different array objects can share the same data. The viewmethod creates a new array object that looks at the same data.

>>> c = a.view()
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c = c.reshape((2, 6)) # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[0, 1, 2, 3],

[1234, 5, 6, 7],
[8, 9, 10, 11]])

2.4. Copies and Views 17

NumPy User Guide, Release 1.22.0

Slicing an array returns a view of it:

>>> s = a[:, 1:3]
>>> s[:] = 10 # s[:] is a view of s. Note the difference between s = 10 and s[:] = 10
>>> a
array([[0, 10, 10, 3],

[1234, 10, 10, 7],
[8, 10, 10, 11]])

2.4.3 Deep Copy

The copy method makes a complete copy of the array and its data.

>>> d = a.copy() # a new array object with new data is created
>>> d is a
False
>>> d.base is a # d doesn't share anything with a
False
>>> d[0, 0] = 9999
>>> a
array([[0, 10, 10, 3],

[1234, 10, 10, 7],
[8, 10, 10, 11]])

Sometimes copy should be called after slicing if the original array is not required anymore. For example, suppose a is
a huge intermediate result and the final result b only contains a small fraction of a, a deep copy should be made when
constructing b with slicing:

>>> a = np.arange(int(1e8))
>>> b = a[:100].copy()
>>> del a # the memory of ``a`` can be released.

If b = a[:100] is used instead, a is referenced by b and will persist in memory even if del a is executed.

2.4.4 Functions and Methods Overview

Here is a list of some useful NumPy functions and methods names ordered in categories. See routines for the full list.
Array Creation

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity,
linspace, logspace, mgrid, ogrid, ones, ones_like, r_, zeros, zeros_like

Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack,
ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take,
transpose, vsplit, vstack

Questions
all, any, nonzero, where

18 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort

Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real,
sum

Basic Statistics
cov, mean, std, var

Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot

2.5 Less Basic

2.5.1 Broadcasting rules

Broadcasting allows universal functions to deal in a meaningful way with inputs that do not have exactly the same shape.
The first rule of broadcasting is that if all input arrays do not have the same number of dimensions, a “1” will be repeatedly
prepended to the shapes of the smaller arrays until all the arrays have the same number of dimensions.
The second rule of broadcasting ensures that arrays with a size of 1 along a particular dimension act as if they had the
size of the array with the largest shape along that dimension. The value of the array element is assumed to be the same
along that dimension for the “broadcast” array.
After application of the broadcasting rules, the sizes of all arrays must match. More details can be found in Broadcasting.

2.6 Advanced indexing and index tricks

NumPy offers more indexing facilities than regular Python sequences. In addition to indexing by integers and slices, as
we saw before, arrays can be indexed by arrays of integers and arrays of booleans.

2.6.1 Indexing with Arrays of Indices

>>> a = np.arange(12)**2 # the first 12 square numbers
>>> i = np.array([1, 1, 3, 8, 5]) # an array of indices
>>> a[i] # the elements of `a` at the positions `i`
array([1, 1, 9, 64, 25])
>>>
>>> j = np.array([[3, 4], [9, 7]]) # a bidimensional array of indices
>>> a[j] # the same shape as `j`
array([[9, 16],

[81, 49]])

When the indexed array a is multidimensional, a single array of indices refers to the first dimension of a. The following
example shows this behavior by converting an image of labels into a color image using a palette.

2.5. Less Basic 19

https://docs.python.org/dev/library/functions.html#max
https://docs.python.org/dev/library/functions.html#min

NumPy User Guide, Release 1.22.0

>>> palette = np.array([[0, 0, 0], # black
... [255, 0, 0], # red
... [0, 255, 0], # green
... [0, 0, 255], # blue
... [255, 255, 255]]) # white
>>> image = np.array([[0, 1, 2, 0], # each value corresponds to a color in the␣
↪→palette
... [0, 3, 4, 0]])
>>> palette[image] # the (2, 4, 3) color image
array([[[0, 0, 0],

[255, 0, 0],
[0, 255, 0],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 255],
[255, 255, 255],
[0, 0, 0]]])

We can also give indexes for more than one dimension. The arrays of indices for each dimension must have the same
shape.

>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> i = np.array([[0, 1], # indices for the first dim of `a`
... [1, 2]])
>>> j = np.array([[2, 1], # indices for the second dim
... [3, 3]])
>>>
>>> a[i, j] # i and j must have equal shape
array([[2, 5],

[7, 11]])
>>>
>>> a[i, 2]
array([[2, 6],

[6, 10]])
>>>
>>> a[:, j]
array([[[2, 1],

[3, 3]],

[[6, 5],
[7, 7]],

[[10, 9],
[11, 11]]])

In Python, arr[i, j] is exactly the same as arr[(i, j)]—so we can put i and j in a tuple and then do the
indexing with that.

>>> l = (i, j)
>>> # equivalent to a[i, j]
>>> a[l]
array([[2, 5],

(continues on next page)

20 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

(continued from previous page)
[7, 11]])

However, we can not do this by putting i and j into an array, because this array will be interpreted as indexing the first
dimension of a.

>>> s = np.array([i, j])
>>> # not what we want
>>> a[s]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> # same as `a[i, j]`
>>> a[tuple(s)]
array([[2, 5],

[7, 11]])

Another common use of indexing with arrays is the search of the maximum value of time-dependent series:

>>> time = np.linspace(20, 145, 5) # time scale
>>> data = np.sin(np.arange(20)).reshape(5, 4) # 4 time-dependent series
>>> time
array([20. , 51.25, 82.5 , 113.75, 145.])
>>> data
array([[0. , 0.84147098, 0.90929743, 0.14112001],

[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866],
[0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])

>>> # index of the maxima for each series
>>> ind = data.argmax(axis=0)
>>> ind
array([2, 0, 3, 1])
>>> # times corresponding to the maxima
>>> time_max = time[ind]
>>>
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0], 0], data[ind[1], 1].
↪→..
>>> time_max
array([82.5 , 20. , 113.75, 51.25])
>>> data_max
array([0.98935825, 0.84147098, 0.99060736, 0.6569866])
>>> np.all(data_max == data.max(axis=0))
True

You can also use indexing with arrays as a target to assign to:

>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1, 3, 4]] = 0
>>> a
array([0, 0, 2, 0, 0])

However, when the list of indices contains repetitions, the assignment is done several times, leaving behind the last value:

2.6. Advanced indexing and index tricks 21

NumPy User Guide, Release 1.22.0

>>> a = np.arange(5)
>>> a[[0, 0, 2]] = [1, 2, 3]
>>> a
array([2, 1, 3, 3, 4])

This is reasonable enough, but watch out if you want to use Python’s += construct, as it may not do what you expect:

>>> a = np.arange(5)
>>> a[[0, 0, 2]] += 1
>>> a
array([1, 1, 3, 3, 4])

Even though 0 occurs twice in the list of indices, the 0th element is only incremented once. This is because Python
requires a += 1 to be equivalent to a = a + 1.

2.6.2 Indexing with Boolean Arrays

When we index arrays with arrays of (integer) indices we are providing the list of indices to pick. With boolean indices
the approach is different; we explicitly choose which items in the array we want and which ones we don’t.
The most natural way one can think of for boolean indexing is to use boolean arrays that have the same shape as the
original array:

>>> a = np.arange(12).reshape(3, 4)
>>> b = a > 4
>>> b # `b` is a boolean with `a`'s shape
array([[False, False, False, False],

[False, True, True, True],
[True, True, True, True]])

>>> a[b] # 1d array with the selected elements
array([5, 6, 7, 8, 9, 10, 11])

This property can be very useful in assignments:

>>> a[b] = 0 # All elements of `a` higher than 4 become 0
>>> a
array([[0, 1, 2, 3],

[4, 0, 0, 0],
[0, 0, 0, 0]])

You can look at the following example to see how to use boolean indexing to generate an image of the Mandelbrot set:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot(h, w, maxit=20, r=2):
... """Returns an image of the Mandelbrot fractal of size (h,w)."""
... x = np.linspace(-2.5, 1.5, 4*h+1)
... y = np.linspace(-1.5, 1.5, 3*w+1)
... A, B = np.meshgrid(x, y)
... C = A + B*1j
... z = np.zeros_like(C)
... divtime = maxit + np.zeros(z.shape, dtype=int)
...
... for i in range(maxit):
... z = z**2 + C
... diverge = abs(z) > r # who is diverging

(continues on next page)

22 2. NumPy quickstart

https://en.wikipedia.org/wiki/Mandelbrot_set

NumPy User Guide, Release 1.22.0

(continued from previous page)
... div_now = diverge & (divtime == maxit) # who is diverging now
... divtime[div_now] = i # note when
... z[diverge] = r # avoid diverging too much
...
... return divtime
>>> plt.imshow(mandelbrot(400, 400))

0 250 500 750 1000 1250 1500

0

200

400

600

800

1000

1200

The second way of indexing with booleans is more similar to integer indexing; for each dimension of the array we give a
1D boolean array selecting the slices we want:

>>> a = np.arange(12).reshape(3, 4)
>>> b1 = np.array([False, True, True]) # first dim selection
>>> b2 = np.array([True, False, True, False]) # second dim selection
>>>
>>> a[b1, :] # selecting rows
array([[4, 5, 6, 7],

[8, 9, 10, 11]])
>>>
>>> a[b1] # same thing
array([[4, 5, 6, 7],

[8, 9, 10, 11]])
>>>
>>> a[:, b2] # selecting columns
array([[0, 2],

[4, 6],
[8, 10]])

>>>
>>> a[b1, b2] # a weird thing to do
array([4, 10])

Note that the length of the 1D boolean array must coincide with the length of the dimension (or axis) you want to slice.
In the previous example, b1 has length 3 (the number of rows in a), and b2 (of length 4) is suitable to index the 2nd axis
(columns) of a.

2.6. Advanced indexing and index tricks 23

NumPy User Guide, Release 1.22.0

2.6.3 The ix_() function

The ix_ function can be used to combine different vectors so as to obtain the result for each n-uplet. For example, if
you want to compute all the a+b*c for all the triplets taken from each of the vectors a, b and c:

>>> a = np.array([2, 3, 4, 5])
>>> b = np.array([8, 5, 4])
>>> c = np.array([5, 4, 6, 8, 3])
>>> ax, bx, cx = np.ix_(a, b, c)
>>> ax
array([[[2]],

[[3]],

[[4]],

[[5]]])
>>> bx
array([[[8],

[5],
[4]]])

>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax + bx * cx
>>> result
array([[[42, 34, 50, 66, 26],

[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],

[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],

[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],

[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])

>>> result[3, 2, 4]
17
>>> a[3] + b[2] * c[4]
17

You could also implement the reduce as follows:

>>> def ufunc_reduce(ufct, *vectors):
... vs = np.ix_(*vectors)
... r = ufct.identity
... for v in vs:
... r = ufct(r, v)
... return r

and then use it as:

24 2. NumPy quickstart

NumPy User Guide, Release 1.22.0

>>> ufunc_reduce(np.add, a, b, c)
array([[[15, 14, 16, 18, 13],

[12, 11, 13, 15, 10],
[11, 10, 12, 14, 9]],

[[16, 15, 17, 19, 14],
[13, 12, 14, 16, 11],
[12, 11, 13, 15, 10]],

[[17, 16, 18, 20, 15],
[14, 13, 15, 17, 12],
[13, 12, 14, 16, 11]],

[[18, 17, 19, 21, 16],
[15, 14, 16, 18, 13],
[14, 13, 15, 17, 12]]])

The advantage of this version of reduce compared to the normal ufunc.reduce is that it makes use of the broadcasting
rules in order to avoid creating an argument array the size of the output times the number of vectors.

2.6.4 Indexing with strings

See Structured arrays.

2.7 Tricks and Tips

Here we give a list of short and useful tips.

2.7.1 “Automatic” Reshaping

To change the dimensions of an array, you can omit one of the sizes which will then be deduced automatically:

>>> a = np.arange(30)
>>> b = a.reshape((2, -1, 3)) # -1 means "whatever is needed"
>>> b.shape
(2, 5, 3)
>>> b
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])

2.7. Tricks and Tips 25

NumPy User Guide, Release 1.22.0

2.7.2 Vector Stacking

How do we construct a 2D array from a list of equally-sized row vectors? In MATLAB this is quite easy: if x and y are
two vectors of the same length you only need do m=[x;y]. In NumPy this works via the functions column_stack,
dstack, hstack and vstack, depending on the dimension in which the stacking is to be done. For example:

>>> x = np.arange(0, 10, 2)
>>> y = np.arange(5)
>>> m = np.vstack([x, y])
>>> m
array([[0, 2, 4, 6, 8],

[0, 1, 2, 3, 4]])
>>> xy = np.hstack([x, y])
>>> xy
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])

The logic behind those functions in more than two dimensions can be strange.
See also:
NumPy for MATLAB users

2.7.3 Histograms

The NumPy histogram function applied to an array returns a pair of vectors: the histogram of the array and a vector
of the bin edges. Beware: matplotlib also has a function to build histograms (called hist, as in Matlab) that differs
from the one in NumPy. The main difference is that pylab.hist plots the histogram automatically, while numpy.
histogram only generates the data.

>>> import numpy as np
>>> rg = np.random.default_rng(1)
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = rg.normal(mu, sigma, 10000)
>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, density=True) # matplotlib version (plot)
>>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot)
>>> plt.plot(.5 * (bins[1:] + bins[:-1]), n)

With Matplotlib >=3.4 you can also use plt.stairs(n, bins).

2.8 Further reading

• The Python tutorial
• reference
• SciPy Tutorial
• SciPy Lecture Notes
• A matlab, R, IDL, NumPy/SciPy dictionary
• tutorial-svd

26 2. NumPy quickstart

https://docs.python.org/tutorial/
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
https://scipy-lectures.org
http://mathesaurus.sf.net/
https://numpy.org/numpy-tutorials/content/tutorial-svd.html

NumPy User Guide, Release 1.22.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

2.8. Further reading 27

NumPy User Guide, Release 1.22.0

28 2. NumPy quickstart

CHAPTER

THREE

NUMPY: THE ABSOLUTE BASICS FOR BEGINNERS

Welcome to the absolute beginner’s guide to NumPy! If you have comments or suggestions, please don’t hesitate to reach
out!

3.1 Welcome to NumPy!

NumPy (Numerical Python) is an open source Python library that’s used in almost every field of science and engineering.
It’s the universal standard for working with numerical data in Python, and it’s at the core of the scientific Python and
PyData ecosystems. NumPy users include everyone from beginning coders to experienced researchers doing state-of-the-
art scientific and industrial research and development. The NumPy API is used extensively in Pandas, SciPy, Matplotlib,
scikit-learn, scikit-image and most other data science and scientific Python packages.
The NumPy library contains multidimensional array and matrix data structures (you’ll find more information about this
in later sections). It provides ndarray, a homogeneous n-dimensional array object, with methods to efficiently operate on
it. NumPy can be used to perform a wide variety of mathematical operations on arrays. It adds powerful data structures
to Python that guarantee efficient calculations with arrays and matrices and it supplies an enormous library of high-level
mathematical functions that operate on these arrays and matrices.
Learn more about NumPy here!

3.2 Installing NumPy

To install NumPy, we strongly recommend using a scientific Python distribution. If you’re looking for the full instructions
for installing NumPy on your operating system, see Installing NumPy.
If you already have Python, you can install NumPy with:

conda install numpy

or

pip install numpy

If you don’t have Python yet, you might want to consider using Anaconda. It’s the easiest way to get started. The good
thing about getting this distribution is the fact that you don’t need to worry too much about separately installing NumPy
or any of the major packages that you’ll be using for your data analyses, like pandas, Scikit-Learn, etc.

29

https://numpy.org/community/
https://numpy.org/community/
https://numpy.org/install/
https://www.anaconda.com/

NumPy User Guide, Release 1.22.0

3.3 How to import NumPy

To access NumPy and its functions import it in your Python code like this:

import numpy as np

We shorten the imported name to np for better readability of code using NumPy. This is a widely adopted convention
that you should follow so that anyone working with your code can easily understand it.

3.4 Reading the example code

If you aren’t already comfortable with reading tutorials that contain a lot of code, you might not know how to interpret a
code block that looks like this:

>>> a = np.arange(6)
>>> a2 = a[np.newaxis, :]
>>> a2.shape
(1, 6)

If you aren’t familiar with this style, it’s very easy to understand. If you see >>>, you’re looking at input, or the code
that you would enter. Everything that doesn’t have >>> in front of it is output, or the results of running your code. This
is the style you see when you run python on the command line, but if you’re using IPython, you might see a different
style. Note that it is not part of the code and will cause an error if typed or pasted into the Python shell. It can be safely
typed or pasted into the IPython shell; the >>> is ignored.

3.5 What’s the difference between a Python list and a NumPy array?

NumPy gives you an enormous range of fast and efficient ways of creating arrays and manipulating numerical data inside
them. While a Python list can contain different data types within a single list, all of the elements in a NumPy array should
be homogeneous. The mathematical operations that are meant to be performed on arrays would be extremely inefficient
if the arrays weren’t homogeneous.
Why use NumPy?
NumPy arrays are faster and more compact than Python lists. An array consumes less memory and is convenient to use.
NumPy uses much less memory to store data and it provides a mechanism of specifying the data types. This allows the
code to be optimized even further.

3.6 What is an array?

An array is a central data structure of the NumPy library. An array is a grid of values and it contains information about
the raw data, how to locate an element, and how to interpret an element. It has a grid of elements that can be indexed in
various ways. The elements are all of the same type, referred to as the array dtype.
An array can be indexed by a tuple of nonnegative integers, by booleans, by another array, or by integers. The rank of
the array is the number of dimensions. The shape of the array is a tuple of integers giving the size of the array along
each dimension.
One way we can initialize NumPy arrays is from Python lists, using nested lists for two- or higher-dimensional data.
For example:

30 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

>>> a = np.array([1, 2, 3, 4, 5, 6])

or:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

We can access the elements in the array using square brackets. When you’re accessing elements, remember that indexing
in NumPy starts at 0. That means that if you want to access the first element in your array, you’ll be accessing element
“0”.

>>> print(a[0])
[1 2 3 4]

3.7 More information about arrays

This section covers 1D array, 2D array, ndarray, vector, matrix

You might occasionally hear an array referred to as a “ndarray,” which is shorthand for “N-dimensional array.” An N-
dimensional array is simply an array with any number of dimensions. You might also hear 1-D, or one-dimensional array,
2-D, or two-dimensional array, and so on. The NumPy ndarray class is used to represent both matrices and vectors. A
vector is an array with a single dimension (there’s no difference between row and column vectors), while amatrix refers
to an array with two dimensions. For 3-D or higher dimensional arrays, the term tensor is also commonly used.
What are the attributes of an array?
An array is usually a fixed-size container of items of the same type and size. The number of dimensions and items in
an array is defined by its shape. The shape of an array is a tuple of non-negative integers that specify the sizes of each
dimension.
In NumPy, dimensions are called axes. This means that if you have a 2D array that looks like this:

[[0., 0., 0.],
[1., 1., 1.]]

Your array has 2 axes. The first axis has a length of 2 and the second axis has a length of 3.
Just like in other Python container objects, the contents of an array can be accessed and modified by indexing or slicing
the array. Unlike the typical container objects, different arrays can share the same data, so changes made on one array
might be visible in another.
Array attributes reflect information intrinsic to the array itself. If you need to get, or even set, properties of an array
without creating a new array, you can often access an array through its attributes.
Read more about array attributes here and learn about array objects here.

3.7. More information about arrays 31

NumPy User Guide, Release 1.22.0

3.8 How to create a basic array

This section covers np.array(), np.zeros(), np.ones(), np.empty(), np.arange(), np.
linspace(), dtype

To create a NumPy array, you can use the function np.array().
All you need to do to create a simple array is pass a list to it. If you choose to, you can also specify the type of data in
your list. You can find more information about data types here.

>>> import numpy as np
>>> a = np.array([1, 2, 3])

You can visualize your array this way:

Be aware that these visualizations are meant to simplify ideas and give you a basic understanding of NumPy concepts and
mechanics. Arrays and array operations are much more complicated than are captured here!

Besides creating an array from a sequence of elements, you can easily create an array filled with 0’s:

>>> np.zeros(2)
array([0., 0.])

Or an array filled with 1’s:

>>> np.ones(2)
array([1., 1.])

Or even an empty array! The function empty creates an array whose initial content is random and depends on the state
of the memory. The reason to use empty over zeros (or something similar) is speed - just make sure to fill every
element afterwards!

>>> # Create an empty array with 2 elements
>>> np.empty(2)
array([3.14, 42.]) # may vary

You can create an array with a range of elements:

>>> np.arange(4)
array([0, 1, 2, 3])

And even an array that contains a range of evenly spaced intervals. To do this, you will specify the first number, last
number, and the step size.

>>> np.arange(2, 9, 2)
array([2, 4, 6, 8])

32 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

You can also use np.linspace() to create an array with values that are spaced linearly in a specified interval:

>>> np.linspace(0, 10, num=5)
array([0. , 2.5, 5. , 7.5, 10.])

Specifying your data type
While the default data type is floating point (np.float64), you can explicitly specify which data type you want using
the dtype keyword.

>>> x = np.ones(2, dtype=np.int64)
>>> x
array([1, 1])

Learn more about creating arrays here

3.9 Adding, removing, and sorting elements

This section covers np.sort(), np.concatenate()

Sorting an element is simple with np.sort(). You can specify the axis, kind, and order when you call the function.
If you start with this array:

>>> arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])

You can quickly sort the numbers in ascending order with:

>>> np.sort(arr)
array([1, 2, 3, 4, 5, 6, 7, 8])

In addition to sort, which returns a sorted copy of an array, you can use:
• argsort, which is an indirect sort along a specified axis,
• lexsort, which is an indirect stable sort on multiple keys,
• searchsorted, which will find elements in a sorted array, and
• partition, which is a partial sort.

To read more about sorting an array, see: sort.
If you start with these arrays:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([5, 6, 7, 8])

You can concatenate them with np.concatenate().

>>> np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6, 7, 8])

Or, if you start with these arrays:

>>> x = np.array([[1, 2], [3, 4]])
>>> y = np.array([[5, 6]])

3.9. Adding, removing, and sorting elements 33

NumPy User Guide, Release 1.22.0

You can concatenate them with:

>>> np.concatenate((x, y), axis=0)
array([[1, 2],

[3, 4],
[5, 6]])

In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.
To read more about concatenate, see: concatenate.

3.10 How do you know the shape and size of an array?

This section covers ndarray.ndim, ndarray.size, ndarray.shape

ndarray.ndim will tell you the number of axes, or dimensions, of the array.
ndarray.sizewill tell you the total number of elements of the array. This is the product of the elements of the array’s
shape.
ndarray.shape will display a tuple of integers that indicate the number of elements stored along each dimension of
the array. If, for example, you have a 2-D array with 2 rows and 3 columns, the shape of your array is (2, 3).
For example, if you create this array:

>>> array_example = np.array([[[0, 1, 2, 3],
... [4, 5, 6, 7]],
...
... [[0, 1, 2, 3],
... [4, 5, 6, 7]],
...
... [[0 ,1 ,2, 3],
... [4, 5, 6, 7]]])

To find the number of dimensions of the array, run:

>>> array_example.ndim
3

To find the total number of elements in the array, run:

>>> array_example.size
24

And to find the shape of your array, run:

>>> array_example.shape
(3, 2, 4)

34 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

3.11 Can you reshape an array?

This section covers arr.reshape()

Yes!
Using arr.reshape() will give a new shape to an array without changing the data. Just remember that when you use
the reshape method, the array you want to produce needs to have the same number of elements as the original array. If
you start with an array with 12 elements, you’ll need to make sure that your new array also has a total of 12 elements.
If you start with this array:

>>> a = np.arange(6)
>>> print(a)
[0 1 2 3 4 5]

You can use reshape() to reshape your array. For example, you can reshape this array to an array with three rows and
two columns:

>>> b = a.reshape(3, 2)
>>> print(b)
[[0 1]
[2 3]
[4 5]]

With np.reshape, you can specify a few optional parameters:

>>> np.reshape(a, newshape=(1, 6), order='C')
array([[0, 1, 2, 3, 4, 5]])

a is the array to be reshaped.
newshape is the new shape you want. You can specify an integer or a tuple of integers. If you specify an integer, the
result will be an array of that length. The shape should be compatible with the original shape.
order: Cmeans to read/write the elements using C-like index order, Fmeans to read/write the elements using Fortran-
like index order, A means to read/write the elements in Fortran-like index order if a is Fortran contiguous in memory,
C-like order otherwise. (This is an optional parameter and doesn’t need to be specified.)
If you want to learn more about C and Fortran order, you can read more about the internal organization of NumPy arrays
here. Essentially, C and Fortran orders have to do with how indices correspond to the order the array is stored in memory.
In Fortran, when moving through the elements of a two-dimensional array as it is stored in memory, the first index is the
most rapidly varying index. As the first index moves to the next row as it changes, the matrix is stored one column at a
time. This is why Fortran is thought of as a Column-major language. In C on the other hand, the last index changes the
most rapidly. The matrix is stored by rows, making it a Row-major language. What you do for C or Fortran depends
on whether it’s more important to preserve the indexing convention or not reorder the data.
Learn more about shape manipulation here.

3.11. Can you reshape an array? 35

NumPy User Guide, Release 1.22.0

3.12 How to convert a 1D array into a 2D array (how to add a new axis
to an array)

This section covers np.newaxis, np.expand_dims

You can use np.newaxis and np.expand_dims to increase the dimensions of your existing array.
Using np.newaxis will increase the dimensions of your array by one dimension when used once. This means that a
1D array will become a 2D array, a 2D array will become a 3D array, and so on.
For example, if you start with this array:

>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a.shape
(6,)

You can use np.newaxis to add a new axis:

>>> a2 = a[np.newaxis, :]
>>> a2.shape
(1, 6)

You can explicitly convert a 1D array with either a row vector or a column vector using np.newaxis. For example,
you can convert a 1D array to a row vector by inserting an axis along the first dimension:

>>> row_vector = a[np.newaxis, :]
>>> row_vector.shape
(1, 6)

Or, for a column vector, you can insert an axis along the second dimension:

>>> col_vector = a[:, np.newaxis]
>>> col_vector.shape
(6, 1)

You can also expand an array by inserting a new axis at a specified position with np.expand_dims.
For example, if you start with this array:

>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a.shape
(6,)

You can use np.expand_dims to add an axis at index position 1 with:

>>> b = np.expand_dims(a, axis=1)
>>> b.shape
(6, 1)

You can add an axis at index position 0 with:

>>> c = np.expand_dims(a, axis=0)
>>> c.shape
(1, 6)

Find more information about newaxis here and expand_dims at expand_dims.

36 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

3.13 Indexing and slicing

You can index and slice NumPy arrays in the same ways you can slice Python lists.

>>> data = np.array([1, 2, 3])

>>> data[1]
2
>>> data[0:2]
array([1, 2])
>>> data[1:]
array([2, 3])
>>> data[-2:]
array([2, 3])

You can visualize it this way:

You may want to take a section of your array or specific array elements to use in further analysis or additional operations.
To do that, you’ll need to subset, slice, and/or index your arrays.
If you want to select values from your array that fulfill certain conditions, it’s straightforward with NumPy.
For example, if you start with this array:

>>> a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can easily print all of the values in the array that are less than 5.

>>> print(a[a < 5])
[1 2 3 4]

You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array.

>>> five_up = (a >= 5)
>>> print(a[five_up])
[5 6 7 8 9 10 11 12]

You can select elements that are divisible by 2:

>>> divisible_by_2 = a[a%2==0]
>>> print(divisible_by_2)
[2 4 6 8 10 12]

Or you can select elements that satisfy two conditions using the & and | operators:

3.13. Indexing and slicing 37

NumPy User Guide, Release 1.22.0

>>> c = a[(a > 2) & (a < 11)]
>>> print(c)
[3 4 5 6 7 8 9 10]

You can also make use of the logical operators & and | in order to return boolean values that specify whether or not the
values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values.

>>> five_up = (a > 5) | (a == 5)
>>> print(five_up)
[[False False False False]
[True True True True]
[True True True True]]

You can also use np.nonzero() to select elements or indices from an array.
Starting with this array:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can use np.nonzero() to print the indices of elements that are, for example, less than 5:

>>> b = np.nonzero(a < 5)
>>> print(b)
(array([0, 0, 0, 0]), array([0, 1, 2, 3]))

In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where
these values are found, and the second array represents the column indices where the values are found.
If you want to generate a list of coordinates where the elements exist, you can zip the arrays, iterate over the list of
coordinates, and print them. For example:

>>> list_of_coordinates= list(zip(b[0], b[1]))

>>> for coord in list_of_coordinates:
... print(coord)
(0, 0)
(0, 1)
(0, 2)
(0, 3)

You can also use np.nonzero() to print the elements in an array that are less than 5 with:

>>> print(a[b])
[1 2 3 4]

If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:

>>> not_there = np.nonzero(a == 42)
>>> print(not_there)
(array([], dtype=int64), array([], dtype=int64))

Learn more about indexing and slicing here and here.
Read more about using the nonzero function at: nonzero.

38 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

3.14 How to create an array from existing data

This section covers slicing and indexing, np.vstack(), np.hstack(), np.hsplit(), .view(),
copy()

You can easily create a new array from a section of an existing array.
Let’s say you have this array:

>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

You can create a new array from a section of your array any time by specifying where you want to slice your array.

>>> arr1 = a[3:8]
>>> arr1
array([4, 5, 6, 7, 8])

Here, you grabbed a section of your array from index position 3 through index position 8.
You can also stack two existing arrays, both vertically and horizontally. Let’s say you have two arrays, a1 and a2:

>>> a1 = np.array([[1, 1],
... [2, 2]])

>>> a2 = np.array([[3, 3],
... [4, 4]])

You can stack them vertically with vstack:

>>> np.vstack((a1, a2))
array([[1, 1],

[2, 2],
[3, 3],
[4, 4]])

Or stack them horizontally with hstack:

>>> np.hstack((a1, a2))
array([[1, 1, 3, 3],

[2, 2, 4, 4]])

You can split an array into several smaller arrays using hsplit. You can specify either the number of equally shaped
arrays to return or the columns after which the division should occur.
Let’s say you have this array:

>>> x = np.arange(1, 25).reshape(2, 12)
>>> x
array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]])

If you wanted to split this array into three equally shaped arrays, you would run:

>>> np.hsplit(x, 3)
[array([[1, 2, 3, 4],

[13, 14, 15, 16]]), array([[5, 6, 7, 8],

(continues on next page)

3.14. How to create an array from existing data 39

NumPy User Guide, Release 1.22.0

(continued from previous page)
[17, 18, 19, 20]]), array([[9, 10, 11, 12],
[21, 22, 23, 24]])]

If you wanted to split your array after the third and fourth column, you’d run:

>>> np.hsplit(x, (3, 4))
[array([[1, 2, 3],

[13, 14, 15]]), array([[4],
[16]]), array([[5, 6, 7, 8, 9, 10, 11, 12],
[17, 18, 19, 20, 21, 22, 23, 24]])]

Learn more about stacking and splitting arrays here.
You can use the view method to create a new array object that looks at the same data as the original array (a shallow
copy).
Views are an important NumPy concept! NumPy functions, as well as operations like indexing and slicing, will return
views whenever possible. This saves memory and is faster (no copy of the data has to be made). However it’s important
to be aware of this - modifying data in a view also modifies the original array!
Let’s say you create this array:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

Now we create an array b1 by slicing a and modify the first element of b1. This will modify the corresponding element
in a as well!

>>> b1 = a[0, :]
>>> b1
array([1, 2, 3, 4])
>>> b1[0] = 99
>>> b1
array([99, 2, 3, 4])
>>> a
array([[99, 2, 3, 4],

[5, 6, 7, 8],
[9, 10, 11, 12]])

Using the copymethod will make a complete copy of the array and its data (a deep copy). To use this on your array, you
could run:

>>> b2 = a.copy()

Learn more about copies and views here.

3.15 Basic array operations

This section covers addition, subtraction, multiplication, division, and more

Once you’ve created your arrays, you can start to work with them. Let’s say, for example, that you’ve created two arrays,
one called “data” and one called “ones”

40 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

You can add the arrays together with the plus sign.

>>> data = np.array([1, 2])
>>> ones = np.ones(2, dtype=int)
>>> data + ones
array([2, 3])

You can, of course, do more than just addition!

>>> data - ones
array([0, 1])
>>> data * data
array([1, 4])
>>> data / data
array([1., 1.])

Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use sum(). This
works for 1D arrays, 2D arrays, and arrays in higher dimensions.

>>> a = np.array([1, 2, 3, 4])

>>> a.sum()
10

To add the rows or the columns in a 2D array, you would specify the axis.
If you start with this array:

3.15. Basic array operations 41

NumPy User Guide, Release 1.22.0

>>> b = np.array([[1, 1], [2, 2]])

You can sum over the axis of rows with:

>>> b.sum(axis=0)
array([3, 3])

You can sum over the axis of columns with:

>>> b.sum(axis=1)
array([2, 4])

Learn more about basic operations here.

3.16 Broadcasting

There are times when you might want to carry out an operation between an array and a single number (also called an
operation between a vector and a scalar) or between arrays of two different sizes. For example, your array (we’ll call it
“data”) might contain information about distance in miles but you want to convert the information to kilometers. You can
perform this operation with:

>>> data = np.array([1.0, 2.0])
>>> data * 1.6
array([1.6, 3.2])

NumPy understands that the multiplication should happen with each cell. That concept is called broadcasting. Broad-
casting is a mechanism that allows NumPy to perform operations on arrays of different shapes. The dimensions of your
array must be compatible, for example, when the dimensions of both arrays are equal or when one of them is 1. If the
dimensions are not compatible, you will get a ValueError.
Learn more about broadcasting here.

3.17 More useful array operations

This section covers maximum, minimum, sum, mean, product, standard deviation, and more

NumPy also performs aggregation functions. In addition to min, max, and sum, you can easily run mean to get the
average, prod to get the result of multiplying the elements together, std to get the standard deviation, and more.

42 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

>>> data.max()
2.0
>>> data.min()
1.0
>>> data.sum()
3.0

Let’s start with this array, called “a”

>>> a = np.array([[0.45053314, 0.17296777, 0.34376245, 0.5510652],
... [0.54627315, 0.05093587, 0.40067661, 0.55645993],
... [0.12697628, 0.82485143, 0.26590556, 0.56917101]])

It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return
the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:

>>> a.sum()
4.8595784

Or:

>>> a.min()
0.05093587

You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum
value within each column by specifying axis=0.

>>> a.min(axis=0)
array([0.12697628, 0.05093587, 0.26590556, 0.5510652])

The four values listed above correspond to the number of columns in your array. With a four-column array, you will get
four values as your result.
Read more about array methods here.

3.18 Creating matrices

You can pass Python lists of lists to create a 2-D array (or “matrix”) to represent them in NumPy.

>>> data = np.array([[1, 2], [3, 4], [5, 6]])
>>> data
array([[1, 2],

[3, 4],
[5, 6]])

3.18. Creating matrices 43

NumPy User Guide, Release 1.22.0

Indexing and slicing operations are useful when you’re manipulating matrices:

>>> data[0, 1]
2
>>> data[1:3]
array([[3, 4],

[5, 6]])
>>> data[0:2, 0]
array([1, 3])

You can aggregate matrices the same way you aggregated vectors:

>>> data.max()
6
>>> data.min()
1
>>> data.sum()
21

You can aggregate all the values in amatrix and you can aggregate them across columns or rows using theaxis parameter.
To illustrate this point, let’s look at a slightly modified dataset:

>>> data = np.array([[1, 2], [5, 3], [4, 6]])
>>> data
array([[1, 2],

(continues on next page)

44 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

(continued from previous page)
[5, 3],
[4, 6]])

>>> data.max(axis=0)
array([5, 6])
>>> data.max(axis=1)
array([2, 5, 6])

Once you’ve created your matrices, you can add and multiply them using arithmetic operators if you have two matrices
that are the same size.

>>> data = np.array([[1, 2], [3, 4]])
>>> ones = np.array([[1, 1], [1, 1]])
>>> data + ones
array([[2, 3],

[4, 5]])

You can do these arithmetic operations on matrices of different sizes, but only if one matrix has only one column or one
row. In this case, NumPy will use its broadcast rules for the operation.

>>> data = np.array([[1, 2], [3, 4], [5, 6]])
>>> ones_row = np.array([[1, 1]])
>>> data + ones_row
array([[2, 3],

[4, 5],
[6, 7]])

3.18. Creating matrices 45

NumPy User Guide, Release 1.22.0

Be aware that when NumPy prints N-dimensional arrays, the last axis is looped over the fastest while the first axis is the
slowest. For instance:

>>> np.ones((4, 3, 2))
array([[[1., 1.],

[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.]]])

There are often instances where we want NumPy to initialize the values of an array. NumPy offers functions like ones()
and zeros(), and the random.Generator class for random number generation for that. All you need to do is pass
in the number of elements you want it to generate:

>>> np.ones(3)
array([1., 1., 1.])
>>> np.zeros(3)
array([0., 0., 0.])
the simplest way to generate random numbers
>>> rng = np.random.default_rng(0)
>>> rng.random(3)
array([0.63696169, 0.26978671, 0.04097352])

46 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

You can also use ones(), zeros(), and random() to create a 2D array if you give them a tuple describing the
dimensions of the matrix:

>>> np.ones((3, 2))
array([[1., 1.],

[1., 1.],
[1., 1.]])

>>> np.zeros((3, 2))
array([[0., 0.],

[0., 0.],
[0., 0.]])

>>> rng.random((3, 2))
array([[0.01652764, 0.81327024],

[0.91275558, 0.60663578],
[0.72949656, 0.54362499]]) # may vary

Read more about creating arrays, filled with 0’s, 1’s, other values or uninitialized, at array creation routines.

3.18. Creating matrices 47

NumPy User Guide, Release 1.22.0

3.19 Generating random numbers

The use of random number generation is an important part of the configuration and evaluation of many numerical and
machine learning algorithms. Whether you need to randomly initialize weights in an artificial neural network, split data
into random sets, or randomly shuffle your dataset, being able to generate random numbers (actually, repeatable pseudo-
random numbers) is essential.
With Generator.integers, you can generate random integers from low (remember that this is inclusive with
NumPy) to high (exclusive). You can set endpoint=True to make the high number inclusive.
You can generate a 2 x 4 array of random integers between 0 and 4 with:

>>> rng.integers(5, size=(2, 4))
array([[2, 1, 1, 0],

[0, 0, 0, 4]]) # may vary

Read more about random number generation here.

3.20 How to get unique items and counts

This section covers np.unique()

You can find the unique elements in an array easily with np.unique.
For example, if you start with this array:

>>> a = np.array([11, 11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 14, 18, 19, 20])

you can use np.unique to print the unique values in your array:

>>> unique_values = np.unique(a)
>>> print(unique_values)
[11 12 13 14 15 16 17 18 19 20]

To get the indices of unique values in a NumPy array (an array of first index positions of unique values in the array), just
pass the return_index argument in np.unique() as well as your array.

>>> unique_values, indices_list = np.unique(a, return_index=True)
>>> print(indices_list)
[0 2 3 4 5 6 7 12 13 14]

You can pass the return_counts argument in np.unique() along with your array to get the frequency count of
unique values in a NumPy array.

>>> unique_values, occurrence_count = np.unique(a, return_counts=True)
>>> print(occurrence_count)
[3 2 2 2 1 1 1 1 1 1]

This also works with 2D arrays! If you start with this array:

>>> a_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]])

You can find unique values with:

48 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

>>> unique_values = np.unique(a_2d)
>>> print(unique_values)
[1 2 3 4 5 6 7 8 9 10 11 12]

If the axis argument isn’t passed, your 2D array will be flattened.
If you want to get the unique rows or columns, make sure to pass the axis argument. To find the unique rows, specify
axis=0 and for columns, specify axis=1.

>>> unique_rows = np.unique(a_2d, axis=0)
>>> print(unique_rows)
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]

To get the unique rows, index position, and occurrence count, you can use:

>>> unique_rows, indices, occurrence_count = np.unique(
... a_2d, axis=0, return_counts=True, return_index=True)
>>> print(unique_rows)
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]

>>> print(indices)
[0 1 2]
>>> print(occurrence_count)
[2 1 1]

To learn more about finding the unique elements in an array, see unique.

3.21 Transposing and reshaping a matrix

This section covers arr.reshape(), arr.transpose(), arr.T

It’s common to need to transpose your matrices. NumPy arrays have the property T that allows you to transpose a matrix.

You may also need to switch the dimensions of a matrix. This can happen when, for example, you have a model that
expects a certain input shape that is different from your dataset. This is where the reshape method can be useful. You
simply need to pass in the new dimensions that you want for the matrix.

3.21. Transposing and reshaping a matrix 49

NumPy User Guide, Release 1.22.0

>>> data.reshape(2, 3)
array([[1, 2, 3],

[4, 5, 6]])
>>> data.reshape(3, 2)
array([[1, 2],

[3, 4],
[5, 6]])

You can also use .transpose() to reverse or change the axes of an array according to the values you specify.
If you start with this array:

>>> arr = np.arange(6).reshape((2, 3))
>>> arr
array([[0, 1, 2],

[3, 4, 5]])

You can transpose your array with arr.transpose().

>>> arr.transpose()
array([[0, 3],

[1, 4],
[2, 5]])

You can also use arr.T:

>>> arr.T
array([[0, 3],

[1, 4],
[2, 5]])

To learn more about transposing and reshaping arrays, see transpose and reshape.

50 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

3.22 How to reverse an array

This section covers np.flip()

NumPy’s np.flip() function allows you to flip, or reverse, the contents of an array along an axis. When using np.
flip(), specify the array you would like to reverse and the axis. If you don’t specify the axis, NumPy will reverse the
contents along all of the axes of your input array.
Reversing a 1D array
If you begin with a 1D array like this one:

>>> arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

You can reverse it with:

>>> reversed_arr = np.flip(arr)

If you want to print your reversed array, you can run:

>>> print('Reversed Array: ', reversed_arr)
Reversed Array: [8 7 6 5 4 3 2 1]

Reversing a 2D array
A 2D array works much the same way.
If you start with this array:

>>> arr_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can reverse the content in all of the rows and all of the columns with:

>>> reversed_arr = np.flip(arr_2d)
>>> print(reversed_arr)
[[12 11 10 9]
[8 7 6 5]
[4 3 2 1]]

You can easily reverse only the rows with:

>>> reversed_arr_rows = np.flip(arr_2d, axis=0)
>>> print(reversed_arr_rows)
[[9 10 11 12]
[5 6 7 8]
[1 2 3 4]]

Or reverse only the columns with:

>>> reversed_arr_columns = np.flip(arr_2d, axis=1)
>>> print(reversed_arr_columns)
[[4 3 2 1]
[8 7 6 5]
[12 11 10 9]]

You can also reverse the contents of only one column or row. For example, you can reverse the contents of the row at
index position 1 (the second row):

3.22. How to reverse an array 51

NumPy User Guide, Release 1.22.0

>>> arr_2d[1] = np.flip(arr_2d[1])
>>> print(arr_2d)
[[1 2 3 4]
[8 7 6 5]
[9 10 11 12]]

You can also reverse the column at index position 1 (the second column):

>>> arr_2d[:,1] = np.flip(arr_2d[:,1])
>>> print(arr_2d)
[[1 10 3 4]
[8 7 6 5]
[9 2 11 12]]

Read more about reversing arrays at flip.

3.23 Reshaping and flattening multidimensional arrays

This section covers .flatten(), ravel()

There are two popular ways to flatten an array: .flatten() and .ravel(). The primary difference between the
two is that the new array created using ravel() is actually a reference to the parent array (i.e., a “view”). This means
that any changes to the new array will affect the parent array as well. Since ravel does not create a copy, it’s memory
efficient.
If you start with this array:

>>> x = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can use flatten to flatten your array into a 1D array.

>>> x.flatten()
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

When you use flatten, changes to your new array won’t change the parent array.
For example:

>>> a1 = x.flatten()
>>> a1[0] = 99
>>> print(x) # Original array
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]

>>> print(a1) # New array
[99 2 3 4 5 6 7 8 9 10 11 12]

But when you use ravel, the changes you make to the new array will affect the parent array.
For example:

>>> a2 = x.ravel()
>>> a2[0] = 98
>>> print(x) # Original array

(continues on next page)

52 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

(continued from previous page)
[[98 2 3 4]
[5 6 7 8]
[9 10 11 12]]

>>> print(a2) # New array
[98 2 3 4 5 6 7 8 9 10 11 12]

Read more about flatten at ndarray.flatten and ravel at ravel.

3.24 How to access the docstring for more information

This section covers help(), ?, ??

When it comes to the data science ecosystem, Python and NumPy are built with the user in mind. One of the best
examples of this is the built-in access to documentation. Every object contains the reference to a string, which is known
as the docstring. In most cases, this docstring contains a quick and concise summary of the object and how to use it.
Python has a built-in help() function that can help you access this information. This means that nearly any time you
need more information, you can use help() to quickly find the information that you need.
For example:

>>> help(max)
Help on built-in function max in module builtins:

max(...)
max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the largest argument.

Because access to additional information is so useful, IPython uses the ? character as a shorthand for accessing this
documentation along with other relevant information. IPython is a command shell for interactive computing in multiple
languages. You can find more information about IPython here.
For example:

In [0]: max?
max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the largest argument.
Type: builtin_function_or_method

You can even use this notation for object methods and objects themselves.
Let’s say you create this array:

>>> a = np.array([1, 2, 3, 4, 5, 6])

3.24. How to access the docstring for more information 53

https://ipython.org/

NumPy User Guide, Release 1.22.0

Then you can obtain a lot of useful information (first details about a itself, followed by the docstring of ndarray of
which a is an instance):

In [1]: a?
Type: ndarray
String form: [1 2 3 4 5 6]
Length: 6
File: ~/anaconda3/lib/python3.7/site-packages/numpy/__init__.py
Docstring: <no docstring>
Class docstring:
ndarray(shape, dtype=float, buffer=None, offset=0,

strides=None, order=None)

An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)

Arrays should be constructed using `array`, `zeros` or `empty` (refer
to the See Also section below). The parameters given here refer to
a low-level method (`ndarray(...)`) for instantiating an array.

For more information, refer to the `numpy` module and examine the
methods and attributes of an array.

Parameters

(for the __new__ method; see Notes below)

shape : tuple of ints
Shape of created array.

...

This also works for functions and other objects that you create. Just remember to include a docstring with your function
using a string literal (""" """ or ''' ''' around your documentation).
For example, if you create this function:

>>> def double(a):
... '''Return a * 2'''
... return a * 2

You can obtain information about the function:

In [2]: double?
Signature: double(a)
Docstring: Return a * 2
File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function

You can reach another level of information by reading the source code of the object you’re interested in. Using a double
question mark (??) allows you to access the source code.
For example:

In [3]: double??
Signature: double(a)

(continues on next page)

54 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

(continued from previous page)
Source:
def double(a):

'''Return a * 2'''
return a * 2

File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function

If the object in question is compiled in a language other than Python, using ?? will return the same information as ?.
You’ll find this with a lot of built-in objects and types, for example:

In [4]: len?
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

and :

In [5]: len??
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

have the same output because they were compiled in a programming language other than Python.

3.25 Working with mathematical formulas

The ease of implementing mathematical formulas that work on arrays is one of the things that make NumPy so widely
used in the scientific Python community.
For example, this is the mean square error formula (a central formula used in supervised machine learning models that
deal with regression):

Implementing this formula is simple and straightforward in NumPy:

What makes this work so well is that predictions and labels can contain one or a thousand values. They only
need to be the same size.

3.25. Working with mathematical formulas 55

NumPy User Guide, Release 1.22.0

You can visualize it this way:

In this example, both the predictions and labels vectors contain three values, meaning n has a value of three. After we
carry out subtractions the values in the vector are squared. Then NumPy sums the values, and your result is the error
value for that prediction and a score for the quality of the model.

3.26 How to save and load NumPy objects

This section covers np.save, np.savez, np.savetxt, np.load, np.loadtxt

Youwill, at some point, want to save your arrays to disk and load them backwithout having to re-run the code. Fortunately,
there are several ways to save and load objects with NumPy. The ndarray objects can be saved to and loaded from the
disk files with loadtxt and savetxt functions that handle normal text files, load and save functions that handle
NumPy binary files with a .npy file extension, and a savez function that handles NumPy files with a .npz file extension.
The .npy and .npz files store data, shape, dtype, and other information required to reconstruct the ndarray in a way that
allows the array to be correctly retrieved, even when the file is on another machine with different architecture.
If you want to store a single ndarray object, store it as a .npy file using np.save. If you want to store more than one
ndarray object in a single file, save it as a .npz file using np.savez. You can also save several arrays into a single file in
compressed npz format with savez_compressed.
It’s easy to save and load and array with np.save(). Just make sure to specify the array you want to save and a file
name. For example, if you create this array:

>>> a = np.array([1, 2, 3, 4, 5, 6])

56 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

You can save it as “filename.npy” with:

>>> np.save('filename', a)

You can use np.load() to reconstruct your array.

>>> b = np.load('filename.npy')

If you want to check your array, you can run::

>>> print(b)
[1 2 3 4 5 6]

You can save a NumPy array as a plain text file like a .csv or .txt file with np.savetxt.
For example, if you create this array:

>>> csv_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

You can easily save it as a .csv file with the name “new_file.csv” like this:

>>> np.savetxt('new_file.csv', csv_arr)

You can quickly and easily load your saved text file using loadtxt():

>>> np.loadtxt('new_file.csv')
array([1., 2., 3., 4., 5., 6., 7., 8.])

Thesavetxt() andloadtxt() functions accept additional optional parameters such as header, footer, and delimiter.
While text files can be easier for sharing, .npy and .npz files are smaller and faster to read. If you need more sophisticated
handling of your text file (for example, if you need to work with lines that contain missing values), you will want to use
the genfromtxt function.
With savetxt, you can specify headers, footers, comments, and more.
Learn more about input and output routines here.

3.27 Importing and exporting a CSV

It’s simple to read in a CSV that contains existing information. The best and easiest way to do this is to use Pandas.

>>> import pandas as pd

>>> # If all of your columns are the same type:
>>> x = pd.read_csv('music.csv', header=0).values
>>> print(x)
[['Billie Holiday' 'Jazz' 1300000 27000000]
['Jimmie Hendrix' 'Rock' 2700000 70000000]
['Miles Davis' 'Jazz' 1500000 48000000]
['SIA' 'Pop' 2000000 74000000]]

>>> # You can also simply select the columns you need:
>>> x = pd.read_csv('music.csv', usecols=['Artist', 'Plays']).values
>>> print(x)
[['Billie Holiday' 27000000]
['Jimmie Hendrix' 70000000]

(continues on next page)

3.27. Importing and exporting a CSV 57

https://pandas.pydata.org

NumPy User Guide, Release 1.22.0

(continued from previous page)
['Miles Davis' 48000000]
['SIA' 74000000]]

It’s simple to use Pandas in order to export your array as well. If you are new to NumPy, you may want to create a Pandas
dataframe from the values in your array and then write the data frame to a CSV file with Pandas.
If you created this array “a”

>>> a = np.array([[-2.58289208, 0.43014843, -1.24082018, 1.59572603],
... [0.99027828, 1.17150989, 0.94125714, -0.14692469],
... [0.76989341, 0.81299683, -0.95068423, 0.11769564],
... [0.20484034, 0.34784527, 1.96979195, 0.51992837]])

You could create a Pandas dataframe

>>> df = pd.DataFrame(a)
>>> print(df)

0 1 2 3
0 -2.582892 0.430148 -1.240820 1.595726
1 0.990278 1.171510 0.941257 -0.146925
2 0.769893 0.812997 -0.950684 0.117696
3 0.204840 0.347845 1.969792 0.519928

You can easily save your dataframe with:

>>> df.to_csv('pd.csv')

And read your CSV with:

>>> data = pd.read_csv('pd.csv')

You can also save your array with the NumPy savetxt method.

>>> np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header='1, 2, 3, 4')

If you’re using the command line, you can read your saved CSV any time with a command such as:

58 3. NumPy: the absolute basics for beginners

NumPy User Guide, Release 1.22.0

$ cat np.csv
1, 2, 3, 4
-2.58,0.43,-1.24,1.60
0.99,1.17,0.94,-0.15
0.77,0.81,-0.95,0.12
0.20,0.35,1.97,0.52

Or you can open the file any time with a text editor!
If you’re interested in learning more about Pandas, take a look at the official Pandas documentation. Learn how to install
Pandas with the official Pandas installation information.

3.28 Plotting arrays with Matplotlib

If you need to generate a plot for your values, it’s very simple with Matplotlib.
For example, you may have an array like this one:

>>> a = np.array([2, 1, 5, 7, 4, 6, 8, 14, 10, 9, 18, 20, 22])

If you already have Matplotlib installed, you can import it with:

>>> import matplotlib.pyplot as plt

If you're using Jupyter Notebook, you may also want to run the following
line of code to display your code in the notebook:

%matplotlib inline

All you need to do to plot your values is run:

>>> plt.plot(a)

If you are running from a command line, you may need to do this:
>>> plt.show()

0 2 4 6 8 10 12
0

5

10

15

20

3.28. Plotting arrays with Matplotlib 59

https://pandas.pydata.org/index.html
https://pandas.pydata.org/pandas-docs/stable/install.html
https://matplotlib.org/

NumPy User Guide, Release 1.22.0

For example, you can plot a 1D array like this:

>>> x = np.linspace(0, 5, 20)
>>> y = np.linspace(0, 10, 20)
>>> plt.plot(x, y, 'purple') # line
>>> plt.plot(x, y, 'o') # dots

0 1 2 3 4 5
0

2

4

6

8

10

With Matplotlib, you have access to an enormous number of visualization options.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> X = np.arange(-5, 5, 0.15)
>>> Y = np.arange(-5, 5, 0.15)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis')

To read more about Matplotlib and what it can do, take a look at the official documentation. For directions regarding
installing Matplotlib, see the official installation section.

Image credits: Jay Alammar http://jalammar.github.io/

60 3. NumPy: the absolute basics for beginners

https://matplotlib.org/
https://matplotlib.org/users/installing.html

NumPy User Guide, Release 1.22.0

5.0 2.50.0 2.5 5.0 5.0
2.5

0.0
2.5

5.0

0.5
0.0
0.5

3.28. Plotting arrays with Matplotlib 61

NumPy User Guide, Release 1.22.0

62 3. NumPy: the absolute basics for beginners

CHAPTER

FOUR

NUMPY FUNDAMENTALS

These documents clarify concepts, design decisions, and technical constraints in NumPy. This is a great place to under-
stand the fundamental NumPy ideas and philosophy.

4.1 Array creation

See also:
Array creation routines

4.1.1 Introduction

There are 6 general mechanisms for creating arrays:
1) Conversion from other Python structures (i.e. lists and tuples)
2) Intrinsic NumPy array creation functions (e.g. arange, ones, zeros, etc.)
3) Replicating, joining, or mutating existing arrays
4) Reading arrays from disk, either from standard or custom formats
5) Creating arrays from raw bytes through the use of strings or buffers
6) Use of special library functions (e.g., random)

You can use these methods to create ndarrays or Structured arrays. This document will cover general methods for ndarray
creation.

4.1.2 1) Converting Python sequences to NumPy Arrays

NumPy arrays can be defined using Python sequences such as lists and tuples. Lists and tuples are defined using [...]
and (...), respectively. Lists and tuples can define ndarray creation:

• a list of numbers will create a 1D array,
• a list of lists will create a 2D array,
• further nested lists will create higher-dimensional arrays. In general, any array object is called an ndarray in
NumPy.

>>> a1D = np.array([1, 2, 3, 4])
>>> a2D = np.array([[1, 2], [3, 4]])
>>> a3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

63

NumPy User Guide, Release 1.22.0

When you use numpy.array to define a new array, you should consider the dtype of the elements in the array, which
can be specified explicitly. This feature gives you more control over the underlying data structures and how the elements
are handled in C/C++ functions. If you are not careful with dtype assignments, you can get unwanted overflow, as such

>>> a = np.array([127, 128, 129], dtype=np.int8)
>>> a
array([127, -128, -127], dtype=int8)

An 8-bit signed integer represents integers from -128 to 127. Assigning the int8 array to integers outside of this range
results in overflow. This feature can often be misunderstood. If you perform calculations with mismatching dtypes,
you can get unwanted results, for example:

>>> a = np.array([2, 3, 4], dtype=np.uint32)
>>> b = np.array([5, 6, 7], dtype=np.uint32)
>>> c_unsigned32 = a - b
>>> print('unsigned c:', c_unsigned32, c_unsigned32.dtype)
unsigned c: [4294967293 4294967293 4294967293] uint32
>>> c_signed32 = a - b.astype(np.int32)
>>> print('signed c:', c_signed32, c_signed32.dtype)
signed c: [-3 -3 -3] int64

Notice when you perform operations with two arrays of the same dtype: uint32, the resulting array is the same type.
When you perform operations with different dtype, NumPy will assign a new type that satisfies all of the array elements
involved in the computation, here uint32 and int32 can both be represented in as int64.
The default NumPy behavior is to create arrays in either 64-bit signed integers or double precision floating point numbers,
int64 and float, respectively. If you expect your arrays to be a certain type, then you need to specify the dtype
while you create the array.

4.1.3 2) Intrinsic NumPy array creation functions

NumPy has over 40 built-in functions for creating arrays as laid out in the Array creation routines. These functions can
be split into roughly three categories, based on the dimension of the array they create:

1) 1D arrays
2) 2D arrays
3) ndarrays

1 - 1D array creation functions

The 1D array creation functions e.g. numpy.linspace and numpy.arange generally need at least two inputs,
start and stop.
numpy.arange creates arrays with regularly incrementing values. Check the documentation for complete information
and examples. A few examples are shown:

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

64 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Note: best practice for numpy.arange is to use integer start, end, and step values. There are some subtleties regarding
dtype. In the second example, thedtype is defined. In the third example, the array isdtype=float to accommodate
the step size of 0.1. Due to roundoff error, the stop value is sometimes included.
numpy.linspace will create arrays with a specified number of elements, and spaced equally between the specified
beginning and end values. For example:

>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

The advantage of this creation function is that you guarantee the number of elements and the starting and end point. The
previous arange(start, stop, step) will not include the value stop.

2 - 2D array creation functions

The 2D array creation functions e.g. numpy.eye, numpy.diag, and numpy.vander define properties of special
matrices represented as 2D arrays.
np.eye(n, m) defines a 2D identity matrix. The elements where i=j (row index and column index are equal) are 1
and the rest are 0, as such:

>>> np.eye(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> np.eye(3, 5)
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.]])

numpy.diag can define either a square 2D array with given values along the diagonal or if given a 2D array returns a
1D array that is only the diagonal elements. The two array creation functions can be helpful while doing linear algebra,
as such:

>>> np.diag([1, 2, 3])
array([[1, 0, 0],

[0, 2, 0],
[0, 0, 3]])

>>> np.diag([1, 2, 3], 1)
array([[0, 1, 0, 0],

[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]])

>>> a = np.array([[1, 2], [3, 4]])
>>> np.diag(a)
array([1, 4])

vander(x, n) defines a Vandermonde matrix as a 2D NumPy array. Each column of the Vandermonde matrix is a
decreasing power of the input 1D array or list or tuple, x where the highest polynomial order is n-1. This array creation
routine is helpful in generating linear least squares models, as such:

>>> np.vander(np.linspace(0, 2, 5), 2)
array([[0. , 1.],

[0.5, 1.],
[1. , 1.],
[1.5, 1.],

(continues on next page)

4.1. Array creation 65

NumPy User Guide, Release 1.22.0

(continued from previous page)
[2. , 1.]])

>>> np.vander([1, 2, 3, 4], 2)
array([[1, 1],

[2, 1],
[3, 1],
[4, 1]])

>>> np.vander((1, 2, 3, 4), 4)
array([[1, 1, 1, 1],

[8, 4, 2, 1],
[27, 9, 3, 1],
[64, 16, 4, 1]])

3 - general ndarray creation functions

The ndarray creation functions e.g. numpy.ones, numpy.zeros, and random define arrays based upon the desired
shape. The ndarray creation functions can create arrays with any dimension by specifying how many dimensions and
length along that dimension in a tuple or list.
numpy.zeros will create an array filled with 0 values with the specified shape. The default dtype is float64:

>>> np.zeros((2, 3))
array([[0., 0., 0.],

[0., 0., 0.]])
>>> np.zeros((2, 3, 2))
array([[[0., 0.],

[0., 0.],
[0., 0.]],

[[0., 0.],
[0., 0.],
[0., 0.]]])

numpy.ones will create an array filled with 1 values. It is identical to zeros in all other respects as such:

>>> np.ones((2, 3))
array([[1., 1., 1.],

[1., 1., 1.]])
>>> np.ones((2, 3, 2))
array([[[1., 1.],

[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.]]])

The random method of the result of default_rng will create an array filled with random values between 0 and 1. It
is included with the numpy.random library. Below, two arrays are created with shapes (2,3) and (2,3,2), respectively.
The seed is set to 42 so you can reproduce these pseudorandom numbers:

>>> from numpy.random import default_rng
>>> default_rng(42).random((2,3))
array([[0.77395605, 0.43887844, 0.85859792],

[0.69736803, 0.09417735, 0.97562235]])
>>> default_rng(42).random((2,3,2))

(continues on next page)

66 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
array([[[0.77395605, 0.43887844],

[0.85859792, 0.69736803],
[0.09417735, 0.97562235]],

[[0.7611397 , 0.78606431],
[0.12811363, 0.45038594],
[0.37079802, 0.92676499]]])

numpy.indices will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each
representing variation in that dimension:

>>> np.indices((3,3))
array([[[0, 0, 0],

[1, 1, 1],
[2, 2, 2]],

[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]])

This is particularly useful for evaluating functions of multiple dimensions on a regular grid.

4.1.4 3) Replicating, joining, or mutating existing arrays

Once you have created arrays, you can replicate, join, or mutate those existing arrays to create new arrays. When you
assign an array or its elements to a new variable, you have to explicitly numpy.copy the array, otherwise the variable
is a view into the original array. Consider the following example:

>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> b = a[:2]
>>> b += 1
>>> print('a =', a, '; b =', b)
a = [2 3 3 4 5 6] ; b = [2 3]

In this example, you did not create a new array. You created a variable, b that viewed the first 2 elements of a. When
you added 1 to b you would get the same result by adding 1 to a[:2]. If you want to create a new array, use the
numpy.copy array creation routine as such:

>>> a = np.array([1, 2, 3, 4])
>>> b = a[:2].copy()
>>> b += 1
>>> print('a = ', a, 'b = ', b)
a = [1 2 3 4] b = [2 3]

For more information and examples look at Copies and Views.
There are a number of routines to join existing arrays e.g. numpy.vstack, numpy.hstack, and numpy.block.
Here is an example of joining four 2-by-2 arrays into a 4-by-4 array using block:

>>> A = np.ones((2, 2))
>>> B = np.eye(2, 2)
>>> C = np.zeros((2, 2))
>>> D = np.diag((-3, -4))
>>> np.block([[A, B], [C, D]])
array([[1., 1., 1., 0.],

[1., 1., 0., 1.],

(continues on next page)

4.1. Array creation 67

NumPy User Guide, Release 1.22.0

(continued from previous page)
[0., 0., -3., 0.],
[0., 0., 0., -4.]])

Other routines use similar syntax to join ndarrays. Check the routine’s documentation for further examples and syntax.

4.1.5 4) Reading arrays from disk, either from standard or custom formats

This is the most common case of large array creation. The details depend greatly on the format of data on disk. This
section gives general pointers on how to handle various formats. For more detailed examples of IO look at How to Read
and Write files.

Standard Binary Formats

Various fields have standard formats for array data. The following lists the ones with known Python libraries to read them
and return NumPy arrays (there may be others for which it is possible to read and convert to NumPy arrays so check the
last section as well)

HDF5: h5py
FITS: Astropy

Examples of formats that cannot be read directly but for which it is not hard to convert are those formats supported by
libraries like PIL (able to read and write many image formats such as jpg, png, etc).

Common ASCII Formats

Delimited files such as comma separated value (csv) and tab separated value (tsv) files are used for programs like Excel and
LabView. Python functions can read and parse these files line-by-line. NumPy has two standard routines for importing a
file with delimited data numpy.loadtxt and numpy.genfromtxt. These functions have more involved use cases
in Reading and writing files. A simple example given a simple.csv:

$ cat simple.csv
x, y
0, 0
1, 1
2, 4
3, 9

Importing simple.csv is accomplished using loadtxt:

>>> np.loadtxt('simple.csv', delimiter = ',', skiprows = 1)
array([[0., 0.],

[1., 1.],
[2., 4.],
[3., 9.]])

More generic ASCII files can be read using scipy.io and Pandas.

68 4. NumPy fundamentals

https://docs.scipy.org/doc/scipy/reference/reference/io.html#module-scipy.io
https://pandas.pydata.org/

NumPy User Guide, Release 1.22.0

4.1.6 5) Creating arrays from raw bytes through the use of strings or buffers

There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O
library and use the NumPy fromfile() function and .tofile() method to read and write NumPy arrays directly
(mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety
of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface
with C or C++.

4.1.7 6) Use of special library functions (e.g., SciPy, Pandas, and OpenCV)

NumPy is the fundamental library for array containers in the Python Scientific Computing stack. Many Python libraries,
including SciPy, Pandas, and OpenCV, use NumPy ndarrays as the common format for data exchange, These libraries
can create, operate on, and work with NumPy arrays.

4.2 Indexing on ndarrays

See also:
Indexing routines
ndarrays can be indexed using the standard Python x[obj] syntax, where x is the array and obj the selection. There
are different kinds of indexing available depending on obj: basic indexing, advanced indexing and field access.
Most of the following examples show the use of indexing when referencing data in an array. The examples work just as
well when assigning to an array. See Assigning values to indexed arrays for specific examples and explanations on how
assignments work.
Note that in Python, x[(exp1, exp2, ..., expN)] is equivalent to x[exp1, exp2, ..., expN]; the
latter is just syntactic sugar for the former.

4.2.1 Basic indexing

Single element indexing

Single element indexing works exactly like that for other standard Python sequences. It is 0-based, and accepts negative
indices for indexing from the end of the array.

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

It is not necessary to separate each dimension’s index into its own set of square brackets.

>>> x.shape = (2, 5) # now x is 2-dimensional
>>> x[1, 3]
8
>>> x[1, -1]
9

Note that if one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array.
For example:

4.2. Indexing on ndarrays 69

NumPy User Guide, Release 1.22.0

>>> x[0]
array([0, 1, 2, 3, 4])

That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example,
choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array
of that dimensionality and size. It must be noted that the returned array is a view, i.e., it is not a copy of the original,
but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is
returned. So using a single index on the returned array, results in a single element being returned. That is:

>>> x[0][2]
2

So note that x[0, 2] == x[0][2] though the second case is more inefficient as a new temporary array is created
after the first index that is subsequently indexed by 2.

Note: NumPy uses C-order indexing. That means that the last index usually represents the most rapidly changing
memory location, unlike Fortran or IDL, where the first index represents the most rapidly changing location in memory.
This difference represents a great potential for confusion.

Slicing and striding

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice object
(constructed by start:stop:step notation inside of brackets), an integer, or a tuple of slice objects and integers.
Ellipsis and newaxis objects can be interspersed with these as well.
Deprecated since version 1.15.0: In order to remain backward compatible with a common usage in Numeric, basic slicing
is also initiated if the selection object is any non-ndarray and non-tuple sequence (such as a list) containing slice
objects, the Ellipsis object, or the newaxis object, but not for integer arrays or other embedded sequences.
The simplest case of indexing with N integers returns an array scalar representing the corresponding item. As in Python,
all indices are zero-based: for the i-th index ni, the valid range is 0 ≤ ni < di where di is the i-th element of the shape
of the array. Negative indices are interpreted as counting from the end of the array (i.e., if ni < 0, it means ni + di).
All arrays generated by basic slicing are always views of the original array.

Note: NumPy slicing creates a view instead of a copy as in the case of built-in Python sequences such as string, tuple and
list. Care must be taken when extracting a small portion from a large array which becomes useless after the extraction,
because the small portion extracted contains a reference to the large original array whose memory will not be released
until all arrays derived from it are garbage-collected. In such cases an explicit copy() is recommended.

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index). Some
useful concepts to remember include:

• The basic slice syntax is i:j:k where i is the starting index, j is the stopping index, and k is the step (k ̸= 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, …, i + (m - 1) k where
m = q + (r ̸= 0) and q and r are the quotient and remainder obtained by dividing j - i by k: j - i = q k + r, so that
i + (m - 1) k < j. For example:

>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])

70 4. NumPy fundamentals

https://docs.python.org/dev/library/functions.html#slice
https://docs.python.org/dev/library/constants.html#Ellipsis
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/functions.html#slice
https://docs.python.org/dev/library/constants.html#Ellipsis

NumPy User Guide, Release 1.22.0

• Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding dimension.
Negative k makes stepping go towards smaller indices. From the above example:

>>> x[-2:10]
array([8, 9])
>>> x[-3:3:-1]
array([7, 6, 5, 4])

• Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to 0 for k > 0
and n - 1 for k < 0 . If j is not given it defaults to n for k > 0 and -n-1 for k < 0 . If k is not given it defaults to 1.
Note that :: is the same as : and means select all indices along this axis. From the above example:

>>> x[5:]
array([5, 6, 7, 8, 9])

• If the number of objects in the selection tuple is less than N, then : is assumed for any subsequent dimensions. For
example:

>>> x = np.array([[[1],[2],[3]], [[4],[5],[6]]])
>>> x.shape
(2, 3, 1)
>>> x[1:2]
array([[[4],

[5],
[6]]])

• An integer, i, returns the same values as i:i+1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - 1. If N = 1 then the returned object is an array scalar. These objects are explained in
arrays.scalars.

• If the selection tuple has all entries : except the p-th entry which is a slice object i:j:k, then the returned array
has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k, …, i +
(m - 1) k < j,

• Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using a
single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by :).
Thus, x[ind1, ..., ind2,:] acts like x[ind1][..., ind2, :] under basic slicing.

Warning: The above is not true for advanced indexing.

• You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the value
to be set in x[obj] = value must be (broadcastable) to the same shape as x[obj].

• A slicing tuple can always be constructed as obj and used in the x[obj] notation. Slice objects can be used in
the construction in place of the [start:stop:step] notation. For example, x[1:10:5, ::-1] can also
be implemented as obj = (slice(1, 10, 5), slice(None, None, -1)); x[obj] . This can
be useful for constructing generic code that works on arrays of arbitrary dimensions. See Dealing with variable
numbers of indices within programs for more information.

4.2. Indexing on ndarrays 71

NumPy User Guide, Release 1.22.0

Dimensional indexing tools

There are some tools to facilitate the easy matching of array shapes with expressions and in assignments.
Ellipsis expands to the number of : objects needed for the selection tuple to index all dimensions. In most cases,
this means that the length of the expanded selection tuple is x.ndim. There may only be a single ellipsis present. From
the above example:

>>> x[..., 0]
array([[1, 2, 3],

[4, 5, 6]])

This is equivalent to:

>>> x[:, :, 0]
array([[1, 2, 3],

[4, 5, 6]])

Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one unit-length
dimension. The added dimension is the position of the newaxis object in the selection tuple. newaxis is an alias for
None, and None can be used in place of this with the same result. From the above example:

>>> x[:, np.newaxis, :, :].shape
(2, 1, 3, 1)
>>> x[:, None, :, :].shape
(2, 1, 3, 1)

This can be handy to combine two arrays in a way that otherwise would require explicit reshaping operations. For example:

>>> x = np.arange(5)
>>> x[:, np.newaxis] + x[np.newaxis, :]
array([[0, 1, 2, 3, 4],

[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])

4.2.2 Advanced indexing

Advanced indexing is triggered when the selection object, obj, is a non-tuple sequence object, an ndarray (of data type
integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are two types
of advanced indexing: integer and Boolean.
Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

Warning: The definition of advanced indexing means that x[(1, 2, 3),] is fundamentally different than
x[(1, 2, 3)]. The latter is equivalent to x[1, 2, 3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this occurs.
Also recognize that x[[1, 2, 3]] will trigger advanced indexing, whereas due to the deprecated Numeric com-
patibility mentioned above, x[[1, 2, slice(None)]] will trigger basic slicing.

72 4. NumPy fundamentals

https://docs.python.org/dev/library/constants.html#Ellipsis

NumPy User Guide, Release 1.22.0

Integer array indexing

Integer array indexing allows selection of arbitrary items in the array based on their N-dimensional index. Each integer
array represents a number of indices into that dimension.
Negative values are permitted in the index arrays and work as they do with single indices or slices:

>>> x = np.arange(10, 1, -1)
>>> x
array([10, 9, 8, 7, 6, 5, 4, 3, 2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])
>>> x[np.array([3, 3, -3, 8])]
array([7, 7, 4, 2])

If the index values are out of bounds then an IndexError is thrown:

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> x[np.array([1, -1])]
array([[3, 4],

[5, 6]])
>>> x[np.array([3, 4])]
IndexError: index 3 is out of bounds for axis 0 with size 3

When the index consists of asmany integer arrays as dimensions of the array being indexed, the indexing is straightforward,
but different from slicing.
Advanced indices always are broadcast and iterated as one:

result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
..., ind_N[i_1, ..., i_M]]

Note that the resulting shape is identical to the (broadcast) indexing array shapes ind_1, ..., ind_N. If the indices
cannot be broadcast to the same shape, an exception IndexError: shape mismatch: indexing arrays
could not be broadcast together with shapes... is raised.
Indexing with multidimensional index arrays tend to be more unusual uses, but they are permitted, and they are useful for
some problems. We’ll start with the simplest multidimensional case:

>>> y = np.arange(35).reshape(5, 7)
>>> y
array([[0, 1, 2, 3, 4, 5, 6],

[7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])

>>> y[np.array([0, 2, 4]), np.array([0, 1, 2])]
array([0, 15, 30])

In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being
indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each
position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the
resultant array is y[0, 0]. The next value is y[2, 1], and the last is y[4, 2].
If the index arrays do not have the same shape, there is an attempt to broadcast them to the same shape. If they cannot
be broadcast to the same shape, an exception is raised:

4.2. Indexing on ndarrays 73

NumPy User Guide, Release 1.22.0

>>> y[np.array([0, 2, 4]), np.array([0, 1])]
IndexError: shape mismatch: indexing arrays could not be broadcast
together with shapes (3,) (2,)

The broadcasting mechanism permits index arrays to be combined with scalars for other indices. The effect is that the
scalar value is used for all the corresponding values of the index arrays:

>>> y[np.array([0, 2, 4]), 1]
array([1, 15, 29])

Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of
thought to understand what happens in such cases. For example if we just use one index array with y:

>>> y[np.array([0, 2, 4])]
array([[0, 1, 2, 3, 4, 5, 6],

[14, 15, 16, 17, 18, 19, 20],
[28, 29, 30, 31, 32, 33, 34]])

It results in the construction of a new array where each value of the index array selects one row from the array being
indexed and the resultant array has the resulting shape (number of index elements, size of row).
In general, the shape of the resultant array will be the concatenation of the shape of the index array (or the shape that
all the index arrays were broadcast to) with the shape of any unused dimensions (those not indexed) in the array being
indexed.

Example

From each row, a specific element should be selected. The row index is just [0, 1, 2] and the column index specifies
the element to choose for the corresponding row, here [0, 1, 0]. Using both together the task can be solved using
advanced indexing:

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> x[[0, 1, 2], [0, 1, 0]]
array([1, 4, 5])

To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function ix_ can help with this
broadcasting. This is best understood with an example.

Example

From a 4x3 array the corner elements should be selected using advanced indexing. Thus all elements for which the column
is one of [0, 2] and the row is one of [0, 3] need to be selected. To use advanced indexing one needs to select all
elements explicitly. Using the method explained previously one could write:

>>> x = np.array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = np.array([[0, 0],
... [3, 3]], dtype=np.intp)
>>> columns = np.array([[0, 2],
... [0, 2]], dtype=np.intp)
>>> x[rows, columns]
array([[0, 2],

[9, 11]])

74 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such as
rows[:, np.newaxis] + columns) to simplify this:

>>> rows = np.array([0, 3], dtype=np.intp)
>>> columns = np.array([0, 2], dtype=np.intp)
>>> rows[:, np.newaxis]
array([[0],

[3]])
>>> x[rows[:, np.newaxis], columns]
array([[0, 2],

[9, 11]])

This broadcasting can also be achieved using the function ix_:

>>> x[np.ix_(rows, columns)]
array([[0, 2],

[9, 11]])

Note that without the np.ix_ call, only the diagonal elements would be selected:

>>> x[rows, columns]
array([0, 11])

This difference is the most important thing to remember about indexing with multiple advanced indices.

Example

A real-life example of where advanced indexing may be useful is for a color lookup table where we want to map the values
of an image into RGB triples for display. The lookup table could have a shape (nlookup, 3). Indexing such an array with
an image with shape (ny, nx) with dtype=np.uint8 (or any integer type so long as values are with the bounds of the lookup
table) will result in an array of shape (ny, nx, 3) where a triple of RGB values is associated with each pixel location.

Boolean array indexing

This advanced indexing occurs when obj is an array object of Boolean type, such as may be returned from comparison
operators. A single boolean index array is practically identical to x[obj.nonzero()] where, as described above,
obj.nonzero() returns a tuple (of length obj.ndim) of integer index arrays showing the True elements of obj.
However, it is faster when obj.shape == x.shape.
If obj.ndim == x.ndim, x[obj] returns a 1-dimensional array filled with the elements of x corresponding to the
True values of obj. The search order will be row-major, C-style. If obj has True values at entries that are outside of
the bounds of x, then an index error will be raised. If obj is smaller than x it is identical to filling it with False.
A common use case for this is filtering for desired element values. For example, one may wish to select all entries from
an array which are not NaN:

>>> x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]])
>>> x[~np.isnan(x)]
array([1., 2., 3.])

Or wish to add a constant to all negative elements:

>>> x = np.array([1., -1., -2., 3])
>>> x[x < 0] += 20
>>> x
array([1., 19., 18., 3.])

4.2. Indexing on ndarrays 75

https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#False

NumPy User Guide, Release 1.22.0

In general if an index includes a Boolean array, the result will be identical to inserting obj.nonzero() into the same
position and using the integer array indexing mechanism described above. x[ind_1, boolean_array, ind_2]
is equivalent to x[(ind_1,) + boolean_array.nonzero() + (ind_2,)].
If there is only one Boolean array and no integer indexing array present, this is straightforward. Care must only be taken
to make sure that the boolean index has exactly as many dimensions as it is supposed to work with.
In general, when the boolean array has fewer dimensions than the array being indexed, this is equivalent to x[b, ...],
which means x is indexed by b followed by as many : as are needed to fill out the rank of x. Thus the shape of the result
is one dimension containing the number of True elements of the boolean array, followed by the remaining dimensions of
the array being indexed:

>>> x = np.arange(35).reshape(5, 7)
>>> b = x > 20
>>> b[:, 5]
array([False, False, False, True, True])
>>> x[b[:, 5]]
array([[21, 22, 23, 24, 25, 26, 27],

[28, 29, 30, 31, 32, 33, 34]])

Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.

Example

From an array, select all rows which sum up to less or equal two:

>>> x = np.array([[0, 1], [1, 1], [2, 2]])
>>> rowsum = x.sum(-1)
>>> x[rowsum <= 2, :]
array([[0, 1],

[1, 1]])

Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the
obj.nonzero() analogy. The function ix_ also supports boolean arrays and will work without any surprises.

Example

Use boolean indexing to select all rows adding up to an even number. At the same time columns 0 and 2 should be selected
with an advanced integer index. Using the ix_ function this can be done with:

>>> x = np.array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = (x.sum(-1) % 2) == 0
>>> rows
array([False, True, False, True])
>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array([[3, 5],

[9, 11]])

Without the np.ix_ call, only the diagonal elements would be selected.
Or without np.ix_ (compare the integer array examples):

76 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

>>> rows = rows.nonzero()[0]
>>> x[rows[:, np.newaxis], columns]
array([[3, 5],

[9, 11]])

Example

Use a 2-D boolean array of shape (2, 3) with four True elements to select rows from a 3-D array of shape (2, 3, 5) results
in a 2-D result of shape (4, 5):

>>> x = np.arange(30).reshape(2, 3, 5)
>>> x
array([[[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]],

[[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])

>>> b = np.array([[True, True, False], [False, True, True]])
>>> x[b]
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]])

Combining advanced and basic indexing

When there is at least one slice (:), ellipsis (...) or newaxis in the index (or the array has more dimensions than there
are advanced indices), then the behaviour can be more complicated. It is like concatenating the indexing result for each
advanced index element.
In the simplest case, there is only a single advanced index combined with a slice. For example:

>>> y = np.arange(35).reshape(5,7)
>>> y[np.array([0, 2, 4]), 1:3]
array([[1, 2],

[15, 16],
[29, 30]])

In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2,
(i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the
first, third and fifth rows). This is equivalent to:

>>> y[:, 1:3][np.array([0, 2, 4]), :]
array([[1, 2],

[15, 16],
[29, 30]])

A single advanced index can, for example, replace a slice and the result array will be the same. However, it is a copy and
may have a different memory layout. A slice is preferable when it is possible. For example:

>>> x = np.array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],

(continues on next page)

4.2. Indexing on ndarrays 77

NumPy User Guide, Release 1.22.0

(continued from previous page)
... [9, 10, 11]])
>>> x[1:2, 1:3]
array([[4, 5]])
>>> x[1:2, [1, 2]]
array([[4, 5]])

The easiest way to understand a combination of multiple advanced indices may be to think in terms of the resulting shape.
There are two parts to the indexing operation, the subspace defined by the basic indexing (excluding integers) and the
subspace from the advanced indexing part. Two cases of index combination need to be distinguished:

• The advanced indices are separated by a slice, Ellipsis or newaxis. For example x[arr1, :, arr2].
• The advanced indices are all next to each other. For example x[..., arr1, arr2, :] but not x[arr1,
:, 1] since 1 is an advanced index in this regard.

In the first case, the dimensions resulting from the advanced indexing operation come first in the result array, and the
subspace dimensions after that. In the second case, the dimensions from the advanced indexing operations are inserted
into the result array at the same spot as they were in the initial array (the latter logic is what makes simple advanced
indexing behave just like slicing).

Example

Supposex.shape is (10, 20, 30) andind is a (2, 3, 4)-shaped indexingintp array, thenresult = x[..., ind,
:] has shape (10, 2, 3, 4, 30) because the (20,)-shaped subspace has been replaced with a (2, 3, 4)-shaped broadcasted
indexing subspace. If we let i, j, k loop over the (2, 3, 4)-shaped subspace then result[..., i, j, k, :] =
x[..., ind[i, j, k], :]. This example produces the same result as x.take(ind, axis=-2).

Example

Let x.shape be (10, 20, 30, 40, 50) and suppose ind_1 and ind_2 can be broadcast to the shape (2, 3, 4). Then
x[:, ind_1, ind_2] has shape (10, 2, 3, 4, 40, 50) because the (20, 30)-shaped subspace fromX has been replaced
with the (2, 3, 4) subspace from the indices. However, x[:, ind_1, :, ind_2] has shape (2, 3, 4, 10, 30, 50)
because there is no unambiguous place to drop in the indexing subspace, thus it is tacked-on to the beginning. It is always
possible to use .transpose() to move the subspace anywhere desired. Note that this example cannot be replicated
using take.

Example

Slicing can be combined with broadcasted boolean indices:

>>> x = np.arange(35).reshape(5, 7)
>>> b = x > 20
>>> b
array([[False, False, False, False, False, False, False],

[False, False, False, False, False, False, False],
[False, False, False, False, False, False, False],
[True, True, True, True, True, True, True],
[True, True, True, True, True, True, True]])

>>> x[b[:, 5], 1:3]
array([[22, 23],

[29, 30]])

78 4. NumPy fundamentals

https://docs.python.org/dev/library/constants.html#Ellipsis

NumPy User Guide, Release 1.22.0

4.2.3 Field access

See also:
Structured arrays

If the ndarray object is a structured array the fields of the array can be accessed by indexing the array with strings,
dictionary-like.
Indexing x['field-name'] returns a new view to the array, which is of the same shape as x (except when the field is
a sub-array) but of data type x.dtype['field-name'] and contains only the part of the data in the specified field.
Also, record array scalars can be “indexed” this way.
Indexing into a structured array can also be done with a list of field names, e.g. x[['field-name1',
'field-name2']]. As of NumPy 1.16, this returns a view containing only those fields. In older versions of NumPy,
it returned a copy. See the user guide section on Structured arrays for more information on multifield indexing.
If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result. For example:

>>> x = np.zeros((2, 2), dtype=[('a', np.int32), ('b', np.float64, (3, 3))])
>>> x['a'].shape
(2, 2)
>>> x['a'].dtype
dtype('int32')
>>> x['b'].shape
(2, 2, 3, 3)
>>> x['b'].dtype
dtype('float64')

4.2.4 Flat Iterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying the
fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection object is
not a tuple. This should be clear from the fact that x.flat is a 1-dimensional view. It can be used for integer indexing
with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer indexing
object.

4.2.5 Assigning values to indexed arrays

As mentioned, one can select a subset of an array to assign to using a single index, slices, and index and mask arrays.
The value being assigned to the indexed array must be shape consistent (the same shape or broadcastable to the shape the
index produces). For example, it is permitted to assign a constant to a slice:

>>> x = np.arange(10)
>>> x[2:7] = 1

or an array of the right size:

>>> x[2:7] = np.arange(5)

Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions
(assigning complex to floats or ints):

4.2. Indexing on ndarrays 79

NumPy User Guide, Release 1.22.0

>>> x[1] = 1.2
>>> x[1]
1
>>> x[1] = 1.2j
TypeError: can't convert complex to int

Unlike some of the references (such as array and mask indices) assignments are always made to the original data in the
array (indeed, nothing else would make sense!). Note though, that some actions may not work as one may naively expect.
This particular example is often surprising to people:

>>> x = np.arange(0, 50, 10)
>>> x
array([0, 10, 20, 30, 40])
>>> x[np.array([1, 1, 3, 1])] += 1
>>> x
array([0, 11, 20, 31, 40])

Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason
is that a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1
is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at
x[1] + 1 is assigned to x[1] three times, rather than being incremented 3 times.

4.2.6 Dealing with variable numbers of indices within programs

The indexing syntax is very powerful but limiting when dealing with a variable number of indices. For example, if you
want to write a function that can handle arguments with various numbers of dimensions without having to write special
case code for each number of possible dimensions, how can that be done? If one supplies to the index a tuple, the tuple
will be interpreted as a list of indices. For example:

>>> z = np.arange(81).reshape(3, 3, 3, 3)
>>> indices = (1, 1, 1, 1)
>>> z[indices]
40

So one can use code to construct tuples of any number of indices and then use these within an index.
Slices can be specified within programs by using the slice() function in Python. For example:

>>> indices = (1, 1, 1, slice(0, 2)) # same as [1, 1, 1, 0:2]
>>> z[indices]
array([39, 40])

Likewise, ellipsis can be specified by code by using the Ellipsis object:

>>> indices = (1, Ellipsis, 1) # same as [1, ..., 1]
>>> z[indices]
array([[28, 31, 34],

[37, 40, 43],
[46, 49, 52]])

For this reason, it is possible to use the output from the np.nonzero() function directly as an index since it always
returns a tuple of index arrays.
Because the special treatment of tuples, they are not automatically converted to an array as a list would be. As an example:

80 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

>>> z[[1, 1, 1, 1]] # produces a large array
array([[[[27, 28, 29],

[30, 31, 32], ...
>>> z[(1, 1, 1, 1)] # returns a single value
40

4.2.7 Detailed notes

These are some detailed notes, which are not of importance for day to day indexing (in no particular order):
• The native NumPy indexing type is intp and may differ from the default integer array type. intp is the smallest
data type sufficient to safely index any array; for advanced indexing it may be faster than other types.

• For advanced assignments, there is in general no guarantee for the iteration order. This means that if an element is
set more than once, it is not possible to predict the final result.

• An empty (tuple) index is a full scalar index into a zero-dimensional array. x[()] returns a scalar if x is zero-
dimensional and a view otherwise. On the other hand, x[...] always returns a view.

• If a zero-dimensional array is present in the index and it is a full integer index the result will be a scalar and not a
zero-dimensional array. (Advanced indexing is not triggered.)

• When an ellipsis (...) is present but has no size (i.e. replaces zero :) the result will still always be an array. A
view if no advanced index is present, otherwise a copy.

• The nonzero equivalence for Boolean arrays does not hold for zero dimensional boolean arrays.
• When the result of an advanced indexing operation has no elements but an individual index is out of bounds, whether
or not an IndexError is raised is undefined (e.g. x[[], [123]] with 123 being out of bounds).

• When a casting error occurs during assignment (for example updating a numerical array using a sequence of strings),
the array being assigned to may end up in an unpredictable partially updated state. However, if any other error (such
as an out of bounds index) occurs, the array will remain unchanged.

• The memory layout of an advanced indexing result is optimized for each indexing operation and no particular
memory order can be assumed.

• When using a subclass (especially one which manipulates its shape), the default ndarray.__setitem__ be-
haviour will call __getitem__ for basic indexing but not for advanced indexing. For such a subclass it may be
preferable to call ndarray.__setitem__ with a base class ndarray view on the data. This must be done if the
subclasses __getitem__ does not return views.

4.3 I/O with NumPy

4.3.1 Importing data with genfromtxt

NumPy provides several functions to create arrays from tabular data. We focus here on the genfromtxt function.
In a nutshell, genfromtxt runs two main loops. The first loop converts each line of the file in a sequence of strings.
The second loop converts each string to the appropriate data type. This mechanism is slower than a single loop, but gives
more flexibility. In particular, genfromtxt is able to take missing data into account, when other faster and simpler
functions like loadtxt cannot.

Note: When giving examples, we will use the following conventions:

4.3. I/O with NumPy 81

NumPy User Guide, Release 1.22.0

>>> import numpy as np
>>> from io import StringIO

Defining the input

The only mandatory argument of genfromtxt is the source of the data. It can be a string, a list of strings, a generator or
an open file-like object with a readmethod, for example, a file or io.StringIO object. If a single string is provided,
it is assumed to be the name of a local or remote file. If a list of strings or a generator returning strings is provided, each
string is treated as one line in a file. When the URL of a remote file is passed, the file is automatically downloaded to the
current directory and opened.
Recognized file types are text files and archives. Currently, the function recognizes gzip and bz2 (bzip2) archives.
The type of the archive is determined from the extension of the file: if the filename ends with '.gz', a gzip archive is
expected; if it ends with 'bz2', a bzip2 archive is assumed.

Splitting the lines into columns

The delimiter argument
Once the file is defined and open for reading, genfromtxt splits each non-empty line into a sequence of strings. Empty
or commented lines are just skipped. The delimiter keyword is used to define how the splitting should take place.
Quite often, a single character marks the separation between columns. For example, comma-separated files (CSV) use a
comma (,) or a semicolon (;) as delimiter:

>>> data = u"1, 2, 3\n4, 5, 6"
>>> np.genfromtxt(StringIO(data), delimiter=",")
array([[1., 2., 3.],

[4., 5., 6.]])

Another common separator is "\t", the tabulation character. However, we are not limited to a single character, any
string will do. By default, genfromtxt assumes delimiter=None, meaning that the line is split along white spaces
(including tabs) and that consecutive white spaces are considered as a single white space.
Alternatively, we may be dealing with a fixed-width file, where columns are defined as a given number of characters. In
that case, we need to set delimiter to a single integer (if all the columns have the same size) or to a sequence of
integers (if columns can have different sizes):

>>> data = u" 1 2 3\n 4 5 67\n890123 4"
>>> np.genfromtxt(StringIO(data), delimiter=3)
array([[1., 2., 3.],

[4., 5., 67.],
[890., 123., 4.]])

>>> data = u"123456789\n 4 7 9\n 4567 9"
>>> np.genfromtxt(StringIO(data), delimiter=(4, 3, 2))
array([[1234., 567., 89.],

[4., 7., 9.],
[4., 567., 9.]])

82 4. NumPy fundamentals

https://docs.python.org/dev/library/io.html#io.StringIO

NumPy User Guide, Release 1.22.0

The autostrip argument
By default, when a line is decomposed into a series of strings, the individual entries are not stripped of leading nor trailing
white spaces. This behavior can be overwritten by setting the optional argument autostrip to a value of True:

>>> data = u"1, abc , 2\n 3, xxx, 4"
>>> # Without autostrip
>>> np.genfromtxt(StringIO(data), delimiter=",", dtype="|U5")
array([['1', ' abc ', ' 2'],

['3', ' xxx', ' 4']], dtype='<U5')
>>> # With autostrip
>>> np.genfromtxt(StringIO(data), delimiter=",", dtype="|U5", autostrip=True)
array([['1', 'abc', '2'],

['3', 'xxx', '4']], dtype='<U5')

The comments argument
The optional argument comments is used to define a character string that marks the beginning of a comment. By default,
genfromtxt assumescomments='#'. The commentmarkermay occur anywhere on the line. Any character present
after the comment marker(s) is simply ignored:

>>> data = u"""#
... # Skip me !
... # Skip me too !
... 1, 2
... 3, 4
... 5, 6 #This is the third line of the data
... 7, 8
... # And here comes the last line
... 9, 0
... """
>>> np.genfromtxt(StringIO(data), comments="#", delimiter=",")
array([[1., 2.],

[3., 4.],
[5., 6.],
[7., 8.],
[9., 0.]])

New in version 1.7.0: When comments is set to None, no lines are treated as comments.

Note: There is one notable exception to this behavior: if the optional argument names=True, the first commented
line will be examined for names.

Skipping lines and choosing columns

The skip_header and skip_footer arguments
The presence of a header in the file can hinder data processing. In that case, we need to use the skip_header optional
argument. The values of this argument must be an integer which corresponds to the number of lines to skip at the
beginning of the file, before any other action is performed. Similarly, we can skip the last n lines of the file by using the
skip_footer attribute and giving it a value of n:

>>> data = u"\n".join(str(i) for i in range(10))
>>> np.genfromtxt(StringIO(data),)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

(continues on next page)

4.3. I/O with NumPy 83

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> np.genfromtxt(StringIO(data),
... skip_header=3, skip_footer=5)
array([3., 4.])

By default, skip_header=0 and skip_footer=0, meaning that no lines are skipped.

The usecols argument
In some cases, we are not interested in all the columns of the data but only a few of them. We can select which columns to
import with the usecols argument. This argument accepts a single integer or a sequence of integers corresponding to
the indices of the columns to import. Remember that by convention, the first column has an index of 0. Negative integers
behave the same as regular Python negative indexes.
For example, if we want to import only the first and the last columns, we can use usecols=(0, -1):

>>> data = u"1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data), usecols=(0, -1))
array([[1., 3.],

[4., 6.]])

If the columns have names, we can also select which columns to import by giving their name to the usecols argument,
either as a sequence of strings or a comma-separated string:

>>> data = u"1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a", "c"))
array([(1.0, 3.0), (4.0, 6.0)],

dtype=[('a', '<f8'), ('c', '<f8')])
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a, c"))

array([(1.0, 3.0), (4.0, 6.0)],
dtype=[('a', '<f8'), ('c', '<f8')])

Choosing the data type

The main way to control how the sequences of strings we have read from the file are converted to other types is to set the
dtype argument. Acceptable values for this argument are:

• a single type, such as dtype=float. The output will be 2D with the given dtype, unless a name has been
associated with each column with the use of the names argument (see below). Note that dtype=float is the
default for genfromtxt.

• a sequence of types, such as dtype=(int, float, float).
• a comma-separated string, such as dtype="i4,f8,|U3".
• a dictionary with two keys 'names' and 'formats'.
• a sequence of tuples (name, type), such as dtype=[('A', int), ('B', float)].
• an existing numpy.dtype object.
• the special value None. In that case, the type of the columns will be determined from the data itself (see below).

In all the cases but the first one, the output will be a 1D array with a structured dtype. This dtype has as many fields as
items in the sequence. The field names are defined with the names keyword.
When dtype=None, the type of each column is determined iteratively from its data. We start by checking whether a
string can be converted to a boolean (that is, if the string matches true or false in lower cases); then whether it can

84 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

be converted to an integer, then to a float, then to a complex and eventually to a string. This behavior may be changed by
modifying the default mapper of the StringConverter class.
The option dtype=None is provided for convenience. However, it is significantly slower than setting the dtype explicitly.

Setting the names

The names argument
A natural approach when dealing with tabular data is to allocate a name to each column. A first possibility is to use an
explicit structured dtype, as mentioned previously:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=[(_, int) for _ in "abc"])
array([(1, 2, 3), (4, 5, 6)],

dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])

Another simpler possibility is to use the names keyword with a sequence of strings or a comma-separated string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, names="A, B, C")
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],

dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

In the example above, we used the fact that by default, dtype=float. By giving a sequence of names, we are forcing
the output to a structured dtype.
We may sometimes need to define the column names from the data itself. In that case, we must use the names keyword
with a value of True. The names will then be read from the first line (after the skip_header ones), even if the line
is commented out:

>>> data = StringIO("So it goes\n#a b c\n1 2 3\n 4 5 6")
>>> np.genfromtxt(data, skip_header=1, names=True)
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],

dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])

The default value of names is None. If we give any other value to the keyword, the new names will overwrite the field
names we may have defined with the dtype:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> ndtype=[('a',int), ('b', float), ('c', int)]
>>> names = ["A", "B", "C"]
>>> np.genfromtxt(data, names=names, dtype=ndtype)
array([(1, 2.0, 3), (4, 5.0, 6)],

dtype=[('A', '<i8'), ('B', '<f8'), ('C', '<i8')])

The defaultfmt argument
If names=None but a structured dtype is expected, names are defined with the standard NumPy default of "f%i",
yielding names like f0, f1 and so forth:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int))
array([(1, 2.0, 3), (4, 5.0, 6)],

dtype=[('f0', '<i8'), ('f1', '<f8'), ('f2', '<i8')])

In the same way, if we don’t give enough names to match the length of the dtype, the missing names will be defined with
this default template:

4.3. I/O with NumPy 85

NumPy User Guide, Release 1.22.0

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int), names="a")
array([(1, 2.0, 3), (4, 5.0, 6)],

dtype=[('a', '<i8'), ('f0', '<f8'), ('f1', '<i8')])

We can overwrite this default with the defaultfmt argument, that takes any format string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int), defaultfmt="var_%02i")
array([(1, 2.0, 3), (4, 5.0, 6)],

dtype=[('var_00', '<i8'), ('var_01', '<f8'), ('var_02', '<i8')])

Note: We need to keep in mind that defaultfmt is used only if some names are expected but not defined.

Validating names
NumPy arrays with a structured dtype can also be viewed as recarray, where a field can be accessed as if it were an
attribute. For that reason, we may need to make sure that the field name doesn’t contain any space or invalid character, or
that it does not correspond to the name of a standard attribute (likesize orshape), which would confuse the interpreter.
genfromtxt accepts three optional arguments that provide a finer control on the names:

deletechars

Gives a string combining all the characters that must be deleted from the name. By default, invalid
characters are ~!@#$%^&*()-=+~\|]}[{';: /?.>,<.

excludelist

Gives a list of the names to exclude, such as return, file, print… If one of the input name is
part of this list, an underscore character ('_') will be appended to it.

case_sensitive

Whether the names should be case-sensitive (case_sensitive=True), converted to up-
per case (case_sensitive=False or case_sensitive='upper') or to lower case
(case_sensitive='lower').

Tweaking the conversion

The converters argument
Usually, defining a dtype is sufficient to define how the sequence of strings must be converted. However, some additional
control may sometimes be required. For example, we may want to make sure that a date in a format YYYY/MM/DD is
converted to a datetime object, or that a string like xx% is properly converted to a float between 0 and 1. In such cases,
we should define conversion functions with the converters arguments.
The value of this argument is typically a dictionary with column indices or column names as keys and a conversion
functions as values. These conversion functions can either be actual functions or lambda functions. In any case, they
should accept only a string as input and output only a single element of the wanted type.
In the following example, the second column is converted from as string representing a percentage to a float between 0
and 1:

>>> convertfunc = lambda x: float(x.strip(b"%"))/100.
>>> data = u"1, 2.3%, 45.\n6, 78.9%, 0"
>>> names = ("i", "p", "n")

(continues on next page)

86 4. NumPy fundamentals

https://docs.python.org/dev/library/datetime.html#datetime.datetime

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> # General case
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names)
array([(1., nan, 45.), (6., nan, 0.)],

dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

We need to keep in mind that by default, dtype=float. A float is therefore expected for the second column. However,
the strings ' 2.3%' and ' 78.9%' cannot be converted to float and we end up having np.nan instead. Let’s now
use a converter:

>>> # Converted case ...
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
... converters={1: convertfunc})
array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],

dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

The same results can be obtained by using the name of the second column ("p") as key instead of its index (1):

>>> # Using a name for the converter ...
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
... converters={"p": convertfunc})
array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],

dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

Converters can also be used to provide a default for missing entries. In the following example, the converter convert
transforms a stripped string into the corresponding float or into -999 if the string is empty. We need to explicitly strip the
string from white spaces as it is not done by default:

>>> data = u"1, , 3\n 4, 5, 6"
>>> convert = lambda x: float(x.strip() or -999)
>>> np.genfromtxt(StringIO(data), delimiter=",",
... converters={1: convert})
array([[1., -999., 3.],

[4., 5., 6.]])

Using missing and filling values
Some entries may be missing in the dataset we are trying to import. In a previous example, we used a converter to
transform an empty string into a float. However, user-defined converters may rapidly become cumbersome to manage.
The genfromtxt function provides two other complementary mechanisms: the missing_values argument is used
to recognize missing data and a second argument, filling_values, is used to process these missing data.

missing_values

By default, any empty string is marked as missing. We can also consider more complex strings, such as "N/A" or "???"
to represent missing or invalid data. The missing_values argument accepts three kinds of values:

a string or a comma-separated string
This string will be used as the marker for missing data for all the columns

a sequence of strings
In that case, each item is associated to a column, in order.

a dictionary
Values of the dictionary are strings or sequence of strings. The corresponding keys can be column
indices (integers) or column names (strings). In addition, the special key None can be used to define

4.3. I/O with NumPy 87

NumPy User Guide, Release 1.22.0

a default applicable to all columns.

filling_values

We know how to recognize missing data, but we still need to provide a value for these missing entries. By default, this
value is determined from the expected dtype according to this table:

Expected type Default
bool False
int -1
float np.nan
complex np.nan+0j
string '???'

We can get a finer control on the conversion of missing values with the filling_values optional argument. Like
missing_values, this argument accepts different kind of values:

a single value
This will be the default for all columns

a sequence of values
Each entry will be the default for the corresponding column

a dictionary
Each key can be a column index or a column name, and the corresponding value should be a single
object. We can use the special key None to define a default for all columns.

In the following example, we suppose that the missing values are flagged with "N/A" in the first column and by "???"
in the third column. We wish to transform these missing values to 0 if they occur in the first and second column, and to
-999 if they occur in the last column:

>>> data = u"N/A, 2, 3\n4, ,???"
>>> kwargs = dict(delimiter=",",
... dtype=int,
... names="a,b,c",
... missing_values={0:"N/A", 'b':" ", 2:"???"},
... filling_values={0:0, 'b':0, 2:-999})
>>> np.genfromtxt(StringIO(data), **kwargs)
array([(0, 2, 3), (4, 0, -999)],

dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])

usemask

We may also want to keep track of the occurrence of missing data by constructing a boolean mask, with True entries
where data was missing and False otherwise. To do that, we just have to set the optional argument usemask to True
(the default is False). The output array will then be a MaskedArray.

88 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Shortcut functions

In addition to genfromtxt, the numpy.lib.npyio module provides several convenience functions derived from
genfromtxt. These functions work the same way as the original, but they have different default values.
recfromtxt

Returns a standard numpy.recarray (if usemask=False) or a MaskedRecords array (if
usemaske=True). The default dtype is dtype=None, meaning that the types of each column will be
automatically determined.

recfromcsv

Like recfromtxt, but with a default delimiter=",".

4.4 Data types

See also:
Data type objects

4.4.1 Array types and conversions between types

NumPy supports a much greater variety of numerical types than Python does. This section shows which are available,
and how to modify an array’s data-type.
The primitive types supported are tied closely to those in C:

4.4. Data types 89

NumPy User Guide, Release 1.22.0

Numpy type C type Description
numpy.bool_ bool Boolean (True or False) stored as a byte
numpy.byte signed char Platform-defined
numpy.ubyte unsigned

char
Platform-defined

numpy.short short Platform-defined
numpy.ushort unsigned

short
Platform-defined

numpy.intc int Platform-defined
numpy.uintc unsigned int Platform-defined
numpy.int_ long Platform-defined
numpy.uint unsigned

long
Platform-defined

numpy.longlong long long Platform-defined
numpy.ulonglong unsigned

long long
Platform-defined

numpy.half /
numpy.float16

Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

numpy.single float Platform-defined single precision float: typically sign bit, 8 bits
exponent, 23 bits mantissa

numpy.double double Platform-defined double precision float: typically sign bit, 11 bits
exponent, 52 bits mantissa.

numpy.longdouble long double Platform-defined extended-precision float
numpy.csingle float

complex
Complex number, represented by two single-precision floats (real
and imaginary components)

numpy.cdouble double
complex

Complex number, represented by two double-precision floats (real
and imaginary components).

numpy.
clongdouble

long double
complex

Complex number, represented by two extended-precision floats
(real and imaginary components).

Since many of these have platform-dependent definitions, a set of fixed-size aliases are provided (See sized-aliases).
NumPy numerical types are instances of dtype (data-type) objects, each having unique characteristics. Once you have
imported NumPy using

>>> import numpy as np

the dtypes are available as np.bool_, np.float32, etc.
Advanced types, not listed above, are explored in section Structured arrays.
There are 5 basic numerical types representing booleans (bool), integers (int), unsigned integers (uint) floating point
(float) and complex. Those with numbers in their name indicate the bitsize of the type (i.e. how many bits are needed
to represent a single value in memory). Some types, such as int and intp, have differing bitsizes, dependent on the
platforms (e.g. 32-bit vs. 64-bit machines). This should be taken into account when interfacing with low-level code (such
as C or Fortran) where the raw memory is addressed.
Data-types can be used as functions to convert python numbers to array scalars (see the array scalar section for an ex-
planation), python sequences of numbers to arrays of that type, or as arguments to the dtype keyword that many numpy
functions or methods accept. Some examples:

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x

(continues on next page)

90 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)

Array types can also be referred to by character codes, mostly to retain backward compatibility with older packages such
as Numeric. Some documentation may still refer to these, for example:

>>> np.array([1, 2, 3], dtype='f')
array([1., 2., 3.], dtype=float32)

We recommend using dtype objects instead.
To convert the type of an array, use the .astype() method (preferred) or the type itself as a function. For example:

>>> z.astype(float)
array([0., 1., 2.])
>>> np.int8(z)
array([0, 1, 2], dtype=int8)

Note that, above, we use the Python float object as a dtype. NumPy knows that int refers to np.int_, bool means
np.bool_, that float is np.float_ and complex is np.complex_. The other data-types do not have Python
equivalents.
To determine the type of an array, look at the dtype attribute:

>>> z.dtype
dtype('uint8')

dtype objects also contain information about the type, such as its bit-width and its byte-order. The data type can also be
used indirectly to query properties of the type, such as whether it is an integer:

>>> d = np.dtype(int)
>>> d
dtype('int32')

>>> np.issubdtype(d, np.integer)
True

>>> np.issubdtype(d, np.floating)
False

4.4.2 Array Scalars

NumPy generally returns elements of arrays as array scalars (a scalar with an associated dtype). Array scalars differ from
Python scalars, but for the most part they can be used interchangeably (the primary exception is for versions of Python
older than v2.x, where integer array scalars cannot act as indices for lists and tuples). There are some exceptions, such as
when code requires very specific attributes of a scalar or when it checks specifically whether a value is a Python scalar.
Generally, problems are easily fixed by explicitly converting array scalars to Python scalars, using the corresponding
Python type function (e.g., int, float, complex, str, unicode).

4.4. Data types 91

NumPy User Guide, Release 1.22.0

The primary advantage of using array scalars is that they preserve the array type (Python may not have a matching scalar
type available, e.g. int16). Therefore, the use of array scalars ensures identical behaviour between arrays and scalars,
irrespective of whether the value is inside an array or not. NumPy scalars also have many of the same methods arrays do.

4.4.3 Overflow Errors

The fixed size of NumPy numeric types may cause overflow errors when a value requires more memory than available in
the data type. For example, numpy.power evaluates 100 ** 8 correctly for 64-bit integers, but gives 1874919424
(incorrect) for a 32-bit integer.

>>> np.power(100, 8, dtype=np.int64)
10000000000000000
>>> np.power(100, 8, dtype=np.int32)
1874919424

The behaviour of NumPy and Python integer types differs significantly for integer overflows and may confuse users
expecting NumPy integers to behave similar to Python’s int. Unlike NumPy, the size of Python’s int is flexible. This
means Python integers may expand to accommodate any integer and will not overflow.
NumPy provides numpy.iinfo and numpy.finfo to verify the minimum or maximum values of NumPy integer
and floating point values respectively

>>> np.iinfo(int) # Bounds of the default integer on this system.
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)
>>> np.iinfo(np.int32) # Bounds of a 32-bit integer
iinfo(min=-2147483648, max=2147483647, dtype=int32)
>>> np.iinfo(np.int64) # Bounds of a 64-bit integer
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)

If 64-bit integers are still too small the result may be cast to a floating point number. Floating point numbers offer a larger,
but inexact, range of possible values.

>>> np.power(100, 100, dtype=np.int64) # Incorrect even with 64-bit int
0
>>> np.power(100, 100, dtype=np.float64)
1e+200

4.4.4 Extended Precision

Python’s floating-point numbers are usually 64-bit floating-point numbers, nearly equivalent to np.float64. In some
unusual situations it may be useful to use floating-point numbers with more precision. Whether this is possible in numpy
depends on the hardware and on the development environment: specifically, x86 machines provide hardware floating-
point with 80-bit precision, and while most C compilers provide this as their long double type, MSVC (standard for
Windows builds) makes long double identical to double (64 bits). NumPy makes the compiler’s long double
available as np.longdouble (and np.clongdouble for the complex numbers). You can find out what your numpy
provides with np.finfo(np.longdouble).
NumPy does not provide a dtype with more precision than C’s long double\; in particular, the 128-bit IEEE quad
precision data type (FORTRAN’s REAL*16\) is not available.
For efficient memory alignment, np.longdouble is usually stored padded with zero bits, either to 96 or 128 bits.
Which is more efficient depends on hardware and development environment; typically on 32-bit systems they are padded
to 96 bits, while on 64-bit systems they are typically padded to 128 bits. np.longdouble is padded to the system
default; np.float96 and np.float128 are provided for users who want specific padding. In spite of the names,

92 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

np.float96 and np.float128 provide only as much precision as np.longdouble, that is, 80 bits on most x86
machines and 64 bits in standard Windows builds.
Be warned that even if np.longdouble offers more precision than python float, it is easy to lose that extra precision,
since python often forces values to pass through float. For example, the % formatting operator requires its arguments to
be converted to standard python types, and it is therefore impossible to preserve extended precision even if many decimal
places are requested. It can be useful to test your code with the value 1 + np.finfo(np.longdouble).eps.

4.5 Broadcasting

See also:
numpy.broadcast

The term broadcasting describes how NumPy treats arrays with different shapes during arithmetic operations. Subject to
certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes. Broadcast-
ing provides a means of vectorizing array operations so that looping occurs in C instead of Python. It does this without
making needless copies of data and usually leads to efficient algorithm implementations. There are, however, cases where
broadcasting is a bad idea because it leads to inefficient use of memory that slows computation.
NumPy operations are usually done on pairs of arrays on an element-by-element basis. In the simplest case, the two arrays
must have exactly the same shape, as in the following example:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = np.array([2.0, 2.0, 2.0])
>>> a * b
array([2., 4., 6.])

NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broad-
casting example occurs when an array and a scalar value are combined in an operation:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])

The result is equivalent to the previous example where b was an array. We can think of the scalar b being stretched
during the arithmetic operation into an array with the same shape as a. The new elements in b, as shown in Figure 1,
are simply copies of the original scalar. The stretching analogy is only conceptual. NumPy is smart enough to use the
original scalar value without actually making copies so that broadcasting operations are as memory and computationally
efficient as possible.
The code in the second example is more efficient than that in the first because broadcasting moves less memory around
during the multiplication (b is a scalar rather than an array).

4.5.1 General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e. rightmost)
dimensions and works its way left. Two dimensions are compatible when

1) they are equal, or
2) one of them is 1

4.5. Broadcasting 93

NumPy User Guide, Release 1.22.0

Fig. 1: Figure 1
In the simplest example of broadcasting, the scalar b is stretched to become an array of same shape as a so the shapes are compatible

for element-by-element multiplication.

If these conditions are not met, a ValueError: operands could not be broadcast together excep-
tion is thrown, indicating that the arrays have incompatible shapes. The size of the resulting array is the size that is not 1
along each axis of the inputs.
Arrays do not need to have the same number of dimensions. For example, if you have a256x256x3 array of RGB values,
and you want to scale each color in the image by a different value, you can multiply the image by a one-dimensional array
with 3 values. Lining up the sizes of the trailing axes of these arrays according to the broadcast rules, shows that they are
compatible:

Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3

When either of the dimensions compared is one, the other is used. In other words, dimensions with size 1 are stretched
or “copied” to match the other.
In the following example, both the A and B arrays have axes with length one that are expanded to a larger size during the
broadcast operation:

A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

4.5.2 Broadcastable arrays

A set of arrays is called “broadcastable” to the same shape if the above rules produce a valid result.
For example, if a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape is () so that d is a scalar, then a,
b, c, and d are all broadcastable to dimension (5,6); and

• a acts like a (5,6) array where a[:,0] is broadcast to the other columns,
• b acts like a (5,6) array where b[0,:] is broadcast to the other rows,
• c acts like a (1,6) array and therefore like a (5,6) array where c[:] is broadcast to every row, and finally,
• d acts like a (5,6) array where the single value is repeated.

Here are some more examples:

94 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

A (2d array): 5 x 4
B (1d array): 1
Result (2d array): 5 x 4

A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4

A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5

A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5

A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5

Here are examples of shapes that do not broadcast:

A (1d array): 3
B (1d array): 4 # trailing dimensions do not match

A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # second from last dimensions mismatched

An example of broadcasting when a 1-d array is added to a 2-d array:

>>> a = array([[0.0, 0.0, 0.0],
... [10.0, 10.0, 10.0],
... [20.0, 20.0, 20.0],
... [30.0, 30.0, 30.0]])
>>> b = array([1.0, 2.0, 3.0])
>>> a + b
array([[1., 2., 3.],

[11., 12., 13.],
[21., 22., 23.],
[31., 32., 33.]])

>>> b = array([1.0, 2.0, 3.0, 4.0])
>>> a + b
Traceback (most recent call last):
ValueError: operands could not be broadcast together with shapes (4,3) (4,)

As shown in Figure 2, b is added to each row of a. In Figure 3, an exception is raised because of the incompatible shapes.
Broadcasting provides a convenient way of taking the outer product (or any other outer operation) of two arrays. The
following example shows an outer addition operation of two 1-d arrays:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[1., 2., 3.],

[11., 12., 13.],
[21., 22., 23.],
[31., 32., 33.]])

4.5. Broadcasting 95

NumPy User Guide, Release 1.22.0

Fig. 2: Figure 2
A one dimensional array added to a two dimensional array results in broadcasting if number of 1-d array elements matches the number

of 2-d array columns.

Fig. 3: Figure 3
When the trailing dimensions of the arrays are unequal, broadcasting fails because it is impossible to align the values in the rows of the

1st array with the elements of the 2nd arrays for element-by-element addition.

96 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Fig. 4: Figure 4
In some cases, broadcasting stretches both arrays to form an output array larger than either of the initial arrays.

Here the newaxis index operator inserts a new axis into a, making it a two-dimensional 4x1 array. Combining the
4x1 array with b, which has shape (3,), yields a 4x3 array.

4.5.3 A Practical Example: Vector Quantization

Broadcasting comes up quite often in real world problems. A typical example occurs in the vector quantization (VQ)
algorithm used in information theory, classification, and other related areas. The basic operation in VQ finds the closest
point in a set of points, called codes in VQ jargon, to a given point, called the observation. In the very simple,
two-dimensional case shown below, the values in observation describe the weight and height of an athlete to be
classified. The codes represent different classes of athletes.1 Finding the closest point requires calculating the distance
between observation and each of the codes. The shortest distance provides the best match. In this example, codes[0]
is the closest class indicating that the athlete is likely a basketball player.

>>> from numpy import array, argmin, sqrt, sum
>>> observation = array([111.0, 188.0])
>>> codes = array([[102.0, 203.0],
... [132.0, 193.0],
... [45.0, 155.0],
... [57.0, 173.0]])
>>> diff = codes - observation # the broadcast happens here
>>> dist = sqrt(sum(diff**2,axis=-1))
>>> argmin(dist)
0

In this example, the observation array is stretched to match the shape of the codes array:

Observation (1d array): 2
Codes (2d array): 4 x 2
Diff (2d array): 4 x 2

1 In this example, weight has more impact on the distance calculation than height because of the larger values. In practice, it is important to normalize
the height and weight, often by their standard deviation across the data set, so that both have equal influence on the distance calculation.

4.5. Broadcasting 97

NumPy User Guide, Release 1.22.0

Fig. 5: Figure 5
The basic operation of vector quantization calculates the distance between an object to be classified, the dark square, and multiple known

codes, the gray circles. In this simple case, the codes represent individual classes. More complex cases use multiple codes per class.

98 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Typically, a large number of observations, perhaps read from a database, are compared to a set of codes. Consider
this scenario:

Observation (2d array): 10 x 3
Codes (2d array): 5 x 3
Diff (3d array): 5 x 10 x 3

The three-dimensional array, diff, is a consequence of broadcasting, not a necessity for the calculation. Large data
sets will generate a large intermediate array that is computationally inefficient. Instead, if each observation is calculated
individually using a Python loop around the code in the two-dimensional example above, a much smaller array is used.
Broadcasting is a powerful tool for writing short and usually intuitive code that does its computations very efficiently in
C. However, there are cases when broadcasting uses unnecessarily large amounts of memory for a particular algorithm.
In these cases, it is better to write the algorithm’s outer loop in Python. This may also produce more readable code, as
algorithms that use broadcasting tend to become more difficult to interpret as the number of dimensions in the broadcast
increases.

4.6 Byte-swapping

4.6.1 Introduction to byte ordering and ndarrays

The ndarray is an object that provide a python array interface to data in memory.
It often happens that the memory that you want to view with an array is not of the same byte ordering as the computer
on which you are running Python.
For example, I might be working on a computer with a little-endian CPU - such as an Intel Pentium, but I have loaded
some data from a file written by a computer that is big-endian. Let’s say I have loaded 4 bytes from a file written by a
Sun (big-endian) computer. I know that these 4 bytes represent two 16-bit integers. On a big-endian machine, a two-byte
integer is stored with the Most Significant Byte (MSB) first, and then the Least Significant Byte (LSB). Thus the bytes
are, in memory order:

1. MSB integer 1
2. LSB integer 1
3. MSB integer 2
4. LSB integer 2

Let’s say the two integers were in fact 1 and 770. Because 770 = 256 * 3 + 2, the 4 bytes in memory would contain
respectively: 0, 1, 3, 2. The bytes I have loaded from the file would have these contents:

>>> big_end_buffer = bytearray([0,1,3,2])
>>> big_end_buffer
bytearray(b'\\x00\\x01\\x03\\x02')

We might want to use an ndarray to access these integers. In that case, we can create an array around this memory,
and tell numpy that there are two integers, and that they are 16 bit and big-endian:

>>> import numpy as np
>>> big_end_arr = np.ndarray(shape=(2,),dtype='>i2', buffer=big_end_buffer)
>>> big_end_arr[0]
1
>>> big_end_arr[1]
770

4.6. Byte-swapping 99

NumPy User Guide, Release 1.22.0

Note the array dtype above of >i2. The >means ‘big-endian’ (< is little-endian) and i2means ‘signed 2-byte integer’.
For example, if our data represented a single unsigned 4-byte little-endian integer, the dtype string would be <u4.
In fact, why don’t we try that?

>>> little_end_u4 = np.ndarray(shape=(1,),dtype='<u4', buffer=big_end_buffer)
>>> little_end_u4[0] == 1 * 256**1 + 3 * 256**2 + 2 * 256**3
True

Returning to our big_end_arr - in this case our underlying data is big-endian (data endianness) and we’ve set the
dtype to match (the dtype is also big-endian). However, sometimes you need to flip these around.

Warning: Scalars currently do not include byte order information, so extracting a scalar from an array will return
an integer in native byte order. Hence:
>>> big_end_arr[0].dtype.byteorder == little_end_u4[0].dtype.byteorder
True

4.6.2 Changing byte ordering

As you can imagine from the introduction, there are two ways you can affect the relationship between the byte ordering
of the array and the underlying memory it is looking at:

• Change the byte-ordering information in the array dtype so that it interprets the underlying data as being in a
different byte order. This is the role of arr.newbyteorder()

• Change the byte-ordering of the underlying data, leaving the dtype interpretation as it was. This is what arr.
byteswap() does.

The common situations in which you need to change byte ordering are:
1. Your data and dtype endianness don’t match, and you want to change the dtype so that it matches the data.
2. Your data and dtype endianness don’t match, and you want to swap the data so that they match the dtype
3. Your data and dtype endianness match, but you want the data swapped and the dtype to reflect this

Data and dtype endianness don’t match, change dtype to match data

We make something where they don’t match:

>>> wrong_end_dtype_arr = np.ndarray(shape=(2,),dtype='<i2', buffer=big_end_buffer)
>>> wrong_end_dtype_arr[0]
256

The obvious fix for this situation is to change the dtype so it gives the correct endianness:

>>> fixed_end_dtype_arr = wrong_end_dtype_arr.newbyteorder()
>>> fixed_end_dtype_arr[0]
1

Note the array has not changed in memory:

>>> fixed_end_dtype_arr.tobytes() == big_end_buffer
True

100 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Data and type endianness don’t match, change data to match dtype

You might want to do this if you need the data in memory to be a certain ordering. For example you might be writing the
memory out to a file that needs a certain byte ordering.

>>> fixed_end_mem_arr = wrong_end_dtype_arr.byteswap()
>>> fixed_end_mem_arr[0]
1

Now the array has changed in memory:

>>> fixed_end_mem_arr.tobytes() == big_end_buffer
False

Data and dtype endianness match, swap data and dtype

You may have a correctly specified array dtype, but you need the array to have the opposite byte order in memory, and
you want the dtype to match so the array values make sense. In this case you just do both of the previous operations:

>>> swapped_end_arr = big_end_arr.byteswap().newbyteorder()
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_buffer
False

An easier way of casting the data to a specific dtype and byte ordering can be achieved with the ndarray astype method:

>>> swapped_end_arr = big_end_arr.astype('<i2')
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_buffer
False

4.7 Structured arrays

4.7.1 Introduction

Structured arrays are ndarrays whose datatype is a composition of simpler datatypes organized as a sequence of named
fields. For example,

>>> x = np.array([('Rex', 9, 81.0), ('Fido', 3, 27.0)],
... dtype=[('name', 'U10'), ('age', 'i4'), ('weight', 'f4')])
>>> x
array([('Rex', 9, 81.), ('Fido', 3, 27.)],

dtype=[('name', 'U10'), ('age', '<i4'), ('weight', '<f4')])

Here x is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10
or less named ‘name’, 2. a 32-bit integer named ‘age’, and 3. a 32-bit float named ‘weight’.
If you index x at position 1 you get a structure:

>>> x[1]
('Fido', 3, 27.0)

4.7. Structured arrays 101

NumPy User Guide, Release 1.22.0

You can access and modify individual fields of a structured array by indexing with the field name:

>>> x['age']
array([9, 3], dtype=int32)
>>> x['age'] = 5
>>> x
array([('Rex', 5, 81.), ('Fido', 5, 27.)],

dtype=[('name', 'U10'), ('age', '<i4'), ('weight', '<f4')])

Structured datatypes are designed to be able to mimic ‘structs’ in the C language, and share a similar memory layout. They
are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting
binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and
allow control over the memory layout of the structure.
Users looking to manipulate tabular data, such as stored in csv files, may find other pydata projects more suitable, such as
xarray, pandas, or DataArray. These provide a high-level interface for tabular data analysis and are better optimized for
that use. For instance, the C-struct-like memory layout of structured arrays in numpy can lead to poor cache behavior in
comparison.

4.7.2 Structured Datatypes

A structured datatype can be thought of as a sequence of bytes of a certain length (the structure’s itemsize) which is
interpreted as a collection of fields. Each field has a name, a datatype, and a byte offset within the structure. The datatype
of a field may be any numpy datatype including other structured datatypes, and it may also be a subarray data type which
behaves like an ndarray of a specified shape. The offsets of the fields are arbitrary, and fields may even overlap. These
offsets are usually determined automatically by numpy, but can also be specified.

Structured Datatype Creation

Structured datatypes may be created using the function numpy.dtype. There are 4 alternative forms of specification
which vary in flexibility and conciseness. These are further documented in the Data Type Objects reference page, and in
summary they are:

1. A list of tuples, one tuple per field
Each tuple has the form (fieldname, datatype, shape) where shape is optional. fieldname is a
string (or tuple if titles are used, see Field Titles below), datatype may be any object convertible to a datatype,
and shape is a tuple of integers specifying subarray shape.

>>> np.dtype([('x', 'f4'), ('y', np.float32), ('z', 'f4', (2, 2))])
dtype([('x', '<f4'), ('y', '<f4'), ('z', '<f4', (2, 2))])

If fieldname is the empty string '', the field will be given a default name of the form f#, where # is the integer
index of the field, counting from 0 from the left:

>>> np.dtype([('x', 'f4'), ('', 'i4'), ('z', 'i8')])
dtype([('x', '<f4'), ('f1', '<i4'), ('z', '<i8')])

The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.
2. A string of comma-separated dtype specifications

In this shorthand notation any of the string dtype specifications may be used in a string and separated by commas.
The itemsize and byte offsets of the fields are determined automatically, and the field names are given the default
names f0, f1, etc.

102 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

>>> np.dtype('i8, f4, S3')
dtype([('f0', '<i8'), ('f1', '<f4'), ('f2', 'S3')])
>>> np.dtype('3int8, float32, (2, 3)float64')
dtype([('f0', 'i1', (3,)), ('f1', '<f4'), ('f2', '<f8', (2, 3))])

3. A dictionary of field parameter arrays
This is the most flexible form of specification since it allows control over the byte-offsets of the fields and the
itemsize of the structure.
The dictionary has two required keys, ‘names’ and ‘formats’, and four optional keys, ‘offsets’, ‘itemsize’, ‘aligned’
and ‘titles’. The values for ‘names’ and ‘formats’ should respectively be a list of field names and a list of dtype
specifications, of the same length. The optional ‘offsets’ value should be a list of integer byte-offsets, one for each
field within the structure. If ‘offsets’ is not given the offsets are determined automatically. The optional ‘itemsize’
value should be an integer describing the total size in bytes of the dtype, which must be large enough to contain all
the fields.

>>> np.dtype({'names': ['col1', 'col2'], 'formats': ['i4', 'f4']})
dtype([('col1', '<i4'), ('col2', '<f4')])
>>> np.dtype({'names': ['col1', 'col2'],
... 'formats': ['i4', 'f4'],
... 'offsets': [0, 4],
... 'itemsize': 12})
dtype({'names': ['col1', 'col2'], 'formats': ['<i4', '<f4'], 'offsets': [0, 4],
↪→'itemsize': 12})

Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber
any overlapping field’s data. As an exception, fields of numpy.object_ type cannot overlap with other fields,
because of the risk of clobbering the internal object pointer and then dereferencing it.
The optional ‘aligned’ value can be set to True to make the automatic offset computation use aligned offsets (see
Automatic Byte Offsets and Alignment), as if the ‘align’ keyword argument of numpy.dtype had been set to True.
The optional ‘titles’ value should be a list of titles of the same length as ‘names’, see Field Titles below.

4. A dictionary of field names
The use of this form of specification is discouraged, but documented here because older numpy code may use it.
The keys of the dictionary are the field names and the values are tuples specifying type and offset:

>>> np.dtype({'col1': ('i1', 0), 'col2': ('f4', 1)})
dtype([('col1', 'i1'), ('col2', '<f4')])

This form is discouraged because Python dictionaries do not preserve order in Python versions before Python 3.6,
and the order of the fields in a structured dtype has meaning. Field Titles may be specified by using a 3-tuple, see
below.

Manipulating and Displaying Structured Datatypes

The list of field names of a structured datatype can be found in the names attribute of the dtype object:

>>> d = np.dtype([('x', 'i8'), ('y', 'f4')])
>>> d.names
('x', 'y')

The field names may be modified by assigning to the names attribute using a sequence of strings of the same length.

4.7. Structured arrays 103

NumPy User Guide, Release 1.22.0

The dtype object also has a dictionary-like attribute, fields, whose keys are the field names (and Field Titles, see below)
and whose values are tuples containing the dtype and byte offset of each field.

>>> d.fields
mappingproxy({'x': (dtype('int64'), 0), 'y': (dtype('float32'), 8)})

Both the names and fields attributes will equal None for unstructured arrays. The recommended way to test if a
dtype is structured is with if dt.names is not None rather than if dt.names, to account for dtypes with 0 fields.
The string representation of a structured datatype is shown in the “list of tuples” form if possible, otherwise numpy falls
back to using the more general dictionary form.

Automatic Byte Offsets and Alignment

Numpy uses one of two methods to automatically determine the field byte offsets and the overall itemsize of a structured
datatype, depending on whether align=True was specified as a keyword argument to numpy.dtype.
By default (align=False), numpy will pack the fields together such that each field starts at the byte offset the previous
field ended, and the fields are contiguous in memory.

>>> def print_offsets(d):
... print("offsets:", [d.fields[name][1] for name in d.names])
... print("itemsize:", d.itemsize)
>>> print_offsets(np.dtype('u1, u1, i4, u1, i8, u2'))
offsets: [0, 1, 2, 6, 7, 15]
itemsize: 17

If align=True is set, numpy will pad the structure in the same way many C compilers would pad a C-struct. Aligned
structures can give a performance improvement in some cases, at the cost of increased datatype size. Padding bytes are
inserted between fields such that each field’s byte offset will be a multiple of that field’s alignment, which is usually equal to
the field’s size in bytes for simple datatypes, see PyArray_Descr.alignment. The structure will also have trailing
padding added so that its itemsize is a multiple of the largest field’s alignment.

>>> print_offsets(np.dtype('u1, u1, i4, u1, i8, u2', align=True))
offsets: [0, 1, 4, 8, 16, 24]
itemsize: 32

Note that although almost all modern C compilers pad in this way by default, padding in C structs is C-implementation-
dependent so this memory layout is not guaranteed to exactly match that of a corresponding struct in a C program. Some
work may be needed, either on the numpy side or the C side, to obtain exact correspondence.
If offsets were specified using the optional offsets key in the dictionary-based dtype specification, setting
align=True will check that each field’s offset is a multiple of its size and that the itemsize is a multiple of the largest
field size, and raise an exception if not.
If the offsets of the fields and itemsize of a structured array satisfy the alignment conditions, the array will have the
ALIGNED flag set.
A convenience function numpy.lib.recfunctions.repack_fields converts an aligned dtype or array to a
packed one and vice versa. It takes either a dtype or structured ndarray as an argument, and returns a copy with fields
re-packed, with or without padding bytes.

104 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Field Titles

In addition to field names, fields may also have an associated title, an alternate name, which is sometimes used as an
additional description or alias for the field. The title may be used to index an array, just like a field name.
To add titles when using the list-of-tuples form of dtype specification, the field name may be specified as a tuple of two
strings instead of a single string, which will be the field’s title and field name respectively. For example:

>>> np.dtype([(('my title', 'name'), 'f4')])
dtype([(('my title', 'name'), '<f4')])

When using the first form of dictionary-based specification, the titles may be supplied as an extra 'titles' key as de-
scribed above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing
a 3-element tuple (datatype, offset, title) instead of the usual 2-element tuple:

>>> np.dtype({'name': ('i4', 0, 'my title')})
dtype([(('my title', 'name'), '<i4')])

The dtype.fields dictionary will contain titles as keys, if any titles are used. This means effectively that a field with
a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the
field title. Because of this, and because the names attribute preserves the field order while the fields attribute may
not, it is recommended to iterate through the fields of a dtype using the names attribute of the dtype, which will not list
titles, as in:

>>> for name in d.names:
... print(d.fields[name][:2])
(dtype('int64'), 0)
(dtype('float32'), 8)

Union types

Structured datatypes are implemented in numpy to have base type numpy.void by default, but it is possible to interpret
other numpy types as structured types using the (base_dtype, dtype) form of dtype specification described in
Data Type Objects. Here, base_dtype is the desired underlying dtype, and fields and flags will be copied from dtype.
This dtype is similar to a ‘union’ in C.

4.7.3 Indexing and Assignment to Structured arrays

Assigning data to a Structured Array

There are a number of ways to assign values to a structured array: Using python tuples, using scalar values, or using other
structured arrays.

Assignment from Python Native Types (Tuples)
The simplest way to assign values to a structured array is using python tuples. Each assigned value should be a tuple of
length equal to the number of fields in the array, and not a list or array as these will trigger numpy’s broadcasting rules.
The tuple’s elements are assigned to the successive fields of the array, from left to right:

>>> x = np.array([(1, 2, 3), (4, 5, 6)], dtype='i8, f4, f8')
>>> x[1] = (7, 8, 9)
>>> x
array([(1, 2., 3.), (7, 8., 9.)],

dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '<f8')])

4.7. Structured arrays 105

NumPy User Guide, Release 1.22.0

Assignment from Scalars
A scalar assigned to a structured element will be assigned to all fields. This happens when a scalar is assigned to a
structured array, or when an unstructured array is assigned to a structured array:

>>> x = np.zeros(2, dtype='i8, f4, ?, S1')
>>> x[:] = 3
>>> x
array([(3, 3., True, b'3'), (3, 3., True, b'3')],

dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])
>>> x[:] = np.arange(2)
>>> x
array([(0, 0., False, b'0'), (1, 1., True, b'1')],

dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])

Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:

>>> twofield = np.zeros(2, dtype=[('A', 'i4'), ('B', 'i4')])
>>> onefield = np.zeros(2, dtype=[('A', 'i4')])
>>> nostruct = np.zeros(2, dtype='i4')
>>> nostruct[:] = twofield
Traceback (most recent call last):
...
TypeError: Cannot cast array data from dtype([('A', '<i4'), ('B', '<i4')]) to dtype(
↪→'int32') according to the rule 'unsafe'

Assignment from other Structured Arrays
Assignment between two structured arrays occurs as if the source elements had been converted to tuples and then assigned
to the destination elements. That is, the first field of the source array is assigned to the first field of the destination array, and
the second field likewise, and so on, regardless of field names. Structured arrays with a different number of fields cannot
be assigned to each other. Bytes of the destination structure which are not included in any of the fields are unaffected.

>>> a = np.zeros(3, dtype=[('a', 'i8'), ('b', 'f4'), ('c', 'S3')])
>>> b = np.ones(3, dtype=[('x', 'f4'), ('y', 'S3'), ('z', 'O')])
>>> b[:] = a
>>> b
array([(0., b'0.0', b''), (0., b'0.0', b''), (0., b'0.0', b'')],

dtype=[('x', '<f4'), ('y', 'S3'), ('z', 'O')])

Assignment involving subarrays
When assigning to fields which are subarrays, the assigned value will first be broadcast to the shape of the subarray.

Indexing Structured Arrays

Accessing Individual Fields
Individual fields of a structured array may be accessed and modified by indexing the array with the field name.

>>> x = np.array([(1, 2), (3, 4)], dtype=[('foo', 'i8'), ('bar', 'f4')])
>>> x['foo']
array([1, 3])
>>> x['foo'] = 10
>>> x
array([(10, 2.), (10, 4.)],

dtype=[('foo', '<i8'), ('bar', '<f4')])

106 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

The resulting array is a view into the original array. It shares the same memory locations and writing to the view will
modify the original array.

>>> y = x['bar']
>>> y[:] = 11
>>> x
array([(10, 11.), (10, 11.)],

dtype=[('foo', '<i8'), ('bar', '<f4')])

This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case
of nested structures.

>>> y.dtype, y.shape, y.strides
(dtype('float32'), (2,), (12,))

If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:

>>> x = np.zeros((2, 2), dtype=[('a', np.int32), ('b', np.float64, (3, 3))])
>>> x['a'].shape
(2, 2)
>>> x['b'].shape
(2, 2, 3, 3)

Accessing Multiple Fields
One can index and assign to a structured array with a multi-field index, where the index is a list of field names.

Warning: The behavior of multi-field indexes changed from Numpy 1.15 to Numpy 1.16.

The result of indexing with a multi-field index is a view into the original array, as follows:

>>> a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'i4'), ('c', 'f4')])
>>> a[['a', 'c']]
array([(0, 0.), (0, 0.), (0, 0.)],

dtype={'names':['a','c'], 'formats':['<i4','<f4'], 'offsets':[0,8], 'itemsize
↪→':12})

Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that
unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the
same offsets as in the original array, and unindexed fields are merely missing.

Warning: In Numpy 1.15, indexing an array with a multi-field index returned a copy of the result above, but with
fields packed together in memory as if passed through numpy.lib.recfunctions.repack_fields.
The new behavior as of Numpy 1.16 leads to extra “padding” bytes at the location of unindexed fields compared to
1.15. You will need to update any code which depends on the data having a “packed” layout. For instance code such
as:
>>> a[['a', 'c']].view('i8') # Fails in Numpy 1.16
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: When changing to a smaller dtype, its size must be a divisor of the␣
↪→size of original dtype

will need to be changed. This code has raised a FutureWarning since Numpy 1.12, and similar code has raised
FutureWarning since 1.7.

4.7. Structured arrays 107

NumPy User Guide, Release 1.22.0

In 1.16 a number of functions have been introduced in the numpy.lib.recfunctions module
to help users account for this change. These are numpy.lib.recfunctions.repack_fields.
numpy.lib.recfunctions.structured_to_unstructured, numpy.lib.recfunctions.
unstructured_to_structured, numpy.lib.recfunctions.apply_along_fields,
numpy.lib.recfunctions.assign_fields_by_name, and numpy.lib.recfunctions.
require_fields.
The function numpy.lib.recfunctions.repack_fields can always be used to reproduce the old behav-
ior, as it will return a packed copy of the structured array. The code above, for example, can be replaced with:
>>> from numpy.lib.recfunctions import repack_fields
>>> repack_fields(a[['a', 'c']]).view('i8') # supported in 1.16
array([0, 0, 0])

Furthermore, numpy now provides a new function numpy.lib.recfunctions.
structured_to_unstructured which is a safer and more efficient alternative for users who wish to
convert structured arrays to unstructured arrays, as the view above is often indeded to do. This function allows safe
conversion to an unstructured type taking into account padding, often avoids a copy, and also casts the datatypes as
needed, unlike the view. Code such as:
>>> b = np.zeros(3, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
>>> b[['x', 'z']].view('f4')
array([0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

can be made safer by replacing with:
>>> from numpy.lib.recfunctions import structured_to_unstructured
>>> structured_to_unstructured(b[['x', 'z']])
array([0, 0, 0])

Assignment to an array with a multi-field index modifies the original array:

>>> a[['a', 'c']] = (2, 3)
>>> a
array([(2, 0, 3.), (2, 0, 3.), (2, 0, 3.)],

dtype=[('a', '<i4'), ('b', '<i4'), ('c', '<f4')])

This obeys the structured array assignment rules described above. For example, this means that one can swap the values
of two fields using appropriate multi-field indexes:

>>> a[['a', 'c']] = a[['c', 'a']]

Indexing with an Integer to get a Structured Scalar
Indexing a single element of a structured array (with an integer index) returns a structured scalar:

>>> x = np.array([(1, 2., 3.)], dtype='i, f, f')
>>> scalar = x[0]
>>> scalar
(1, 2., 3.)
>>> type(scalar)
<class 'numpy.void'>

Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modifying
the scalar will modify the original array. Structured scalars also support access and assignment by field name:

108 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

>>> x = np.array([(1, 2), (3, 4)], dtype=[('foo', 'i8'), ('bar', 'f4')])
>>> s = x[0]
>>> s['bar'] = 100
>>> x
array([(1, 100.), (3, 4.)],

dtype=[('foo', '<i8'), ('bar', '<f4')])

Similarly to tuples, structured scalars can also be indexed with an integer:

>>> scalar = np.array([(1, 2., 3.)], dtype='i, f, f')[0]
>>> scalar[0]
1
>>> scalar[1] = 4

Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python
integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling numpy.
ndarray.item:

>>> scalar.item(), type(scalar.item())
((1, 4.0, 3.0), <class 'tuple'>)

Viewing Structured Arrays Containing Objects

In order to prevent clobbering object pointers in fields ofobject type, numpy currently does not allow views of structured
arrays containing objects.

Structure Comparison

If the dtypes of two void structured arrays are equal, testing the equality of the arrays will result in a boolean array with
the dimensions of the original arrays, with elements set to True where all fields of the corresponding structures are equal.
Structured dtypes are equal if the field names, dtypes and titles are the same, ignoring endianness, and the fields are in
the same order:

>>> a = np.zeros(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> b = np.ones(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> a == b
array([False, False])

Currently, if the dtypes of two void structured arrays are not equivalent the comparison fails, returning the scalar value
False. This behavior is deprecated as of numpy 1.10 and will raise an error or perform elementwise comparison in the
future.
The< and> operators always returnFalsewhen comparing void structured arrays, and arithmetic and bitwise operations
are not supported.

4.7. Structured arrays 109

https://docs.python.org/dev/library/functions.html#object

NumPy User Guide, Release 1.22.0

4.7.4 Record Arrays

As an optional convenience numpy provides an ndarray subclass, numpy.recarray that allows access to fields of
structured arrays by attribute instead of only by index. Record arrays use a special datatype, numpy.record, that
allows field access by attribute on the structured scalars obtained from the array. The numpy.rec module provides
functions for creating recarrays from various objects. Additional helper functions for creating and manipulating structured
arrays can be found in numpy.lib.recfunctions.
The simplest way to create a record array is with numpy.rec.array:

>>> recordarr = np.rec.array([(1, 2., 'Hello'), (2, 3., "World")],
... dtype=[('foo', 'i4'),('bar', 'f4'), ('baz', 'S10')])
>>> recordarr.bar
array([2., 3.], dtype=float32)
>>> recordarr[1:2]
rec.array([(2, 3., b'World')],

dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')])
>>> recordarr[1:2].foo
array([2], dtype=int32)
>>> recordarr.foo[1:2]
array([2], dtype=int32)
>>> recordarr[1].baz
b'World'

numpy.rec.array can convert a wide variety of arguments into record arrays, including structured arrays:

>>> arr = np.array([(1, 2., 'Hello'), (2, 3., "World")],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])
>>> recordarr = np.rec.array(arr)

The numpy.rec module provides a number of other convenience functions for creating record arrays, see record array
creation routines.
A record array representation of a structured array can be obtained using the appropriate view:

>>> arr = np.array([(1, 2., 'Hello'), (2, 3., "World")],
... dtype=[('foo', 'i4'),('bar', 'f4'), ('baz', 'a10')])
>>> recordarr = arr.view(dtype=np.dtype((np.record, arr.dtype)),
... type=np.recarray)

For convenience, viewing an ndarray as type numpy.recarray will automatically convert to numpy.record
datatype, so the dtype can be left out of the view:

>>> recordarr = arr.view(np.recarray)
>>> recordarr.dtype
dtype((numpy.record, [('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')]))

To get back to a plain ndarray both the dtype and type must be reset. The following view does so, taking into account the
unusual case that the recordarr was not a structured type:

>>> arr2 = recordarr.view(recordarr.dtype.fields or recordarr.dtype, np.ndarray)

Record array fields accessed by index or by attribute are returned as a record array if the field has a structured type but
as a plain ndarray otherwise.

>>> recordarr = np.rec.array([('Hello', (1, 2)), ("World", (3, 4))],
... dtype=[('foo', 'S6'),('bar', [('A', int), ('B', int)])])

(continues on next page)

110 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> type(recordarr.foo)
<class 'numpy.ndarray'>
>>> type(recordarr.bar)
<class 'numpy.recarray'>

Note that if a field has the same name as an ndarray attribute, the ndarray attribute takes precedence. Such fields will be
inaccessible by attribute but will still be accessible by index.

Recarray Helper Functions

Collection of utilities to manipulate structured arrays.
Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended
for convenience.
numpy.lib.recfunctions.append_fields(base, names, data, dtypes=None, fill_value=- 1,

usemask=True, asrecarray=False)
Add new fields to an existing array.
The names of the fields are given with the names arguments, the corresponding values with the data arguments. If
a single field is appended, names, data and dtypes do not have to be lists but just values.

Parameters

base
[array] Input array to extend.

names
[string, sequence] String or sequence of strings corresponding to the names of the new fields.

data
[array or sequence of arrays] Array or sequence of arrays storing the fields to add to the base.

dtypes
[sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the datatypes
are estimated from the data.

fill_value
[{float}, optional] Filling value used to pad missing data on the shorter arrays.

usemask
[{False, True}, optional] Whether to return a masked array or not.

asrecarray
[{False, True}, optional] Whether to return a recarray (MaskedRecords) or not.

numpy.lib.recfunctions.apply_along_fields(func, arr)
Apply function ‘func’ as a reduction across fields of a structured array.
This is similar to apply_along_axis, but treats the fields of a structured array as an extra axis. The fields are all first
cast to a common type following the type-promotion rules from numpy.result_type applied to the field’s
dtypes.

Parameters

4.7. Structured arrays 111

NumPy User Guide, Release 1.22.0

func
[function] Function to apply on the “field” dimension. This function must support an axis
argument, like np.mean, np.sum, etc.

arr
[ndarray] Structured array for which to apply func.

Returns

out
[ndarray] Result of the recution operation

Examples

>>> from numpy.lib import recfunctions as rfn
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
>>> rfn.apply_along_fields(np.mean, b)
array([2.66666667, 5.33333333, 8.66666667, 11.])
>>> rfn.apply_along_fields(np.mean, b[['x', 'z']])
array([3. , 5.5, 9. , 11.])

numpy.lib.recfunctions.assign_fields_by_name(dst, src, zero_unassigned=True)
Assigns values from one structured array to another by field name.
Normally in numpy >= 1.14, assignment of one structured array to another copies fields “by position”, meaning
that the first field from the src is copied to the first field of the dst, and so on, regardless of field name.
This function instead copies “by field name”, such that fields in the dst are assigned from the identically named field
in the src. This applies recursively for nested structures. This is how structure assignment worked in numpy >= 1.6
to <= 1.13.

Parameters

dst
[ndarray]

src
[ndarray] The source and destination arrays during assignment.

zero_unassigned
[bool, optional] If True, fields in the dst for which there was no matching field in the src are
filled with the value 0 (zero). This was the behavior of numpy <= 1.13. If False, those fields
are not modified.

numpy.lib.recfunctions.drop_fields(base, drop_names, usemask=True, asrecarray=False)
Return a new array with fields in drop_names dropped.
Nested fields are supported.
Changed in version 1.18.0: drop_fields returns an array with 0 fields if all fields are dropped, rather than
returning None as it did previously.

Parameters

112 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

base
[array] Input array

drop_names
[string or sequence] String or sequence of strings corresponding to the names of the fields to
drop.

usemask
[{False, True}, optional] Whether to return a masked array or not.

asrecarray
[string or sequence, optional] Whether to return a recarray or a mrecarray (asrecarray=True)
or a plain ndarray or masked array with flexible dtype. The default is False.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
>>> rfn.drop_fields(a, 'a')
array([((2., 3),), ((5., 6),)],

dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
>>> rfn.drop_fields(a, 'ba')
array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
>>> rfn.drop_fields(a, ['ba', 'bb'])
array([(1,), (4,)], dtype=[('a', '<i8')])

numpy.lib.recfunctions.find_duplicates(a, key=None, ignoremask=True, return_index=False)
Find the duplicates in a structured array along a given key

Parameters

a
[array-like] Input array

key
[{string, None}, optional] Name of the fields along which to check the duplicates. If None,
the search is performed by records

ignoremask
[{True, False}, optional] Whether masked data should be discarded or considered as dupli-
cates.

return_index
[{False, True}, optional] Whether to return the indices of the duplicated values.

4.7. Structured arrays 113

NumPy User Guide, Release 1.22.0

Examples

>>> from numpy.lib import recfunctions as rfn
>>> ndtype = [('a', int)]
>>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3],
... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
(masked_array(data=[(1,), (1,), (2,), (2,)],

mask=[(False,), (False,), (False,), (False,)],
fill_value=(999999,),

dtype=[('a', '<i8')]), array([0, 1, 3, 4]))

numpy.lib.recfunctions.flatten_descr(ndtype)
Flatten a structured data-type description.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])])
>>> rfn.flatten_descr(ndtype)
(('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))

numpy.lib.recfunctions.get_fieldstructure(adtype, lastname=None, parents=None)
Returns a dictionary with fields indexing lists of their parent fields.
This function is used to simplify access to fields nested in other fields.

Parameters

adtype
[np.dtype] Input datatype

lastname
[optional] Last processed field name (used internally during recursion).

parents
[dictionary] Dictionary of parent fields (used interbally during recursion).

Examples

>>> from numpy.lib import recfunctions as rfn
>>> ndtype = np.dtype([('A', int),
... ('B', [('BA', int),
... ('BB', [('BBA', int), ('BBB', int)])])])
>>> rfn.get_fieldstructure(ndtype)
... # XXX: possible regression, order of BBA and BBB is swapped
{'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB
↪→']}

numpy.lib.recfunctions.get_names(adtype)
Returns the field names of the input datatype as a tuple.

Parameters

114 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

adtype
[dtype] Input datatype

Examples

>>> from numpy.lib import recfunctions as rfn
>>> rfn.get_names(np.empty((1,), dtype=int))
Traceback (most recent call last):

...
AttributeError: 'numpy.ndarray' object has no attribute 'names'

>>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]))
Traceback (most recent call last):

...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
>>> rfn.get_names(adtype)
('a', ('b', ('ba', 'bb')))

numpy.lib.recfunctions.get_names_flat(adtype)
Returns the field names of the input datatype as a tuple. Nested structure are flattened beforehand.

Parameters

adtype
[dtype] Input datatype

Examples

>>> from numpy.lib import recfunctions as rfn
>>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None
Traceback (most recent call last):

...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)]))
Traceback (most recent call last):

...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
>>> rfn.get_names_flat(adtype)
('a', 'b', 'ba', 'bb')

numpy.lib.recfunctions.join_by(key, r1, r2, jointype=’inner’, r1postfix=’1’, r2postfix=’2’, defaults=None,
usemask=True, asrecarray=False)

Join arrays r1 and r2 on key key.
The key should be either a string or a sequence of string corresponding to the fields used to join the array. An
exception is raised if the key field cannot be found in the two input arrays. Neither r1 nor r2 should have any
duplicates along key: the presence of duplicates will make the output quite unreliable. Note that duplicates are not
looked for by the algorithm.

Parameters

4.7. Structured arrays 115

NumPy User Guide, Release 1.22.0

key
[{string, sequence}] A string or a sequence of strings corresponding to the fields used for
comparison.

r1, r2
[arrays] Structured arrays.

jointype
[{‘inner’, ‘outer’, ‘leftouter’}, optional] If ‘inner’, returns the elements common to both r1 and
r2. If ‘outer’, returns the common elements as well as the elements of r1 not in r2 and the
elements of not in r2. If ‘leftouter’, returns the common elements and the elements of r1 not
in r2.

r1postfix
[string, optional] String appended to the names of the fields of r1 that are present in r2 but
absent of the key.

r2postfix
[string, optional] String appended to the names of the fields of r2 that are present in r1 but
absent of the key.

defaults
[{dictionary}, optional] Dictionary mapping field names to the corresponding default values.

usemask
[{True, False}, optional] Whether to return a MaskedArray (or MaskedRecords is asrecar-
ray==True) or a ndarray.

asrecarray
[{False, True}, optional] Whether to return a recarray (or MaskedRecords if usemask==True)
or just a flexible-type ndarray.

Notes

• The output is sorted along the key.
• A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the
result. This array is then sorted, and the common entries selected. The output is constructed by filling the
fields with the selected entries. Matching is not preserved if there are some duplicates…

numpy.lib.recfunctions.merge_arrays(seqarrays, fill_value=- 1, flatten=False, usemask=False,
asrecarray=False)

Merge arrays field by field.
Parameters

seqarrays
[sequence of ndarrays] Sequence of arrays

fill_value
[{float}, optional] Filling value used to pad missing data on the shorter arrays.

116 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

flatten
[{False, True}, optional] Whether to collapse nested fields.

usemask
[{False, True}, optional] Whether to return a masked array or not.

asrecarray
[{False, True}, optional] Whether to return a recarray (MaskedRecords) or not.

Notes

• Without a mask, the missing value will be filled with something, depending on what its corresponding type:
– -1 for integers
– -1.0 for floating point numbers
– '-' for characters
– '-1' for strings
– True for boolean values

• XXX: I just obtained these values empirically

Examples

>>> from numpy.lib import recfunctions as rfn
>>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])))
array([(1, 10.), (2, 20.), (-1, 30.)],

dtype=[('f0', '<i8'), ('f1', '<f8')])

>>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64),
... np.array([10., 20., 30.])), usemask=False)
array([(1, 10.0), (2, 20.0), (-1, 30.0)],

dtype=[('f0', '<i8'), ('f1', '<f8')])
>>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]),
... np.array([10., 20., 30.])),
... usemask=False, asrecarray=True)
rec.array([(1, 10.), (2, 20.), (-1, 30.)],

dtype=[('a', '<i8'), ('f1', '<f8')])

numpy.lib.recfunctions.rec_append_fields(base, names, data, dtypes=None)
Add new fields to an existing array.
The names of the fields are given with the names arguments, the corresponding values with the data arguments. If
a single field is appended, names, data and dtypes do not have to be lists but just values.

Parameters

base
[array] Input array to extend.

names
[string, sequence] String or sequence of strings corresponding to the names of the new fields.

4.7. Structured arrays 117

NumPy User Guide, Release 1.22.0

data
[array or sequence of arrays] Array or sequence of arrays storing the fields to add to the base.

dtypes
[sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the datatypes
are estimated from the data.

Returns

appended_array
[np.recarray]

See also:

append_fields

numpy.lib.recfunctions.rec_drop_fields(base, drop_names)
Returns a new numpy.recarray with fields in drop_names dropped.

numpy.lib.recfunctions.rec_join(key, r1, r2, jointype=’inner’, r1postfix=’1’, r2postfix=’2’,
defaults=None)

Join arrays r1 and r2 on keys. Alternative to join_by, that always returns a np.recarray.
See also:

join_by

equivalent function

numpy.lib.recfunctions.recursive_fill_fields(input, output)
Fills fields from output with fields from input, with support for nested structures.

Parameters

input
[ndarray] Input array.

output
[ndarray] Output array.

Notes

• output should be at least the same size as input

118 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
>>> b = np.zeros((3,), dtype=a.dtype)
>>> rfn.recursive_fill_fields(a, b)
array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])

numpy.lib.recfunctions.rename_fields(base, namemapper)
Rename the fields from a flexible-datatype ndarray or recarray.
Nested fields are supported.

Parameters

base
[ndarray] Input array whose fields must be modified.

namemapper
[dictionary] Dictionary mapping old field names to their new version.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])])
>>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})
array([(1, (2., [3., 30.])), (4, (5., [6., 60.]))],

dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])

numpy.lib.recfunctions.repack_fields(a, align=False, recurse=False)
Re-pack the fields of a structured array or dtype in memory.
The memory layout of structured datatypes allows fields at arbitrary byte offsets. This means the fields can be
separated by padding bytes, their offsets can be non-monotonically increasing, and they can overlap.
This method removes any overlaps and reorders the fields in memory so they have increasing byte offsets, and adds
or removes padding bytes depending on the align option, which behaves like the align option to np.dtype.
If align=False, this method produces a “packed” memory layout in which each field starts at the byte the previous
field ended, and any padding bytes are removed.
If align=True, this methods produces an “aligned” memory layout in which each field’s offset is a multiple of its
alignment, and the total itemsize is a multiple of the largest alignment, by adding padding bytes as needed.

Parameters

a
[ndarray or dtype] array or dtype for which to repack the fields.

align
[boolean] If true, use an “aligned” memory layout, otherwise use a “packed” layout.

recurse
[boolean] If True, also repack nested structures.

4.7. Structured arrays 119

NumPy User Guide, Release 1.22.0

Returns

repacked
[ndarray or dtype] Copy of a with fields repacked, or a itself if no repacking was needed.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> def print_offsets(d):
... print("offsets:", [d.fields[name][1] for name in d.names])
... print("itemsize:", d.itemsize)
...
>>> dt = np.dtype('u1, <i8, <f8', align=True)
>>> dt
dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '<i8', '<f8'], 'offsets':␣
↪→[0, 8, 16], 'itemsize': 24}, align=True)
>>> print_offsets(dt)
offsets: [0, 8, 16]
itemsize: 24
>>> packed_dt = rfn.repack_fields(dt)
>>> packed_dt
dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])
>>> print_offsets(packed_dt)
offsets: [0, 1, 9]
itemsize: 17

numpy.lib.recfunctions.require_fields(array, required_dtype)
Casts a structured array to a new dtype using assignment by field-name.
This function assigns from the old to the new array by name, so the value of a field in the output array is the value
of the field with the same name in the source array. This has the effect of creating a new ndarray containing only
the fields “required” by the required_dtype.
If a field name in the required_dtype does not exist in the input array, that field is created and set to 0 in the output
array.

Parameters

a
[ndarray] array to cast

required_dtype
[dtype] datatype for output array

Returns

out
[ndarray] array with the new dtype, with field values copied from the fields in the input array
with the same name

120 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
>>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')])
array([(1., 1), (1., 1), (1., 1), (1., 1)],
dtype=[('b', '<f4'), ('c', 'u1')])

>>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')])
array([(1., 0), (1., 0), (1., 0), (1., 0)],
dtype=[('b', '<f4'), ('newf', 'u1')])

numpy.lib.recfunctions.stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False,
autoconvert=False)

Superposes arrays fields by fields
Parameters

arrays
[array or sequence] Sequence of input arrays.

defaults
[dictionary, optional] Dictionary mapping field names to the corresponding default values.

usemask
[{True, False}, optional] Whether to return a MaskedArray (or MaskedRecords is asrecar-
ray==True) or a ndarray.

asrecarray
[{False, True}, optional] Whether to return a recarray (or MaskedRecords if usemask==True)
or just a flexible-type ndarray.

autoconvert
[{False, True}, optional] Whether automatically cast the type of the field to the maximum.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> x = np.array([1, 2,])
>>> rfn.stack_arrays(x) is x
True
>>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)])
>>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
>>> test = rfn.stack_arrays((z,zz))
>>> test
masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),

(b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
mask=[(False, False, True), (False, False, True),

(False, False, False), (False, False, False),
(False, False, False)],

fill_value=(b'N/A', 1.e+20, 1.e+20),
dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])

4.7. Structured arrays 121

NumPy User Guide, Release 1.22.0

numpy.lib.recfunctions.structured_to_unstructured(arr, dtype=None, copy=False,
casting=’unsafe’)

Converts an n-D structured array into an (n+1)-D unstructured array.
The new array will have a new last dimension equal in size to the number of field-elements of the input array. If not
supplied, the output datatype is determined from the numpy type promotion rules applied to all the field datatypes.
Nested fields, as well as each element of any subarray fields, all count as a single field-elements.

Parameters

arr
[ndarray] Structured array or dtype to convert. Cannot contain object datatype.

dtype
[dtype, optional] The dtype of the output unstructured array.

copy
[bool, optional] See copy argument to ndarray.astype. If true, always return a copy. If
false, and dtype requirements are satisfied, a view is returned.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] See casting argument of ndarray.
astype. Controls what kind of data casting may occur.

Returns

unstructured
[ndarray] Unstructured array with one more dimension.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
>>> a
array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]),

(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])],
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,

↪→))])
>>> rfn.structured_to_unstructured(a)
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
>>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1)
array([3. , 5.5, 9. , 11.])

numpy.lib.recfunctions.unstructured_to_structured(arr, dtype=None, names=None,
align=False, copy=False, casting=’unsafe’)

Converts an n-D unstructured array into an (n-1)-D structured array.

122 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

The last dimension of the input array is converted into a structure, with number of field-elements equal to the size
of the last dimension of the input array. By default all output fields have the input array’s dtype, but an output
structured dtype with an equal number of fields-elements can be supplied instead.
Nested fields, as well as each element of any subarray fields, all count towards the number of field-elements.

Parameters

arr
[ndarray] Unstructured array or dtype to convert.

dtype
[dtype, optional] The structured dtype of the output array

names
[list of strings, optional] If dtype is not supplied, this specifies the field names for the output
dtype, in order. The field dtypes will be the same as the input array.

align
[boolean, optional] Whether to create an aligned memory layout.

copy
[bool, optional] See copy argument to ndarray.astype. If true, always return a copy. If
false, and dtype requirements are satisfied, a view is returned.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] See casting argument of ndarray.
astype. Controls what kind of data casting may occur.

Returns

structured
[ndarray] Structured array with fewer dimensions.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
>>> a = np.arange(20).reshape((4,5))
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

>>> rfn.unstructured_to_structured(a, dt)
array([(0, (1., 2), [3., 4.]), (5, (6., 7), [8., 9.]),

(10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,

↪→))])

4.7. Structured arrays 123

NumPy User Guide, Release 1.22.0

4.8 Writing custom array containers

Numpy’s dispatch mechanism, introduced in numpy version v1.16 is the recommended approach for writing custom
N-dimensional array containers that are compatible with the numpy API and provide custom implementations of numpy
functionality. Applications include dask arrays, an N-dimensional array distributed across multiple nodes, and cupy arrays,
an N-dimensional array on a GPU.
To get a feel for writing custom array containers, we’ll begin with a simple example that has rather narrow utility but
illustrates the concepts involved.

>>> import numpy as np
>>> class DiagonalArray:
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)

Our custom array can be instantiated like:

>>> arr = DiagonalArray(5, 1)
>>> arr
DiagonalArray(N=5, value=1)

We can convert to a numpy array using numpy.array or numpy.asarray, which will call its __array__method
to obtain a standard numpy.ndarray.

>>> np.asarray(arr)
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])

If we operate on arr with a numpy function, numpy will again use the __array__ interface to convert it to an array
and then apply the function in the usual way.

>>> np.multiply(arr, 2)
array([[2., 0., 0., 0., 0.],

[0., 2., 0., 0., 0.],
[0., 0., 2., 0., 0.],
[0., 0., 0., 2., 0.],
[0., 0., 0., 0., 2.]])

Notice that the return type is a standard numpy.ndarray.

>>> type(np.multiply(arr, 2))
numpy.ndarray

How can we pass our custom array type through this function? Numpy allows a class to indicate that it would like to handle
computations in a custom-defined way through the interfaces __array_ufunc__ and __array_function__.
Let’s take one at a time, starting with _array_ufunc__. This method covers ufuncs, a class of functions that includes,
for example, numpy.multiply and numpy.sin.
The __array_ufunc__ receives:

124 4. NumPy fundamentals

http://dask.pydata.org
https://docs-cupy.chainer.org/en/stable/

NumPy User Guide, Release 1.22.0

• ufunc, a function like numpy.multiply
• method, a string, differentiating between numpy.multiply(...) and variants like numpy.multiply.
outer, numpy.multiply.accumulate, and so on. For the common case, numpy.multiply(...),
method == '__call__'.

• inputs, which could be a mixture of different types
• kwargs, keyword arguments passed to the function

For this example we will only handle the method __call__

>>> from numbers import Number
>>> class DiagonalArray:
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented

Now our custom array type passes through numpy functions.

>>> arr = DiagonalArray(5, 1)
>>> np.multiply(arr, 3)
DiagonalArray(N=5, value=3)
>>> np.add(arr, 3)
DiagonalArray(N=5, value=4)
>>> np.sin(arr)
DiagonalArray(N=5, value=0.8414709848078965)

At this point arr + 3 does not work.

>>> arr + 3
TypeError: unsupported operand type(s) for *: 'DiagonalArray' and 'int'

To support it, we need to define the Python interfaces __add__, __lt__, and so on to dispatch to the corresponding
ufunc. We can achieve this conveniently by inheriting from the mixin NDArrayOperatorsMixin.

4.8. Writing custom array containers 125

NumPy User Guide, Release 1.22.0

>>> import numpy.lib.mixins
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented

>>> arr = DiagonalArray(5, 1)
>>> arr + 3
DiagonalArray(N=5, value=4)
>>> arr > 0
DiagonalArray(N=5, value=True)

Now let’s tackle __array_function__. We’ll create dict that maps numpy functions to our custom variants.

>>> HANDLED_FUNCTIONS = {}
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... # In this case we accept only scalar numbers or DiagonalArrays.
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:

(continues on next page)

126 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented
... def __array_function__(self, func, types, args, kwargs):
... if func not in HANDLED_FUNCTIONS:
... return NotImplemented
... # Note: this allows subclasses that don't override
... # __array_function__ to handle DiagonalArray objects.
... if not all(issubclass(t, self.__class__) for t in types):
... return NotImplemented
... return HANDLED_FUNCTIONS[func](*args, **kwargs)
...

A convenient pattern is to define a decorator implements that can be used to add functions to
HANDLED_FUNCTIONS.

>>> def implements(np_function):
... "Register an __array_function__ implementation for DiagonalArray objects."
... def decorator(func):
... HANDLED_FUNCTIONS[np_function] = func
... return func
... return decorator
...

Now we write implementations of numpy functions for DiagonalArray. For completeness, to support the usage
arr.sum() add a method sum that calls numpy.sum(self), and the same for mean.

>>> @implements(np.sum)
... def sum(arr):
... "Implementation of np.sum for DiagonalArray objects"
... return arr._i * arr._N
...
>>> @implements(np.mean)
... def mean(arr):
... "Implementation of np.mean for DiagonalArray objects"
... return arr._i / arr._N
...
>>> arr = DiagonalArray(5, 1)
>>> np.sum(arr)
5
>>> np.mean(arr)
0.2

If the user tries to use any numpy functions not included in HANDLED_FUNCTIONS, a TypeError will be raised by
numpy, indicating that this operation is not supported. For example, concatenating two DiagonalArrays does not
produce another diagonal array, so it is not supported.

>>> np.concatenate([arr, arr])
TypeError: no implementation found for 'numpy.concatenate' on types that implement __
↪→array_function__: [<class '__main__.DiagonalArray'>]

4.8. Writing custom array containers 127

NumPy User Guide, Release 1.22.0

Additionally, our implementations of sum and mean do not accept the optional arguments that numpy’s implementation
does.

>>> np.sum(arr, axis=0)
TypeError: sum() got an unexpected keyword argument 'axis'

The user always has the option of converting to a normal numpy.ndarraywith numpy.asarray and using standard
numpy from there.

>>> np.concatenate([np.asarray(arr), np.asarray(arr)])
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])

Refer to the dask source code and cupy source code for more fully-worked examples of custom array containers.
See also NEP 18.

4.9 Subclassing ndarray

4.9.1 Introduction

Subclassing ndarray is relatively simple, but it has some complications compared to other Python objects. On this page
we explain the machinery that allows you to subclass ndarray, and the implications for implementing a subclass.

ndarrays and object creation

Subclassing ndarray is complicated by the fact that new instances of ndarray classes can come about in three different
ways. These are:

1. Explicit constructor call - as in MySubClass(params). This is the usual route to Python instance creation.
2. View casting - casting an existing ndarray as a given subclass
3. New from template - creating a new instance from a template instance. Examples include returning slices from a

subclassed array, creating return types from ufuncs, and copying arrays. See Creating new from template for more
details

The last two are characteristics of ndarrays - in order to support things like array slicing. The complications of subclassing
ndarray are due to the mechanisms numpy has to support these latter two routes of instance creation.

128 4. NumPy fundamentals

https://github.com/dask/dask
https://github.com/cupy/cupy
https://numpy.org/neps/nep-0018-array-function-protocol.html

NumPy User Guide, Release 1.22.0

4.9.2 View casting

View casting is the standard ndarray mechanism by which you take an ndarray of any subclass, and return a view of the
array as another (specified) subclass:

>>> import numpy as np
>>> # create a completely useless ndarray subclass
>>> class C(np.ndarray): pass
>>> # create a standard ndarray
>>> arr = np.zeros((3,))
>>> # take a view of it, as our useless subclass
>>> c_arr = arr.view(C)
>>> type(c_arr)
<class 'C'>

4.9.3 Creating new from template

New instances of an ndarray subclass can also come about by a very similar mechanism to View casting, when numpy
finds it needs to create a new instance from a template instance. The most obvious place this has to happen is when you
are taking slices of subclassed arrays. For example:

>>> v = c_arr[1:]
>>> type(v) # the view is of type 'C'
<class 'C'>
>>> v is c_arr # but it's a new instance
False

The slice is a view onto the original c_arr data. So, when we take a view from the ndarray, we return a new ndarray, of
the same class, that points to the data in the original.
There are other points in the use of ndarrays where we need such views, such as copying arrays (c_arr.copy()), cre-
ating ufunc output arrays (see also __array_wrap__ for ufuncs and other functions), and reducing methods (like c_arr.
mean()).

4.9.4 Relationship of view casting and new-from-template

These paths both use the same machinery. We make the distinction here, because they result in different input to your
methods. Specifically, View castingmeans you have created a new instance of your array type from any potential subclass
of ndarray. Creating new from templatemeans you have created a new instance of your class from a pre-existing instance,
allowing you - for example - to copy across attributes that are particular to your subclass.

4.9.5 Implications for subclassing

If we subclass ndarray, we need to deal not only with explicit construction of our array type, but also View casting or
Creating new from template. NumPy has the machinery to do this, and it is this machinery that makes subclassing slightly
non-standard.
There are two aspects to the machinery that ndarray uses to support views and new-from-template in subclasses.
The first is the use of the ndarray.__new__ method for the main work of object initialization, rather then the more
usual __init__ method. The second is the use of the __array_finalize__ method to allow subclasses to clean
up after the creation of views and new instances from templates.

4.9. Subclassing ndarray 129

NumPy User Guide, Release 1.22.0

A brief Python primer on __new__ and __init__

__new__ is a standard Python method, and, if present, is called before __init__ when we create a class instance.
See the python __new__ documentation for more detail.
For example, consider the following Python code:

class C:
def __new__(cls, *args):

print('Cls in __new__:', cls)
print('Args in __new__:', args)
The `object` type __new__ method takes a single argument.
return object.__new__(cls)

def __init__(self, *args):
print('type(self) in __init__:', type(self))
print('Args in __init__:', args)

meaning that we get:

>>> c = C('hello')
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
type(self) in __init__: <class 'C'>
Args in __init__: ('hello',)

When we call C('hello'), the __new__method gets its own class as first argument, and the passed argument, which
is the string 'hello'. After python calls __new__, it usually (see below) calls our __init__ method, with the
output of __new__ as the first argument (now a class instance), and the passed arguments following.
As you can see, the object can be initialized in the __new__ method or the __init__ method, or both, and in fact
ndarray does not have an __init__ method, because all the initialization is done in the __new__ method.
Why use __new__ rather than just the usual __init__? Because in some cases, as for ndarray, we want to be able to
return an object of some other class. Consider the following:

class D(C):
def __new__(cls, *args):

print('D cls is:', cls)
print('D args in __new__:', args)
return C.__new__(C, *args)

def __init__(self, *args):
we never get here
print('In D __init__')

meaning that:

>>> obj = D('hello')
D cls is: <class 'D'>
D args in __new__: ('hello',)
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
>>> type(obj)
<class 'C'>

The definition of C is the same as before, but for D, the __new__ method returns an instance of class C rather than D.
Note that the __init__ method of D does not get called. In general, when the __new__ method returns an object of
class other than the class in which it is defined, the __init__ method of that class is not called.

130 4. NumPy fundamentals

https://docs.python.org/reference/datamodel.html#object.__new__

NumPy User Guide, Release 1.22.0

This is how subclasses of the ndarray class are able to return views that preserve the class type. When taking a view, the
standard ndarray machinery creates the new ndarray object with something like:

obj = ndarray.__new__(subtype, shape, ...

where subdtype is the subclass. Thus the returned view is of the same class as the subclass, rather than being of class
ndarray.
That solves the problem of returning views of the same type, but now we have a new problem. The machinery of ndarray
can set the class this way, in its standard methods for taking views, but the ndarray __new__ method knows nothing
of what we have done in our own __new__ method in order to set attributes, and so on. (Aside - why not call obj =
subdtype.__new__(... then? Because we may not have a __new__ method with the same call signature).

The role of __array_finalize__

__array_finalize__ is the mechanism that numpy provides to allow subclasses to handle the various ways that
new instances get created.
Remember that subclass instances can come about in these three ways:

1. explicit constructor call (obj = MySubClass(params)). This will call the usual sequence of
MySubClass.__new__ then (if it exists) MySubClass.__init__.

2. View casting

3. Creating new from template

Our MySubClass.__new__ method only gets called in the case of the explicit constructor call, so we can’t rely on
MySubClass.__new__ orMySubClass.__init__ to deal with the view casting and new-from-template. It turns
out that MySubClass.__array_finalize__ does get called for all three methods of object creation, so this is
where our object creation housekeeping usually goes.

• For the explicit constructor call, our subclass will need to create a new ndarray instance of its own class. In practice
this means that we, the authors of the code, will need to make a call to ndarray.__new__(MySubClass,
...), a class-hierarchy prepared call to super().__new__(cls, ...), or do view casting of an existing
array (see below)

• For view casting and new-from-template, the equivalent of ndarray.__new__(MySubClass,... is called,
at the C level.

The arguments that __array_finalize__ receives differ for the three methods of instance creation above.
The following code allows us to look at the call sequences and arguments:

import numpy as np

class C(np.ndarray):
def __new__(cls, *args, **kwargs):

print('In __new__ with class %s' % cls)
return super().__new__(cls, *args, **kwargs)

def __init__(self, *args, **kwargs):
in practice you probably will not need or want an __init__
method for your subclass
print('In __init__ with class %s' % self.__class__)

def __array_finalize__(self, obj):
print('In array_finalize:')
print(' self type is %s' % type(self))
print(' obj type is %s' % type(obj))

4.9. Subclassing ndarray 131

NumPy User Guide, Release 1.22.0

Now:

>>> # Explicit constructor
>>> c = C((10,))
In __new__ with class <class 'C'>
In array_finalize:

self type is <class 'C'>
obj type is <type 'NoneType'>

In __init__ with class <class 'C'>
>>> # View casting
>>> a = np.arange(10)
>>> cast_a = a.view(C)
In array_finalize:

self type is <class 'C'>
obj type is <type 'numpy.ndarray'>

>>> # Slicing (example of new-from-template)
>>> cv = c[:1]
In array_finalize:

self type is <class 'C'>
obj type is <class 'C'>

The signature of __array_finalize__ is:

def __array_finalize__(self, obj):

One sees that the super call, which goes to ndarray.__new__, passes __array_finalize__ the new object,
of our own class (self) as well as the object from which the view has been taken (obj). As you can see from the output
above, the self is always a newly created instance of our subclass, and the type of obj differs for the three instance
creation methods:

• When called from the explicit constructor, obj is None
• When called from view casting, obj can be an instance of any subclass of ndarray, including our own.
• When called in new-from-template, obj is another instance of our own subclass, that we might use to update the
new self instance.

Because __array_finalize__ is the only method that always sees new instances being created, it is the sensible
place to fill in instance defaults for new object attributes, among other tasks.
This may be clearer with an example.

4.9.6 Simple example - adding an extra attribute to ndarray

import numpy as np

class InfoArray(np.ndarray):

def __new__(subtype, shape, dtype=float, buffer=None, offset=0,
strides=None, order=None, info=None):

Create the ndarray instance of our type, given the usual
ndarray input arguments. This will call the standard
ndarray constructor, but return an object of our type.
It also triggers a call to InfoArray.__array_finalize__
obj = super().__new__(subtype, shape, dtype,

buffer, offset, strides, order)
set the new 'info' attribute to the value passed
obj.info = info

(continues on next page)

132 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
Finally, we must return the newly created object:
return obj

def __array_finalize__(self, obj):
``self`` is a new object resulting from
ndarray.__new__(InfoArray, ...), therefore it only has
attributes that the ndarray.__new__ constructor gave it -
i.e. those of a standard ndarray.
#
We could have got to the ndarray.__new__ call in 3 ways:
From an explicit constructor - e.g. InfoArray():
obj is None
(we're in the middle of the InfoArray.__new__
constructor, and self.info will be set when we return to
InfoArray.__new__)
if obj is None: return
From view casting - e.g arr.view(InfoArray):
obj is arr
(type(obj) can be InfoArray)
From new-from-template - e.g infoarr[:3]
type(obj) is InfoArray
#
Note that it is here, rather than in the __new__ method,
that we set the default value for 'info', because this
method sees all creation of default objects - with the
InfoArray.__new__ constructor, but also with
arr.view(InfoArray).
self.info = getattr(obj, 'info', None)
We do not need to return anything

Using the object looks like this:

>>> obj = InfoArray(shape=(3,)) # explicit constructor
>>> type(obj)
<class 'InfoArray'>
>>> obj.info is None
True
>>> obj = InfoArray(shape=(3,), info='information')
>>> obj.info
'information'
>>> v = obj[1:] # new-from-template - here - slicing
>>> type(v)
<class 'InfoArray'>
>>> v.info
'information'
>>> arr = np.arange(10)
>>> cast_arr = arr.view(InfoArray) # view casting
>>> type(cast_arr)
<class 'InfoArray'>
>>> cast_arr.info is None
True

This class isn’t very useful, because it has the same constructor as the bare ndarray object, including passing in buffers
and shapes and so on. We would probably prefer the constructor to be able to take an already formed ndarray from the
usual numpy calls to np.array and return an object.

4.9. Subclassing ndarray 133

NumPy User Guide, Release 1.22.0

4.9.7 Slightly more realistic example - attribute added to existing array

Here is a class that takes a standard ndarray that already exists, casts as our type, and adds an extra attribute.

import numpy as np

class RealisticInfoArray(np.ndarray):

def __new__(cls, input_array, info=None):
Input array is an already formed ndarray instance
We first cast to be our class type
obj = np.asarray(input_array).view(cls)
add the new attribute to the created instance
obj.info = info
Finally, we must return the newly created object:
return obj

def __array_finalize__(self, obj):
see InfoArray.__array_finalize__ for comments
if obj is None: return
self.info = getattr(obj, 'info', None)

So:

>>> arr = np.arange(5)
>>> obj = RealisticInfoArray(arr, info='information')
>>> type(obj)
<class 'RealisticInfoArray'>
>>> obj.info
'information'
>>> v = obj[1:]
>>> type(v)
<class 'RealisticInfoArray'>
>>> v.info
'information'

4.9.8 __array_ufunc__ for ufuncs

New in version 1.13.
A subclass can override what happens when executing numpy ufuncs on it by overriding the default ndarray.
__array_ufunc__ method. This method is executed instead of the ufunc and should return either the result of
the operation, or NotImplemented if the operation requested is not implemented.
The signature of __array_ufunc__ is:

def __array_ufunc__(ufunc, method, *inputs, **kwargs):

- *ufunc* is the ufunc object that was called.
- *method* is a string indicating how the Ufunc was called, either

``"__call__"`` to indicate it was called directly, or one of its
:ref:`methods<ufuncs.methods>`: ``"reduce"``, ``"accumulate"``,
``"reduceat"``, ``"outer"``, or ``"at"``.

- *inputs* is a tuple of the input arguments to the ``ufunc``
- *kwargs* contains any optional or keyword arguments passed to the

function. This includes any ``out`` arguments, which are always
contained in a tuple.

134 4. NumPy fundamentals

https://docs.python.org/dev/library/constants.html#NotImplemented

NumPy User Guide, Release 1.22.0

A typical implementation would convert any inputs or outputs that are instances of one’s own class, pass everything on to
a superclass using super(), and finally return the results after possible back-conversion. An example, taken from the
test case test_ufunc_override_with_super in core/tests/test_umath.py, is the following.

input numpy as np

class A(np.ndarray):
def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs):

args = []
in_no = []
for i, input_ in enumerate(inputs):

if isinstance(input_, A):
in_no.append(i)
args.append(input_.view(np.ndarray))

else:
args.append(input_)

outputs = out
out_no = []
if outputs:

out_args = []
for j, output in enumerate(outputs):

if isinstance(output, A):
out_no.append(j)
out_args.append(output.view(np.ndarray))

else:
out_args.append(output)

kwargs['out'] = tuple(out_args)
else:

outputs = (None,) * ufunc.nout

info = {}
if in_no:

info['inputs'] = in_no
if out_no:

info['outputs'] = out_no

results = super().__array_ufunc__(ufunc, method, *args, **kwargs)
if results is NotImplemented:

return NotImplemented

if method == 'at':
if isinstance(inputs[0], A):

inputs[0].info = info
return

if ufunc.nout == 1:
results = (results,)

results = tuple((np.asarray(result).view(A)
if output is None else output)
for result, output in zip(results, outputs))

if results and isinstance(results[0], A):
results[0].info = info

return results[0] if len(results) == 1 else results

So, this class does not actually do anything interesting: it just converts any instances of its own to regular ndarray (other-

4.9. Subclassing ndarray 135

NumPy User Guide, Release 1.22.0

wise, we’d get infinite recursion!), and adds an info dictionary that tells which inputs and outputs it converted. Hence,
e.g.,

>>> a = np.arange(5.).view(A)
>>> b = np.sin(a)
>>> b.info
{'inputs': [0]}
>>> b = np.sin(np.arange(5.), out=(a,))
>>> b.info
{'outputs': [0]}
>>> a = np.arange(5.).view(A)
>>> b = np.ones(1).view(A)
>>> c = a + b
>>> c.info
{'inputs': [0, 1]}
>>> a += b
>>> a.info
{'inputs': [0, 1], 'outputs': [0]}

Note that another approach would be to to use getattr(ufunc, methods)(*inputs, **kwargs) instead
of the super call. For this example, the result would be identical, but there is a difference if another operand also defines
__array_ufunc__. E.g., lets assume that we evalulate np.add(a, b), where b is an instance of another class B
that has an override. If you use super as in the example, ndarray.__array_ufunc__ will notice that b has an
override, which means it cannot evaluate the result itself. Thus, it will return NotImplemented and so will our class A.
Then, control will be passed over to b, which either knows how to deal with us and produces a result, or does not and
returns NotImplemented, raising a TypeError.
If instead, we replace our super call with getattr(ufunc, method), we effectively do np.add(a.view(np.
ndarray), b). Again, B.__array_ufunc__ will be called, but now it sees an ndarray as the other argu-
ment. Likely, it will know how to handle this, and return a new instance of the B class to us. Our example class is not
set up to handle this, but it might well be the best approach if, e.g., one were to re-implement MaskedArray using
__array_ufunc__.
As a final note: if the super route is suited to a given class, an advantage of using it is that it helps in constructing class
hierarchies. E.g., suppose that our other classB also used thesuper in its__array_ufunc__ implementation, andwe
created a class C that depended on both, i.e., class C(A, B) (with, for simplicity, not another __array_ufunc__
override). Then any ufunc on an instance of C would pass on to A.__array_ufunc__, the super call in A would
go to B.__array_ufunc__, and the super call in B would go to ndarray.__array_ufunc__, thus allowing
A and B to collaborate.

4.9.9 __array_wrap__ for ufuncs and other functions

Prior to numpy 1.13, the behaviour of ufuncs could only be tuned using __array_wrap__ and
__array_prepare__. These two allowed one to change the output type of a ufunc, but, in contrast to
__array_ufunc__, did not allow one to make any changes to the inputs. It is hoped to eventually deprecate
these, but __array_wrap__ is also used by other numpy functions and methods, such as squeeze, so at the present
time is still needed for full functionality.
Conceptually, __array_wrap__ “wraps up the action” in the sense of allowing a subclass to set the type of the return
value and update attributes and metadata. Let’s show how this works with an example. First we return to the simpler
example subclass, but with a different name and some print statements:

import numpy as np

class MySubClass(np.ndarray):

(continues on next page)

136 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

(continued from previous page)
def __new__(cls, input_array, info=None):

obj = np.asarray(input_array).view(cls)
obj.info = info
return obj

def __array_finalize__(self, obj):
print('In __array_finalize__:')
print(' self is %s' % repr(self))
print(' obj is %s' % repr(obj))
if obj is None: return
self.info = getattr(obj, 'info', None)

def __array_wrap__(self, out_arr, context=None):
print('In __array_wrap__:')
print(' self is %s' % repr(self))
print(' arr is %s' % repr(out_arr))
then just call the parent
return super().__array_wrap__(self, out_arr, context)

We run a ufunc on an instance of our new array:

>>> obj = MySubClass(np.arange(5), info='spam')
In __array_finalize__:

self is MySubClass([0, 1, 2, 3, 4])
obj is array([0, 1, 2, 3, 4])

>>> arr2 = np.arange(5)+1
>>> ret = np.add(arr2, obj)
In __array_wrap__:

self is MySubClass([0, 1, 2, 3, 4])
arr is array([1, 3, 5, 7, 9])

In __array_finalize__:
self is MySubClass([1, 3, 5, 7, 9])
obj is MySubClass([0, 1, 2, 3, 4])

>>> ret
MySubClass([1, 3, 5, 7, 9])
>>> ret.info
'spam'

Note that the ufunc (np.add) has called the __array_wrap__method with arguments self as obj, and out_arr
as the (ndarray) result of the addition. In turn, the default __array_wrap__ (ndarray.__array_wrap__) has
cast the result to class MySubClass, and called __array_finalize__ - hence the copying of the info attribute.
This has all happened at the C level.
But, we could do anything we wanted:

class SillySubClass(np.ndarray):

def __array_wrap__(self, arr, context=None):
return 'I lost your data'

>>> arr1 = np.arange(5)
>>> obj = arr1.view(SillySubClass)
>>> arr2 = np.arange(5)
>>> ret = np.multiply(obj, arr2)
>>> ret
'I lost your data'

4.9. Subclassing ndarray 137

NumPy User Guide, Release 1.22.0

So, by defining a specific __array_wrap__ method for our subclass, we can tweak the output from ufuncs. The
__array_wrap__ method requires self, then an argument - which is the result of the ufunc - and an optional pa-
rameter context. This parameter is returned by ufuncs as a 3-element tuple: (name of the ufunc, arguments of the ufunc,
domain of the ufunc), but is not set by other numpy functions. Though, as seen above, it is possible to do otherwise,
__array_wrap__ should return an instance of its containing class. See the masked array subclass for an implemen-
tation.
In addition to __array_wrap__, which is called on the way out of the ufunc, there is also an __array_prepare__
method which is called on the way into the ufunc, after the output arrays are created but before any computation has been
performed. The default implementation does nothing but pass through the array. __array_prepare__ should not
attempt to access the array data or resize the array, it is intended for setting the output array type, updating attributes
and metadata, and performing any checks based on the input that may be desired before computation begins. Like
__array_wrap__, __array_prepare__ must return an ndarray or subclass thereof or raise an error.

4.9.10 Extra gotchas - custom __del__ methods and ndarray.base

One of the problems that ndarray solves is keeping track of memory ownership of ndarrays and their views. Consider the
case where we have created an ndarray, arr and have taken a slice with v = arr[1:]. The two objects are looking
at the same memory. NumPy keeps track of where the data came from for a particular array or view, with the base
attribute:

>>> # A normal ndarray, that owns its own data
>>> arr = np.zeros((4,))
>>> # In this case, base is None
>>> arr.base is None
True
>>> # We take a view
>>> v1 = arr[1:]
>>> # base now points to the array that it derived from
>>> v1.base is arr
True
>>> # Take a view of a view
>>> v2 = v1[1:]
>>> # base points to the original array that it was derived from
>>> v2.base is arr
True

In general, if the array owns its own memory, as for arr in this case, then arr.base will be None - there are some
exceptions to this - see the numpy book for more details.
The base attribute is useful in being able to tell whether we have a view or the original array. This in turn can be useful
if we need to know whether or not to do some specific cleanup when the subclassed array is deleted. For example, we
may only want to do the cleanup if the original array is deleted, but not the views. For an example of how this can work,
have a look at the memmap class in numpy.core.

138 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

4.9.11 Subclassing and Downstream Compatibility

When sub-classingndarray or creating duck-types that mimic thendarray interface, it is your responsibility to decide
how aligned your APIs will be with those of numpy. For convenience, many numpy functions that have a corresponding
ndarray method (e.g., sum, mean, take, reshape) work by checking if the first argument to a function has a
method of the same name. If it exists, the method is called instead of coercing the arguments to a numpy array.
For example, if you want your sub-class or duck-type to be compatible with numpy’s sum function, the method signature
for this object’s sum method should be the following:

def sum(self, axis=None, dtype=None, out=None, keepdims=False):
...

This is the exact same method signature for np.sum, so now if a user calls np.sum on this object, numpy will call the
object’s own sum method and pass in these arguments enumerated above in the signature, and no errors will be raised
because the signatures are completely compatible with each other.
If, however, you decide to deviate from this signature and do something like this:

def sum(self, axis=None, dtype=None):
...

This object is no longer compatible with np.sum because if you call np.sum, it will pass in unexpected arguments out
and keepdims, causing a TypeError to be raised.
If you wish to maintain compatibility with numpy and its subsequent versions (which might add new keyword arguments)
but do not want to surface all of numpy’s arguments, your function’s signature should accept **kwargs. For example:

def sum(self, axis=None, dtype=None, **unused_kwargs):
...

This object is now compatible with np.sum again because any extraneous arguments (i.e. keywords that are not axis
or dtype) will be hidden away in the **unused_kwargs parameter.

4.10 Universal functions (ufunc) basics

See also:
ufuncs
A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” wrapper
for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs.
In NumPy, universal functions are instances of the numpy.ufunc class. Many of the built-in functions are implemented
in compiled C code. The basic ufuncs operate on scalars, but there is also a generalized kind for which the basic elements
are sub-arrays (vectors, matrices, etc.), and broadcasting is done over other dimensions. The simplest example is the
addition operator:

>>> np.array([0,2,3,4]) + np.array([1,1,-1,2])
array([1, 3, 2, 6])

One can also produce custom numpy.ufunc instances using the numpy.frompyfunc factory function.

4.10. Universal functions (ufunc) basics 139

NumPy User Guide, Release 1.22.0

4.10.1 Ufunc methods

All ufuncs have four methods. They can be found at ufuncs.methods. However, these methods only make sense on scalar
ufuncs that take two input arguments and return one output argument. Attempting to call these methods on other ufuncs
will cause a ValueError.
The reduce-like methods all take an axis keyword, a dtype keyword, and an out keyword, and the arrays must all have
dimension >= 1. The axis keyword specifies the axis of the array over which the reduction will take place (with negative
values counting backwards). Generally, it is an integer, though for numpy.ufunc.reduce, it can also be a tuple of
int to reduce over several axes at once, or None, to reduce over all axes. For example:

>>> x = np.arange(9).reshape(3,3)
>>> x
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.add.reduce(x, 1)
array([3, 12, 21])
>>> np.add.reduce(x, (0, 1))
36

The dtype keyword allows you to manage a very common problem that arises when naively using ufunc.reduce.
Sometimes you may have an array of a certain data type and wish to add up all of its elements, but the result does not fit
into the data type of the array. This commonly happens if you have an array of single-byte integers. The dtype keyword
allows you to alter the data type over which the reduction takes place (and therefore the type of the output). Thus, you
can ensure that the output is a data type with precision large enough to handle your output. The responsibility of altering
the reduce type is mostly up to you. There is one exception: if no dtype is given for a reduction on the “add” or “multiply”
operations, then if the input type is an integer (or Boolean) data-type and smaller than the size of the numpy.int_ data
type, it will be internally upcast to the int_ (or numpy.uint) data-type. In the previous example:

>>> x.dtype
dtype('int64')
>>> np.multiply.reduce(x, dtype=float)
array([0., 28., 80.])

Finally, the out keyword allows you to provide an output array (for single-output ufuncs, which are currently the only
ones supported; for future extension, however, a tuple with a single argument can be passed in). If out is given, the dtype
argument is ignored. Considering x from the previous example:

>>> y = np.zeros(3, dtype=int)
>>> y
array([0, 0, 0])
>>> np.multiply.reduce(x, dtype=float, out=y)
array([0, 28, 80]) # dtype argument is ignored

Ufuncs also have a fifth method, numpy.ufunc.at, that allows in place operations to be performed using advanced
indexing. No buffering is used on the dimensions where advanced indexing is used, so the advanced index can list an item
more than once and the operation will be performed on the result of the previous operation for that item.

140 4. NumPy fundamentals

https://docs.python.org/dev/library/exceptions.html#ValueError

NumPy User Guide, Release 1.22.0

4.10.2 Output type determination

The output of the ufunc (and its methods) is not necessarily an ndarray, if all input arguments are not ndarrays.
Indeed, if any input defines an __array_ufunc__method, control will be passed completely to that function, i.e., the
ufunc is overridden.
If none of the inputs overrides the ufunc, then all output arrays will be passed to the __array_prepare__ and
__array_wrap__ methods of the input (besides ndarrays, and scalars) that defines it and has the highest
__array_priority__ of any other input to the universal function. The default __array_priority__ of the
ndarray is 0.0, and the default __array_priority__ of a subtype is 0.0. Matrices have __array_priority__
equal to 10.0.
All ufuncs can also take output arguments. If necessary, output will be cast to the data-type(s) of the provided output
array(s). If a class with an __array__ method is used for the output, results will be written to the object returned by
__array__. Then, if the class also has an __array_prepare__method, it is called sometadata may be determined
based on the context of the ufunc (the context consisting of the ufunc itself, the arguments passed to the ufunc, and the
ufunc domain.) The array object returned by __array_prepare__ is passed to the ufunc for computation. Finally,
if the class also has an __array_wrap__ method, the returned ndarray result will be passed to that method just
before passing control back to the caller.

4.10.3 Broadcasting

See also:
Broadcasting basics

Each universal function takes array inputs and produces array outputs by performing the core function element-wise on
the inputs (where an element is generally a scalar, but can be a vector or higher-order sub-array for generalized ufuncs).
Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be usefully operated
on.
By these rules, if an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for
all calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step along that
dimension (the stride will be 0 for that dimension).

4.10.4 Type casting rules

Note: In NumPy 1.6.0, a type promotion API was created to encapsulate the mechanism for determining output types.
See the functions numpy.result_type, numpy.promote_types, and numpy.min_scalar_type for more
details.

At the core of every ufunc is a one-dimensional strided loop that implements the actual function for a specific type
combination. When a ufunc is created, it is given a static list of inner loops and a corresponding list of type signatures
over which the ufunc operates. The ufunc machinery uses this list to determine which inner loop to use for a particular
case. You can inspect the .types attribute for a particular ufunc to see which type combinations have a defined inner
loop and which output type they produce (character codes are used in said output for brevity).
Casting must be done on one or more of the inputs whenever the ufunc does not have a core loop implementation for
the input types provided. If an implementation for the input types cannot be found, then the algorithm searches for an
implementation with a type signature to which all of the inputs can be cast “safely.” The first one it finds in its internal
list of loops is selected and performed, after all necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user settable).

4.10. Universal functions (ufunc) basics 141

NumPy User Guide, Release 1.22.0

Note: Universal functions in NumPy are flexible enough to have mixed type signatures. Thus, for example, a universal
function could be defined that works with floating-point and integer values. See numpy.ldexp for an example.

By the above description, the casting rules are essentially implemented by the question of when a data type can be
cast “safely” to another data type. The answer to this question can be determined in Python with a function call:
can_cast(fromtype, totype). The example below shows the results of this call for the 24 internally supported
types on the author’s 64-bit system. You can generate this table for your system with the code given in the example.

Example

Code segment showing the “can cast safely” table for a 64-bit system. Generally the output depends on the system; your
system might result in a different table.

>>> mark = {False: ' -', True: ' Y'}
>>> def print_table(ntypes):
... print('X ' + ' '.join(ntypes))
... for row in ntypes:
... print(row, end='')
... for col in ntypes:
... print(mark[np.can_cast(row, col)], end='')
... print()
...
>>> print_table(np.typecodes['All'])
X ? b h i l q p B H I L Q P e f d g F D G S U V O M m
? Y - Y
b - Y Y Y Y Y Y - - - - - - Y Y Y Y Y Y Y Y Y Y Y - Y
h - - Y Y Y Y Y - - - - - - - Y Y Y Y Y Y Y Y Y Y - Y
i - - - Y Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
l - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
q - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
p - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
B - - Y - Y
H - - - Y Y Y Y - Y Y Y Y Y - Y Y Y Y Y Y Y Y Y Y - Y
I - - - - Y Y Y - - Y Y Y Y - - Y Y - Y Y Y Y Y Y - Y
L - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
Q - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
P - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
e - - - - - - - - - - - - - Y Y Y Y Y Y Y Y Y Y Y - -
f - - - - - - - - - - - - - - Y Y Y Y Y Y Y Y Y Y - -
d - - - - - - - - - - - - - - - Y Y - Y Y Y Y Y Y - -
g - - - - - - - - - - - - - - - - Y - - Y Y Y Y Y - -
F - - - - - - - - - - - - - - - - - Y Y Y Y Y Y Y - -
D - - - - - - - - - - - - - - - - - - Y Y Y Y Y Y - -
G - - - - - - - - - - - - - - - - - - - Y Y Y Y Y - -
S - Y Y Y Y - -
U - Y Y Y - -
V - Y Y - -
O - Y - -
M - Y Y Y -
m - Y Y - Y

You should note that, while included in the table for completeness, the ‘S’, ‘U’, and ‘V’ types cannot be operated on by
ufuncs. Also, note that on a 32-bit system the integer types may have different sizes, resulting in a slightly altered table.
Mixed scalar-array operations use a different set of casting rules that ensure that a scalar cannot “upcast” an array unless
the scalar is of a fundamentally different kind of data (i.e., under a different hierarchy in the data-type hierarchy) than

142 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

the array. This rule enables you to use scalar constants in your code (which, as Python types, are interpreted accordingly
in ufuncs) without worrying about whether the precision of the scalar constant will cause upcasting on your large (small
precision) array.

4.10.5 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to be converted from one data type to
another. The size of internal buffers is settable on a per-thread basis. There can be up to 2(ninputs +noutputs) buffers of the
specified size created to handle the data from all the inputs and outputs of a ufunc. The default size of a buffer is 10,000
elements. Whenever buffer-based calculation would be needed, but all input arrays are smaller than the buffer size, those
misbehaved or incorrectly-typed arrays will be copied before the calculation proceeds. Adjusting the size of the buffer
may therefore alter the speed at which ufunc calculations of various sorts are completed. A simple interface for setting
this variable is accessible using the function numpy.setbufsize.

4.10.6 Error handling

Universal functions can trip special floating-point status registers in your hardware (such as divide-by-zero). If available
on your platform, these registers will be regularly checked during calculation. Error handling is controlled on a per-thread
basis, and can be configured using the functions numpy.seterr and numpy.seterrcall.

4.10.7 Overriding ufunc behavior

Classes (including ndarray subclasses) can override how ufuncs act on them by defining certain special methods. For
details, see arrays.classes.

4.11 Copies and views

When operating on NumPy arrays, it is possible to access the internal data buffer directly using a view without copying
data around. This ensures good performance but can also cause unwanted problems if the user is not aware of how this
works. Hence, it is important to know the difference between these two terms and to know which operations return copies
and which return views.
The NumPy array is a data structure consisting of two parts: the contiguous data buffer with the actual data elements
and the metadata that contains information about the data buffer. The metadata includes data type, strides, and other
important information that helps manipulate the ndarray easily. See the Internal organization of NumPy arrays section
for a detailed look.

4.11.1 View

It is possible to access the array differently by just changing certain metadata like stride and dtype without changing the
data buffer. This creates a new way of looking at the data and these new arrays are called views. The data buffer remains
the same, so any changes made to a view reflects in the original copy. A view can be forced through the ndarray.view
method.

4.11. Copies and views 143

NumPy User Guide, Release 1.22.0

4.11.2 Copy

When a new array is created by duplicating the data buffer as well as the metadata, it is called a copy. Changes made to
the copy do not reflect on the original array. Making a copy is slower and memory-consuming but sometimes necessary.
A copy can be forced by using ndarray.copy.

4.11.3 Indexing operations

See also:
Indexing on ndarrays

Views are created when elements can be addressed with offsets and strides in the original array. Hence, basic indexing
always creates views. For example:

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y = x[1:3] # creates a view
>>> y
array([1, 2])
>>> x[1:3] = [10, 11]
>>> x
array([0, 10, 11, 3, 4, 5, 6, 7, 8, 9])
>>> y
array([10, 11])

Here, y gets changed when x is changed because it is a view.
Advanced indexing, on the other hand, always creates copies. For example:

>>> x = np.arange(9).reshape(3, 3)
>>> x
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> y = x[[1, 2]]
>>> y
array([[3, 4, 5],

[6, 7, 8]])
>>> y.base is None
True

Here, y is a copy, as signified by the base attribute. We can also confirm this by assigning new values to x[[1, 2]]
which in turn will not affect y at all:

>>> x[[1, 2]] = [[10, 11, 12], [13, 14, 15]]
>>> x
array([[0, 1, 2],

[10, 11, 12],
[13, 14, 15]])

>>> y
array([[3, 4, 5],

[6, 7, 8]])

It must be noted here that during the assignment of x[[1, 2]] no view or copy is created as the assignment happens
in-place.

144 4. NumPy fundamentals

NumPy User Guide, Release 1.22.0

4.11.4 Other operations

The numpy.reshape function creates a view where possible or a copy otherwise. In most cases, the strides can be
modified to reshape the array with a view. However, in some cases where the array becomes non-contiguous (perhaps
after a ndarray.transpose operation), the reshaping cannot be done by modifying strides and requires a copy. In
these cases, we can raise an error by assigning the new shape to the shape attribute of the array. For example:

>>> x = np.ones((2, 3))
>>> y = x.T # makes the array non-contiguous
>>> y
array([[1., 1.],

[1., 1.],
[1., 1.]])

>>> z = y.view()
>>> z.shape = 6
Traceback (most recent call last):

...
AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

Taking the example of another operation, ravel returns a contiguous flattened view of the array wherever possible. On
the other hand, ndarray.flatten always returns a flattened copy of the array. However, to guarantee a view in most
cases, x.reshape(-1) may be preferable.

4.11.5 How to tell if the array is a view or a copy

The base attribute of the ndarray makes it easy to tell if an array is a view or a copy. The base attribute of a view returns
the original array while it returns None for a copy.

>>> x = np.arange(9)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> y = x.reshape(3, 3)
>>> y
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> y.base # .reshape() creates a view
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> z = y[[2, 1]]
>>> z
array([[6, 7, 8],

[3, 4, 5]])
>>> z.base is None # advanced indexing creates a copy
True

Note that the base attribute should not be used to determine if an ndarray object is new; only if it is a view or a copy of
another ndarray.

4.11. Copies and views 145

NumPy User Guide, Release 1.22.0

146 4. NumPy fundamentals

CHAPTER

FIVE

MISCELLANEOUS

5.1 IEEE 754 Floating Point Special Values

Special values defined in numpy: nan, inf,
NaNs can be used as a poor-man’s mask (if you don’t care what the original value was)
Note: cannot use equality to test NaNs. E.g.:

>>> myarr = np.array([1., 0., np.nan, 3.])
>>> np.nonzero(myarr == np.nan)
(array([], dtype=int64),)
>>> np.nan == np.nan # is always False! Use special numpy functions instead.
False
>>> myarr[myarr == np.nan] = 0. # doesn't work
>>> myarr
array([1., 0., NaN, 3.])
>>> myarr[np.isnan(myarr)] = 0. # use this instead find
>>> myarr
array([1., 0., 0., 3.])

Other related special value functions:

isinf(): True if value is inf
isfinite(): True if not nan or inf
nan_to_num(): Map nan to 0, inf to max float, -inf to min float

The following corresponds to the usual functions except that nans are excluded from the results:

nansum()
nanmax()
nanmin()
nanargmax()
nanargmin()

>>> x = np.arange(10.)
>>> x[3] = np.nan
>>> x.sum()
nan
>>> np.nansum(x)
42.0

147

NumPy User Guide, Release 1.22.0

5.2 How numpy handles numerical exceptions

The default is to 'warn' for invalid, divide, and overflow and 'ignore' for underflow. But this can be
changed, and it can be set individually for different kinds of exceptions. The different behaviors are:

• ‘ignore’ : Take no action when the exception occurs.
• ‘warn’ : Print a RuntimeWarning (via the Python warnings module).
• ‘raise’ : Raise a FloatingPointError.
• ‘call’ : Call a function specified using the seterrcall function.
• ‘print’ : Print a warning directly to stdout.
• ‘log’ : Record error in a Log object specified by seterrcall.

These behaviors can be set for all kinds of errors or specific ones:
• all : apply to all numeric exceptions
• invalid : when NaNs are generated
• divide : divide by zero (for integers as well!)
• overflow : floating point overflows
• underflow : floating point underflows

Note that integer divide-by-zero is handled by the same machinery. These behaviors are set on a per-thread basis.

5.3 Examples

>>> oldsettings = np.seterr(all='warn')
>>> np.zeros(5,dtype=np.float32)/0.
invalid value encountered in divide
>>> j = np.seterr(under='ignore')
>>> np.array([1.e-100])**10
>>> j = np.seterr(invalid='raise')
>>> np.sqrt(np.array([-1.]))
FloatingPointError: invalid value encountered in sqrt
>>> def errorhandler(errstr, errflag):
... print("saw stupid error!")
>>> np.seterrcall(errorhandler)
<function err_handler at 0x...>
>>> j = np.seterr(all='call')
>>> np.zeros(5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr(**oldsettings) # restore previous
... # error-handling settings

148 5. Miscellaneous

https://docs.python.org/dev/library/warnings.html#module-warnings

NumPy User Guide, Release 1.22.0

5.4 Interfacing to C

Only a survey of the choices. Little detail on how each works.
1) Bare metal, wrap your own C-code manually.
• Plusses:

– Efficient
– No dependencies on other tools

• Minuses:
– Lots of learning overhead:

∗ need to learn basics of Python C API
∗ need to learn basics of numpy C API
∗ need to learn how to handle reference counting and love it.

– Reference counting often difficult to get right.
∗ getting it wrong leads to memory leaks, and worse, segfaults

– API will change for Python 3.0!
2) Cython
• Plusses:

– avoid learning C API’s
– no dealing with reference counting
– can code in pseudo python and generate C code
– can also interface to existing C code
– should shield you from changes to Python C api
– has become the de-facto standard within the scientific Python community
– fast indexing support for arrays

• Minuses:
– Can write code in non-standard form which may become obsolete
– Not as flexible as manual wrapping

3) ctypes
• Plusses:

– part of Python standard library
– good for interfacing to existing shareable libraries, particularly Windows DLLs
– avoids API/reference counting issues
– good numpy support: arrays have all these in their ctypes attribute:

a.ctypes.data
a.ctypes.data_as
a.ctypes.shape
a.ctypes.shape_as

(continues on next page)

5.4. Interfacing to C 149

NumPy User Guide, Release 1.22.0

(continued from previous page)
a.ctypes.strides
a.ctypes.strides_as

• Minuses:
– can’t use for writing code to be turned into C extensions, only a wrapper tool.

4) SWIG (automatic wrapper generator)
• Plusses:

– around a long time
– multiple scripting language support
– C++ support
– Good for wrapping large (many functions) existing C libraries

• Minuses:
– generates lots of code between Python and the C code
– can cause performance problems that are nearly impossible to optimize out
– interface files can be hard to write
– doesn’t necessarily avoid reference counting issues or needing to know API’s

5) scipy.weave
• Plusses:

– can turn many numpy expressions into C code
– dynamic compiling and loading of generated C code
– can embed pure C code in Python module and have weave extract, generate interfaces and compile, etc.

• Minuses:
– Future very uncertain: it’s the only part of Scipy not ported to Python 3 and is effectively deprecated in favor
of Cython.

6) Psyco
• Plusses:

– Turns pure python into efficient machine code through jit-like optimizations
– very fast when it optimizes well

• Minuses:
– Only on intel (windows?)
– Doesn’t do much for numpy?

150 5. Miscellaneous

NumPy User Guide, Release 1.22.0

5.5 Interfacing to Fortran:

The clear choice to wrap Fortran code is f2py.
Pyfort is an older alternative, but not supported any longer. Fwrap is a newer project that looked promising but isn’t being
developed any longer.

5.6 Interfacing to C++:

1) Cython
2) CXX
3) Boost.python
4) SWIG
5) SIP (used mainly in PyQT)

5.5. Interfacing to Fortran: 151

https://docs.scipy.org/doc/numpy/f2py/

NumPy User Guide, Release 1.22.0

152 5. Miscellaneous

CHAPTER

SIX

NUMPY FOR MATLAB USERS

6.1 Introduction

MATLAB® and NumPy have a lot in common, but NumPy was created to work with Python, not to be a MATLAB
clone. This guide will help MATLAB users get started with NumPy.

6.2 Some key differences

In MATLAB, the basic type, even for scalars,
is a multidimensional array. Array assign-
ments in MATLAB are stored as 2D arrays
of double precision floating point numbers,
unless you specify the number of dimensions
and type. Operations on the 2D instances of
these arrays are modeled on matrix opera-
tions in linear algebra.

In NumPy, the basic type is a multidimensional array. Array as-
signments in NumPy are usually stored as n-dimensional arrays with
the minimum type required to hold the objects in sequence, unless
you specify the number of dimensions and type. NumPy performs
operations element-by-element, so multiplying 2D arrays with * is
not a matrix multiplication – it’s an element-by-element multiplica-
tion. (The @ operator, available since Python 3.5, can be used for
conventional matrix multiplication.)

MATLAB numbers indices from 1; a(1) is
the first element. See note INDEXING

NumPy, like Python, numbers indices from 0; a[0] is the first ele-
ment.

MATLAB’s scripting language was created
for linear algebra so the syntax for some
array manipulations is more compact than
NumPy’s. On the other hand, the API for
adding GUIs and creating full-fledged appli-
cations is more or less an afterthought.

NumPy is based on Python, a general-purpose language. The advan-
tage to NumPy is access to Python libraries including: SciPy, Mat-
plotlib, Pandas, OpenCV, and more. In addition, Python is often em-
bedded as a scripting language in other software, allowing NumPy to
be used there too.

MATLAB array slicing uses pass-by-value
semantics, with a lazy copy-on-write scheme
to prevent creating copies until they are
needed. Slicing operations copy parts of the
array.

NumPy array slicing uses pass-by-reference, that does not copy the
arguments. Slicing operations are views into an array.

153

https://www.scipy.org/
https://matplotlib.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://opencv.org/
https://en.wikipedia.org/wiki/List_of_Python_software#Embedded_as_a_scripting_language
https://en.wikipedia.org/wiki/List_of_Python_software#Embedded_as_a_scripting_language

NumPy User Guide, Release 1.22.0

6.3 Rough equivalents

The table below gives rough equivalents for some common MATLAB expressions. These are similar expressions, not
equivalents. For details, see the documentation.
In the table below, it is assumed that you have executed the following commands in Python:

import numpy as np
from scipy import io, integrate, linalg, signal
from scipy.sparse.linalg import eigs

Also assume below that if the Notes talk about “matrix” that the arguments are two-dimensional entities.

154 6. NumPy for MATLAB users

NumPy User Guide, Release 1.22.0

6.3.1 General purpose equivalents

MATLAB NumPy Notes
help func info(func) or help(func) or

func? (in IPython)
get help on the function func

which func see note HELP find out where func is defined
type func np.source(func) or func??

(in IPython)
print source for func (if not a native
function)

% comment # comment comment a line of code with the text
comment

for i=1:3
fprintf('%i\n',i)

end

for i in range(1, 4):
print(i)

use a for-loop to print the numbers 1,
2, and 3 using range

a && b a and b short-circuiting logical AND opera-
tor (Python native operator); scalar
arguments only

a || b a or b short-circuiting logical OR operator
(Python native operator); scalar argu-
ments only

>> 4 == 4
ans = 1
>> 4 == 5
ans = 0

>>> 4 == 4
True
>>> 4 == 5
False

The boolean objects in Python are
True and False, as opposed to
MATLAB logical types of 1 and 0.

a=4
if a==4

fprintf('a = 4\n')
elseif a==5

fprintf('a = 5\n')
end

a = 4
if a == 4:

print('a = 4')
elif a == 5:

print('a = 5')

create an if-else statement to check if
a is 4 or 5 and print result

1*i, 1*j, 1i, 1j 1j complex numbers
eps np.finfo(float).eps or np.

spacing(1)
Upper bound to relative error due
to rounding in 64-bit floating point
arithmetic.

load data.mat io.loadmat('data.mat') Load MATLAB variables saved
to the file data.mat. (Note:
When saving arrays to data.
mat in MATLAB/Octave, use a
recent binary format. scipy.io.
loadmat will create a dictionary
with the saved arrays and further
information.)

ode45 integrate.solve_ivp(f) integrate an ODE with Runge-Kutta
4,5

ode15s integrate.solve_ivp(f,
method='BDF')

integrate an ODE with BDF method

6.3. Rough equivalents 155

https://docs.python.org/dev/library/stdtypes.html#range
https://docs.python.org/dev/library/stdtypes.html#boolean
https://docs.python.org/dev/library/stdtypes.html#boolean
https://docs.python.org/dev/library/stdtypes.html#bltin-boolean-values
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat

NumPy User Guide, Release 1.22.0

6.3.2 Linear algebra equivalents

MATLAB NumPy Notes
ndims(a) np.ndim(a) or a.ndim number of dimensions of array a
numel(a) np.size(a) or a.size number of elements of array a
size(a) np.shape(a) or a.shape “size” of array a
size(a,n) a.shape[n-1] get the number of elements of the

n-th dimension of array a. (Note
that MATLAB uses 1 based indexing
while Python uses 0 based indexing,
See note INDEXING)

[1 2 3; 4 5 6] np.array([[1. ,2. ,3.],
[4. ,5. ,6.]])

define a 2x3 2D array

[a b; c d] np.block([[a, b], [c,
d]])

construct a matrix from blocks a, b,
c, and d

a(end) a[-1] access last element in MATLAB vec-
tor (1xn or nx1) or 1D NumPy array
a (length n)

a(2,5) a[1, 4] access element in second row, fifth
column in 2D array a

a(2,:) a[1] or a[1, :] entire second row of 2D array a
a(1:5,:) a[0:5] or a[:5] or a[0:5, :] first 5 rows of 2D array a
a(end-4:end,:) a[-5:] last 5 rows of 2D array a
a(1:3,5:9) a[0:3, 4:9] The first through third rows and fifth

through ninth columns of a 2D array,
a.

a([2,4,5],[1,3]) a[np.ix_([1, 3, 4], [0,
2])]

rows 2,4 and 5 and columns 1 and
3. This allows the matrix to be mod-
ified, and doesn’t require a regular
slice.

a(3:2:21,:) a[2:21:2,:] every other row ofa, starting with the
third and going to the twenty-first

a(1:2:end,:) a[::2,:] every other row ofa, starting with the
first

a(end:-1:1,:) or
flipud(a)

a[::-1,:] a with rows in reverse order

a([1:end 1],:) a[np.r_[:len(a),0]] awith copy of the first row appended
to the end

a.' a.transpose() or a.T transpose of a
a' a.conj().transpose() or a.

conj().T
conjugate transpose of a

a * b a @ b matrix multiply
a .* b a * b element-wise multiply
a./b a/b element-wise divide
a.^3 a**3 element-wise exponentiation
(a > 0.5) (a > 0.5) matrix whose i,jth element is (a_ij

> 0.5). The MATLAB result is
an array of logical values 0 and 1.
The NumPy result is an array of the
boolean values False and True.

find(a > 0.5) np.nonzero(a > 0.5) find the indices where (a > 0.5)
continues on next page

156 6. NumPy for MATLAB users

NumPy User Guide, Release 1.22.0

Table 1 – continued from previous page
MATLAB NumPy Notes
a(:,find(v > 0.5)) a[:,np.nonzero(v > 0.

5)[0]]
extract the columns ofawhere vector
v > 0.5

a(:,find(v>0.5)) a[:, v.T > 0.5] extract the columns of a where col-
umn vector v > 0.5

a(a<0.5)=0 a[a < 0.5]=0 a with elements less than 0.5 zeroed
out

a .* (a>0.5) a * (a > 0.5) a with elements less than 0.5 zeroed
out

a(:) = 3 a[:] = 3 set all values to the same scalar value
y=x y = x.copy() NumPy assigns by reference
y=x(2,:) y = x[1, :].copy() NumPy slices are by reference
y=x(:) y = x.flatten() turn array into vector (note that this

forces a copy). To obtain the same
data ordering as inMATLAB, usex.
flatten('F').

1:10 np.arange(1., 11.) or
np.r_[1.:11.] or np.
r_[1:10:10j]

create an increasing vector (see note
RANGES)

0:9 np.arange(10.) or np.
r_[:10.] or np.r_[:9:10j]

create an increasing vector (see note
RANGES)

[1:10]' np.arange(1.,11.)[:,
np.newaxis]

create a column vector

zeros(3,4) np.zeros((3, 4)) 3x4 two-dimensional array full of 64-
bit floating point zeros

zeros(3,4,5) np.zeros((3, 4, 5)) 3x4x5 three-dimensional array full of
64-bit floating point zeros

ones(3,4) np.ones((3, 4)) 3x4 two-dimensional array full of 64-
bit floating point ones

eye(3) np.eye(3) 3x3 identity matrix
diag(a) np.diag(a) returns a vector of the diagonal ele-

ments of 2D array, a
diag(v,0) np.diag(v, 0) returns a square diagonal matrix

whose nonzero values are the ele-
ments of vector, v

rng(42,'twister')
rand(3,4)

from numpy.random import␣
↪→default_rng
rng = default_rng(42)
rng.random(3, 4)

or older version: random.
rand((3, 4))

generate a random 3x4 array with de-
fault random number generator and
seed = 42

linspace(1,3,4) np.linspace(1,3,4) 4 equally spaced samples between 1
and 3, inclusive

[x,y]=meshgrid(0:8,0:5) np.mgrid[0:9.,0:6.] or
np.meshgrid(r_[0:9.],
r_[0:6.]

two 2D arrays: one of x values, the
other of y values

ogrid[0:9.,0:6.] or np.
ix_(np.r_[0:9.],np.
r_[0:6.]

the best way to eval functions on a
grid

continues on next page

6.3. Rough equivalents 157

NumPy User Guide, Release 1.22.0

Table 1 – continued from previous page
MATLAB NumPy Notes
[x,y]=meshgrid([1,2,4],
[2,4,5])

np.meshgrid([1,2,4],[2,
4,5])
ix_([1,2,4],[2,4,5]) the best way to eval functions on a

grid
repmat(a, m, n) np.tile(a, (m, n)) create m by n copies of a
[a b] np.concatenate((a,b),

1) or np.hstack((a,b)) or
np.column_stack((a,b)) or
np.c_[a,b]

concatenate columns of a and b

[a; b] np.concatenate((a,b))
or np.vstack((a,b)) or
np.r_[a,b]

concatenate rows of a and b

max(max(a)) a.max() or np.nanmax(a) maximum element of a (with
ndims(a)<=2 for MATLAB, if there
are NaN’s, nanmax will ignore
these and return largest value)

max(a) a.max(0) maximum element of each column of
array a

max(a,[],2) a.max(1) maximum element of each row of ar-
ray a

max(a,b) np.maximum(a, b) compares a and b element-wise, and
returns the maximum value from
each pair

norm(v) np.sqrt(v @ v) or np.
linalg.norm(v)

L2 norm of vector v

a & b logical_and(a,b) element-by-element AND operator
(NumPy ufunc) See note LOGICOPS

a | b np.logical_or(a,b) element-by-element OR operator
(NumPy ufunc) See note LOGICOPS

bitand(a,b) a & b bitwise ANDoperator (Python native
and NumPy ufunc)

bitor(a,b) a | b bitwise OR operator (Python native
and NumPy ufunc)

inv(a) linalg.inv(a) inverse of square 2D array a
pinv(a) linalg.pinv(a) pseudo-inverse of 2D array a
rank(a) linalg.matrix_rank(a) matrix rank of a 2D array a
a\b linalg.solve(a, b) if a is

square; linalg.lstsq(a, b)
otherwise

solution of a x = b for x

b/a Solve a.T x.T = b.T instead solution of x a = b for x
[U,S,V]=svd(a) U, S, Vh = linalg.

svd(a), V = Vh.T
singular value decomposition of a

c=chol(a) where a==c'*c c = linalg.cholesky(a)
where a == c@c.T

Cholesky factorization of a 2D ar-
ray (chol(a) in MATLAB returns
an upper triangular 2D array, but
cholesky returns a lower triangu-
lar 2D array)

[V,D]=eig(a) D,V = linalg.eig(a) eigenvalues λ and eigenvectors v̄ of
a, where λv̄ = av̄

continues on next page

158 6. NumPy for MATLAB users

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.linalg.cholesky.html#scipy.linalg.cholesky

NumPy User Guide, Release 1.22.0

Table 1 – continued from previous page
MATLAB NumPy Notes
[V,D]=eig(a,b) D,V = linalg.eig(a, b) eigenvalues λ and eigenvectors v̄ of

a, b where λbv̄ = av̄
[V,D]=eigs(a,3) D,V = eigs(a, k = 3) find the k=3 largest eigenvalues and

eigenvectors of 2D array, a
[Q,R,P]=qr(a,0) Q,R = linalg.qr(a) QR decomposition
[L,U,P]=lu(a) where
a==P'*L*U

P,L,U = linalg.lu(a)
where a == P@L@U

LU decomposition (note:
P(MATLAB) == trans-
pose(P(NumPy)))

conjgrad cg Conjugate gradients solver
fft(a) np.fft(a) Fourier transform of a
ifft(a) np.ifft(a) inverse Fourier transform of a
sort(a) np.sort(a) or a.

sort(axis=0)
sort each column of a 2D array, a

sort(a, 2) np.sort(a, axis = 1) or a.
sort(axis = 1)

sort the each row of 2D array, a

[b,I]=sortrows(a,1) I = np.argsort(a[:, 0]);
b = a[I,:]

save the array a as array b with rows
sorted by the first column

x = Z\y x = linalg.lstsq(Z, y) perform a linear regression of the
form Zx = y

decimate(x, q) signal.resample(x, np.
ceil(len(x)/q))

downsample with low-pass filtering

unique(a) np.unique(a) a vector of unique values in array a
squeeze(a) a.squeeze() remove singleton dimensions of array

a. Note that MATLAB will always
return arrays of 2D or higher while
NumPy will return arrays of 0D or
higher

6.4 Notes

Submatrix: Assignment to a submatrix can be done with lists of indices using the ix_ command. E.g., for 2D array a,
one might do: ind=[1, 3]; a[np.ix_(ind, ind)] += 100.
HELP: There is no direct equivalent of MATLAB’s which command, but the commands help and numpy.
source will usually list the filename where the function is located. Python also has an inspect module (do
import inspect) which provides a getfile that often works.
INDEXING: MATLAB uses one based indexing, so the initial element of a sequence has index 1. Python uses zero based
indexing, so the initial element of a sequence has index 0. Confusion and flamewars arise because each has advantages
and disadvantages. One based indexing is consistent with common human language usage, where the “first” element of a
sequence has index 1. Zero based indexing simplifies indexing. See also a text by prof.dr. Edsger W. Dijkstra.
RANGES: In MATLAB, 0:5 can be used as both a range literal and a ‘slice’ index (inside parentheses); however, in
Python, constructs like 0:5 can only be used as a slice index (inside square brackets). Thus the somewhat quirky r_
object was created to allow NumPy to have a similarly terse range construction mechanism. Note that r_ is not called
like a function or a constructor, but rather indexed using square brackets, which allows the use of Python’s slice syntax in
the arguments.
LOGICOPS: & or | in NumPy is bitwise AND/OR, while in MATLAB & and | are logical AND/OR. The two can
appear to work the same, but there are important differences. If you would have used MATLAB’s & or | operators,
you should use the NumPy ufuncs logical_and/logical_or. The notable differences between MATLAB’s and

6.4. Notes 159

https://docs.python.org/dev/library/functions.html#help
https://groups.google.com/group/comp.lang.python/msg/1bf4d925dfbf368?q=g:thl3498076713d&hl=en
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

NumPy User Guide, Release 1.22.0

NumPy’s & and | operators are:
• Non-logical {0,1} inputs: NumPy’s output is the bitwise AND of the inputs. MATLAB treats any non-zero value
as 1 and returns the logical AND. For example (3 & 4) in NumPy is 0, while in MATLAB both 3 and 4 are
considered logical true and (3 & 4) returns 1.

• Precedence: NumPy’s & operator is higher precedence than logical operators like < and >; MATLAB’s is the
reverse.

If you know you have boolean arguments, you can get away with using NumPy’s bitwise operators, but be careful with
parentheses, like this: z = (x > 1) & (x < 2). The absence of NumPy operator forms of logical_and and
logical_or is an unfortunate consequence of Python’s design.
RESHAPE and LINEAR INDEXING: MATLAB always allows multi-dimensional arrays to be accessed using scalar
or linear indices, NumPy does not. Linear indices are common in MATLAB programs, e.g. find() on a matrix returns
them, whereas NumPy’s find behaves differently. When convertingMATLAB code it might be necessary to first reshape a
matrix to a linear sequence, perform some indexing operations and then reshape back. As reshape (usually) produces views
onto the same storage, it should be possible to do this fairly efficiently. Note that the scan order used by reshape in NumPy
defaults to the ‘C’ order, whereas MATLAB uses the Fortran order. If you are simply converting to a linear sequence and
back this doesn’t matter. But if you are converting reshapes fromMATLAB code which relies on the scan order, then this
MATLAB code: z = reshape(x,3,4); should become z = x.reshape(3,4,order='F').copy() in
NumPy.

6.5 ‘array’ or ‘matrix’? Which should I use?

Historically, NumPy has provided a special matrix type, np.matrix, which is a subclass of ndarray which makes binary
operations linear algebra operations. You may see it used in some existing code instead of np.array. So, which one to
use?

6.5.1 Short answer

Use arrays.
• They support multidimensional array algebra that is supported in MATLAB
• They are the standard vector/matrix/tensor type of NumPy. Many NumPy functions return arrays, not matrices.
• There is a clear distinction between element-wise operations and linear algebra operations.
• You can have standard vectors or row/column vectors if you like.

Until Python 3.5 the only disadvantage of using the array type was that you had to usedot instead of* tomultiply (reduce)
two tensors (scalar product, matrix vector multiplication etc.). Since Python 3.5 you can use the matrix multiplication @
operator.
Given the above, we intend to deprecate matrix eventually.

160 6. NumPy for MATLAB users

NumPy User Guide, Release 1.22.0

6.5.2 Long answer

NumPy contains both an array class and a matrix class. The array class is intended to be a general-purpose
n-dimensional array for many kinds of numerical computing, while matrix is intended to facilitate linear algebra com-
putations specifically. In practice there are only a handful of key differences between the two.

• Operators * and @, functions dot(), and multiply():
– For array, “*“ means element-wise multiplication, while “@“means matrix multiplication; they have
associated functions multiply() and dot(). (Before Python 3.5, @ did not exist and one had to use
dot() for matrix multiplication).

– For matrix, “*“ means matrix multiplication, and for element-wise multiplication one has to use the
multiply() function.

• Handling of vectors (one-dimensional arrays)
– For array, the vector shapes 1xN, Nx1, and N are all different things. Operations like A[:,1] return a
one-dimensional array of shapeN, not a two-dimensional array of shapeNx1. Transpose on a one-dimensional
array does nothing.

– For matrix, one-dimensional arrays are always upconverted to 1xN or Nx1 matrices (row or column
vectors). A[:,1] returns a two-dimensional matrix of shape Nx1.

• Handling of higher-dimensional arrays (ndim > 2)
– array objects can have number of dimensions > 2;
– matrix objects always have exactly two dimensions.

• Convenience attributes
– array has a .T attribute, which returns the transpose of the data.
– matrix also has .H, .I, and .A attributes, which return the conjugate transpose, inverse, and asarray()
of the matrix, respectively.

• Convenience constructor
– The array constructor takes (nested) Python sequences as initializers. As in, array([[1,2,3],
[4,5,6]]).

– The matrix constructor additionally takes a convenient string initializer. As in matrix("[1 2 3;
4 5 6]").

There are pros and cons to using both:
• array

– :) Element-wise multiplication is easy: A*B.
– :(You have to remember that matrix multiplication has its own operator, @.
– :) You can treat one-dimensional arrays as either row or column vectors. A @ v treats v as a column vector,
while v @ A treats v as a row vector. This can save you having to type a lot of transposes.

– :) array is the “default” NumPy type, so it gets the most testing, and is the type most likely to be returned
by 3rd party code that uses NumPy.

– :) Is quite at home handling data of any number of dimensions.
– :) Closer in semantics to tensor algebra, if you are familiar with that.
– :) All operations (*, /, +, - etc.) are element-wise.
– :(Sparse matrices from scipy.sparse do not interact as well with arrays.

6.5. ‘array’ or ‘matrix’? Which should I use? 161

NumPy User Guide, Release 1.22.0

• matrix

– :\\ Behavior is more like that of MATLAB matrices.
– <:(Maximum of two-dimensional. To hold three-dimensional data you need array or perhaps a Python
list of matrix.

– <:(Minimum of two-dimensional. You cannot have vectors. They must be cast as single-column or single-
row matrices.

– <:(Since array is the default in NumPy, some functions may return an array even if you give them a
matrix as an argument. This shouldn’t happen with NumPy functions (if it does it’s a bug), but 3rd party
code based on NumPy may not honor type preservation like NumPy does.

– :) A*B is matrix multiplication, so it looks just like you write it in linear algebra (For Python >= 3.5 plain
arrays have the same convenience with the @ operator).

– <:(Element-wise multiplication requires calling a function, multiply(A,B).
– <:(The use of operator overloading is a bit illogical: * does not work element-wise but / does.
– Interaction with scipy.sparse is a bit cleaner.

The array is thus much more advisable to use. Indeed, we intend to deprecate matrix eventually.

6.6 Customizing your environment

InMATLAB themain tool available to you for customizing the environment is to modify the search path with the locations
of your favorite functions. You can put such customizations into a startup script that MATLAB will run on startup.
NumPy, or rather Python, has similar facilities.

• To modify your Python search path to include the locations of your own modules, define the PYTHONPATH envi-
ronment variable.

• To have a particular script file executed when the interactive Python interpreter is started, define the
PYTHONSTARTUP environment variable to contain the name of your startup script.

Unlike MATLAB, where anything on your path can be called immediately, with Python you need to first do an ‘import’
statement to make functions in a particular file accessible.
For example you might make a startup script that looks like this (Note: this is just an example, not a statement of “best
practices”):

Make all numpy available via shorter 'np' prefix
import numpy as np
#
Make the SciPy linear algebra functions available as linalg.func()
e.g. linalg.lu, linalg.eig (for general l*B@u==A@u solution)
from scipy import linalg
#
Define a Hermitian function
def hermitian(A, **kwargs):

return np.conj(A,**kwargs).T
Make a shortcut for hermitian:
hermitian(A) --> H(A)
H = hermitian

To use the deprecated matrix and other matlib functions:

162 6. NumPy for MATLAB users

NumPy User Guide, Release 1.22.0

Make all matlib functions accessible at the top level via M.func()
import numpy.matlib as M
Make some matlib functions accessible directly at the top level via, e.g. rand(3,3)
from numpy.matlib import matrix,rand,zeros,ones,empty,eye

6.7 Links

Another somewhat outdated MATLAB/NumPy cross-reference can be found at http://mathesaurus.sf.net/
An extensive list of tools for scientific work with Python can be found in the topical software page.
See List of Python software: scripting for a list of software that use Python as a scripting language
MATLAB® and SimuLink® are registered trademarks of The MathWorks, Inc.

6.7. Links 163

http://mathesaurus.sf.net/
https://scipy.org/topical-software.html
https://en.wikipedia.org/wiki/List_of_Python_software#Embedded_as_a_scripting_language

NumPy User Guide, Release 1.22.0

164 6. NumPy for MATLAB users

CHAPTER

SEVEN

BUILDING FROM SOURCE

There are two options for building NumPy- building with Gitpod or locally from source. Your choice depends on your
operating system and familiarity with the command line.

7.1 Gitpod

Gitpod is an open-source platform that automatically creates the correct development environment right in your browser,
reducing the need to install local development environments and deal with incompatible dependencies.
If you are a Windows user, unfamiliar with using the command line or building NumPy for the first time, it is often faster
to build with Gitpod. Here are the in-depth instructions for building NumPy with building NumPy with Gitpod.

7.2 Building locally

Building locally on your machine gives you more granular control. If you are a MacOS or Linux user familiar with using
the command line, you can continue with building NumPy locally by following the instructions below.

7.3 Prerequisites

Building NumPy requires the following software installed:
1) Python 3.6.x or newer

Please note that the Python development headers also need to be installed, e.g., on Debian/Ubuntu one needs to
install both python3 and python3-dev. On Windows and macOS this is normally not an issue.

2) Compilers
Much of NumPy is written in C. You will need a C compiler that complies with the C99 standard.
While a FORTRAN 77 compiler is not necessary for building NumPy, it is needed to run the numpy.f2py tests.
These tests are skipped if the compiler is not auto-detected.
Note that NumPy is developed mainly using GNU compilers and tested on MSVC and Clang compilers. Com-
pilers from other vendors such as Intel, Absoft, Sun, NAG, Compaq, Vast, Portland, Lahey, HP, IBM are only
supported in the form of community feedback, and may not work out of the box. GCC 4.x (and later) compilers
are recommended. On ARM64 (aarch64) GCC 8.x (and later) are recommended.

165

https://numpy.org/devdocs/dev/development_gitpod.html

NumPy User Guide, Release 1.22.0

3) Linear Algebra libraries
NumPy does not require any external linear algebra libraries to be installed. However, if these are available,
NumPy’s setup script can detect them and use them for building. A number of different LAPACK library setups
can be used, including optimized LAPACK libraries such as OpenBLAS or MKL. The choice and location of these
libraries as well as include paths and other such build options can be specified in a site.cfg file located in the
NumPy root repository or a .numpy-site.cfg file in your home directory. See the site.cfg.example
example file included in the NumPy repository or sdist for documentation, and below for specifying search priority
from environmental variables.

4) Cython
For building NumPy, you’ll need a recent version of Cython.

7.4 Basic Installation

To install NumPy, run:

pip install .

To perform an in-place build that can be run from the source folder run:

python setup.py build_ext --inplace

Note: for build instructions to do development work on NumPy itself, see development-environment.

7.5 Testing

Make sure to test your builds. To ensure everything stays in shape, see if all tests pass:

$ python runtests.py -v -m full

For detailed info on testing, see testing-builds.

7.5.1 Parallel builds

It’s possible to do a parallel build with:

python setup.py build -j 4 install --prefix $HOME/.local

This will compile numpy on 4 CPUs and install it into the specified prefix. to perform a parallel in-place build, run:

python setup.py build_ext --inplace -j 4

The number of build jobs can also be specified via the environment variable NPY_NUM_BUILD_JOBS.

166 7. Building from source

NumPy User Guide, Release 1.22.0

7.5.2 Choosing the fortran compiler

Compilers are auto-detected; building with a particular compiler can be done with --fcompiler. E.g. to select
gfortran:

python setup.py build --fcompiler=gnu95

For more information see:

python setup.py build --help-fcompiler

7.5.3 How to check the ABI of BLAS/LAPACK libraries

One relatively simple and reliable way to check for the compiler used to build a library is to use ldd on the library. If
libg2c.so is a dependency, this means that g77 has been used (note: g77 is no longer supported for building NumPy). If
libgfortran.so is a dependency, gfortran has been used. If both are dependencies, this means both have been used, which
is almost always a very bad idea.

7.6 Accelerated BLAS/LAPACK libraries

NumPy searches for optimized linear algebra libraries such as BLAS and LAPACK. There are specific orders for searching
these libraries, as described below and in the site.cfg.example file.

7.6.1 BLAS

Note that both BLAS and CBLAS interfaces are needed for a properly optimized build of NumPy.
The default order for the libraries are:

1. MKL
2. BLIS
3. OpenBLAS
4. ATLAS
5. BLAS (NetLIB)

The detection of BLAS libraries may be bypassed by defining the environment variable NPY_BLAS_LIBS , which should
contain the exact linker flags you want to use (interface is assumed to be Fortran 77). Also define NPY_CBLAS_LIBS
(even empty if CBLAS is contained in your BLAS library) to trigger use of CBLAS and avoid slow fallback code for
matrix calculations.
If you wish to build against OpenBLAS but you also have BLIS available one may predefine the order of searching via
the environment variable NPY_BLAS_ORDER which is a comma-separated list of the above names which is used to
determine what to search for, for instance:

NPY_BLAS_ORDER=ATLAS,blis,openblas,MKL python setup.py build

will prefer to use ATLAS, then BLIS, then OpenBLAS and as a last resort MKL. If neither of these exists the build will
fail (names are compared lower case).
Alternatively one may use ! or ^ to negate all items:

7.6. Accelerated BLAS/LAPACK libraries 167

NumPy User Guide, Release 1.22.0

NPY_BLAS_ORDER='^blas,atlas' python setup.py build

will allow using anything but NetLIB BLAS and ATLAS libraries, the order of the above list is retained.
One cannot mix negation and positives, nor have multiple negations, such cases will raise an error.

7.6.2 LAPACK

The default order for the libraries are:
1. MKL
2. OpenBLAS
3. libFLAME
4. ATLAS
5. LAPACK (NetLIB)

The detection of LAPACK libraries may be bypassed by defining the environment variable NPY_LAPACK_LIBS, which
should contain the exact linker flags you want to use (language is assumed to be Fortran 77).
If you wish to build against OpenBLAS but you also have MKL available one may predefine the order of searching via
the environment variable NPY_LAPACK_ORDER which is a comma-separated list of the above names, for instance:

NPY_LAPACK_ORDER=ATLAS,openblas,MKL python setup.py build

will prefer to use ATLAS, then OpenBLAS and as a last resort MKL. If neither of these exists the build will fail (names
are compared lower case).
Alternatively one may use ! or ^ to negate all items:

NPY_LAPACK_ORDER='^lapack' python setup.py build

will allow using anything but the NetLIB LAPACK library, the order of the above list is retained.
One cannot mix negation and positives, nor have multiple negations, such cases will raise an error.
Deprecated since version 1.20: The native libraries on macOS, provided by Accelerate, are not fit for use in NumPy since
they have bugs that cause wrong output under easily reproducible conditions. If the vendor fixes those bugs, the library
could be reinstated, but until then users compiling for themselves should use another linear algebra library or use the
built-in (but slower) default, see the next section.

7.6.3 Disabling ATLAS and other accelerated libraries

Usage of ATLAS and other accelerated libraries in NumPy can be disabled via:

NPY_BLAS_ORDER= NPY_LAPACK_ORDER= python setup.py build

or:

BLAS=None LAPACK=None ATLAS=None python setup.py build

168 7. Building from source

NumPy User Guide, Release 1.22.0

7.6.4 64-bit BLAS and LAPACK

You can tell Numpy to use 64-bit BLAS/LAPACK libraries by setting the environment variable:

NPY_USE_BLAS_ILP64=1

when building Numpy. The following 64-bit BLAS/LAPACK libraries are supported:
1. OpenBLAS ILP64 with 64_ symbol suffix (openblas64_)
2. OpenBLAS ILP64 without symbol suffix (openblas_ilp64)

The order in which they are preferred is determined by NPY_BLAS_ILP64_ORDER and
NPY_LAPACK_ILP64_ORDER environment variables. The default value is openblas64_,openblas_ilp64.

Note: Using non-symbol-suffixed 64-bit BLAS/LAPACK in a program that also uses 32-bit BLAS/LAPACK can cause
crashes under certain conditions (e.g. with embedded Python interpreters on Linux).
The 64-bit OpenBLAS with 64_ symbol suffix is obtained by compiling OpenBLAS with settings:

make INTERFACE64=1 SYMBOLSUFFIX=64_

The symbol suffix avoids the symbol name clashes between 32-bit and 64-bit BLAS/LAPACK libraries.

7.7 Supplying additional compiler flags

Additional compiler flags can be supplied by setting the OPT, FOPT (for Fortran), and CC environment variables. When
providing options that should improve the performance of the code ensure that you also set -DNDEBUG so that debugging
code is not executed.

7.7. Supplying additional compiler flags 169

NumPy User Guide, Release 1.22.0

170 7. Building from source

CHAPTER

EIGHT

USING NUMPY C-API

8.1 How to extend NumPy

That which is static and repetitive is boring. That which is dynamic
and random is confusing. In between lies art.
— John A. Locke

Science is a differential equation. Religion is a boundary condition.
— Alan Turing

8.1.1 Writing an extension module

While the ndarray object is designed to allow rapid computation in Python, it is also designed to be general-purpose and
satisfy a wide- variety of computational needs. As a result, if absolute speed is essential, there is no replacement for a
well-crafted, compiled loop specific to your application and hardware. This is one of the reasons that numpy includes
f2py so that an easy-to-use mechanisms for linking (simple) C/C++ and (arbitrary) Fortran code directly into Python are
available. You are encouraged to use and improve this mechanism. The purpose of this section is not to document this
tool but to document the more basic steps to writing an extension module that this tool depends on.
When an extension module is written, compiled, and installed to somewhere in the Python path (sys.path), the code can
then be imported into Python as if it were a standard python file. It will contain objects and methods that have been
defined and compiled in C code. The basic steps for doing this in Python are well-documented and you can find more
information in the documentation for Python itself available online at www.python.org .
In addition to the Python C-API, there is a full and rich C-API for NumPy allowing sophisticated manipulations on a
C-level. However, for most applications, only a few API calls will typically be used. For example, if you need to just
extract a pointer to memory along with some shape information to pass to another calculation routine, then you will use
very different calls than if you are trying to create a new array-like type or add a new data type for ndarrays. This chapter
documents the API calls and macros that are most commonly used.

171

https://www.python.org

NumPy User Guide, Release 1.22.0

8.1.2 Required subroutine

There is exactly one function that must be defined in your C-code in order for Python to use it as an extension module.
The function must be called init{name} where {name} is the name of the module from Python. This function must be
declared so that it is visible to code outside of the routine. Besides adding the methods and constants you desire, this
subroutine must also contain calls like import_array() and/or import_ufunc() depending on which C-API is
needed. Forgetting to place these commands will show itself as an ugly segmentation fault (crash) as soon as any C-API
subroutine is actually called. It is actually possible to have multiple init{name} functions in a single file in which case
multiple modules will be defined by that file. However, there are some tricks to get that to work correctly and it is not
covered here.
A minimal init{name} method looks like:

PyMODINIT_FUNC
init{name}(void)
{

(void)Py_InitModule({name}, mymethods);
import_array();

}

The mymethods must be an array (usually statically declared) of PyMethodDef structures which contain method names,
actual C-functions, a variable indicating whether the method uses keyword arguments or not, and docstrings. These
are explained in the next section. If you want to add constants to the module, then you store the returned value from
Py_InitModule which is a module object. The most general way to add items to the module is to get the module dictionary
using PyModule_GetDict(module). With the module dictionary, you can add whatever you like to the module manually.
An easier way to add objects to the module is to use one of three additional Python C-API calls that do not require a
separate extraction of the module dictionary. These are documented in the Python documentation, but repeated here for
convenience:
int PyModule_AddObject(PyObject *module, char *name, PyObject *value)

int PyModule_AddIntConstant(PyObject *module, char *name, long value)

int PyModule_AddStringConstant(PyObject *module, char *name, char *value)
All three of these functions require the module object (the return value of Py_InitModule). The name is a string
that labels the value in the module. Depending on which function is called, the value argument is either a general
object (PyModule_AddObject steals a reference to it), an integer constant, or a string constant.

8.1.3 Defining functions

The second argument passed in to the Py_InitModule function is a structure that makes it easy to to define functions in
the module. In the example given above, the mymethods structure would have been defined earlier in the file (usually
right before the init{name} subroutine) to:

static PyMethodDef mymethods[] = {
{ nokeywordfunc,nokeyword_cfunc,

METH_VARARGS,
Doc string},

{ keywordfunc, keyword_cfunc,
METH_VARARGS|METH_KEYWORDS,
Doc string},

{NULL, NULL, 0, NULL} /* Sentinel */
}

172 8. Using NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy User Guide, Release 1.22.0

Each entry in the mymethods array is a PyMethodDef structure containing 1) the Python name, 2) the C-function that
implements the function, 3) flags indicating whether or not keywords are accepted for this function, and 4) The docstring
for the function. Any number of functions may be defined for a single module by adding more entries to this table. The
last entry must be all NULL as shown to act as a sentinel. Python looks for this entry to know that all of the functions for
the module have been defined.
The last thing that must be done to finish the extension module is to actually write the code that performs the desired
functions. There are two kinds of functions: those that don’t accept keyword arguments, and those that do.

Functions without keyword arguments

Functions that don’t accept keyword arguments should be written as:

static PyObject*
nokeyword_cfunc (PyObject *dummy, PyObject *args)
{

/* convert Python arguments */
/* do function */
/* return something */

}

The dummy argument is not used in this context and can be safely ignored. The args argument contains all of the
arguments passed in to the function as a tuple. You can do anything you want at this point, but usually the easiest
way to manage the input arguments is to call PyArg_ParseTuple (args, format_string, addresses_to_C_variables…)
or PyArg_UnpackTuple (tuple, “name”, min, max, …). A good description of how to use the first function is
contained in the Python C-API reference manual under section 5.5 (Parsing arguments and building values). You should
pay particular attention to the “O&” format which uses converter functions to go between the Python object and the C
object. All of the other format functions can be (mostly) thought of as special cases of this general rule. There are several
converter functions defined in the NumPy C-API that may be of use. In particular, the PyArray_DescrConverter
function is very useful to support arbitrary data-type specification. This function transforms any valid data-type Python
object into a PyArray_Descr* object. Remember to pass in the address of the C-variables that should be filled in.
There are lots of examples of how to use PyArg_ParseTuple throughout the NumPy source code. The standard
usage is like this:

PyObject *input;
PyArray_Descr *dtype;
if (!PyArg_ParseTuple(args, "OO&", &input,

PyArray_DescrConverter,
&dtype)) return NULL;

It is important to keep in mind that you get a borrowed reference to the object when using the “O” format string. However,
the converter functions usually require some form of memory handling. In this example, if the conversion is successful,
dtype will hold a new reference to a PyArray_Descr* object, while input will hold a borrowed reference. Therefore,
if this conversion were mixed with another conversion (say to an integer) and the data-type conversion was successful but
the integer conversion failed, then you would need to release the reference count to the data-type object before returning.
A typical way to do this is to set dtype to NULL before calling PyArg_ParseTuple and then use Py_XDECREF on
dtype before returning.
After the input arguments are processed, the code that actually does the work is written (likely calling other functions as
needed). The final step of the C-function is to return something. If an error is encountered then NULL should be returned
(making sure an error has actually been set). If nothing should be returned then increment Py_None and return it. If a
single object should be returned then it is returned (ensuring that you own a reference to it first). If multiple objects should
be returned then you need to return a tuple. The Py_BuildValue (format_string, c_variables…) functionmakes it easy
to build tuples of Python objects from C variables. Pay special attention to the difference between ‘N’ and ‘O’ in the format
string or you can easily create memory leaks. The ‘O’ format string increments the reference count of the PyObject*

8.1. How to extend NumPy 173

https://docs.python.org/dev/c-api/structures.html#c.PyMethodDef
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_UnpackTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/refcounting.html#c.Py_XDECREF
https://docs.python.org/dev/c-api/none.html#c.Py_None
https://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue
https://docs.python.org/dev/c\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} api/structures.html#c.PyObject

NumPy User Guide, Release 1.22.0

C-variable it corresponds to, while the ‘N’ format string steals a reference to the corresponding PyObject* C-variable.
You should use ‘N’ if you have already created a reference for the object and just want to give that reference to the tuple.
You should use ‘O’ if you only have a borrowed reference to an object and need to create one to provide for the tuple.

Functions with keyword arguments

These functions are very similar to functions without keyword arguments. The only difference is that the function signature
is:

static PyObject*
keyword_cfunc (PyObject *dummy, PyObject *args, PyObject *kwds)
{
...
}

The kwds argument holds a Python dictionary whose keys are the names of the keyword arguments and whose values
are the corresponding keyword-argument values. This dictionary can be processed however you see fit. The easiest way
to handle it, however, is to replace the PyArg_ParseTuple (args, format_string, addresses…) function with a call to
PyArg_ParseTupleAndKeywords (args, kwds, format_string, char *kwlist[], addresses…). The kwlist parameter
to this function is a NULL -terminated array of strings providing the expected keyword arguments. There should be one
string for each entry in the format_string. Using this function will raise a TypeError if invalid keyword arguments are
passed in.
For more help on this function please see section 1.8 (Keyword Parameters for Extension Functions) of the Extending
and Embedding tutorial in the Python documentation.

Reference counting

The biggest difficulty when writing extension modules is reference counting. It is an important reason for the popularity
of f2py, weave, Cython, ctypes, etc…. If you mis-handle reference counts you can get problems from memory-leaks to
segmentation faults. The only strategy I know of to handle reference counts correctly is blood, sweat, and tears. First,
you force it into your head that every Python variable has a reference count. Then, you understand exactly what each
function does to the reference count of your objects, so that you can properly use DECREF and INCREF when you need
them. Reference counting can really test the amount of patience and diligence you have towards your programming craft.
Despite the grim depiction, most cases of reference counting are quite straightforward with the most common difficulty
being not using DECREF on objects before exiting early from a routine due to some error. In second place, is the common
error of not owning the reference on an object that is passed to a function or macro that is going to steal the reference (
e.g. PyTuple_SET_ITEM, and most functions that take PyArray_Descr objects).
Typically you get a new reference to a variable when it is created or is the return value of some function (there are
some prominent exceptions, however — such as getting an item out of a tuple or a dictionary). When you own the
reference, you are responsible to make sure that Py_DECREF (var) is called when the variable is no longer necessary
(and no other function has “stolen” its reference). Also, if you are passing a Python object to a function that will “steal”
the reference, then you need to make sure you own it (or use Py_INCREF to get your own reference). You will also
encounter the notion of borrowing a reference. A function that borrows a reference does not alter the reference count of
the object and does not expect to “hold on “to the reference. It’s just going to use the object temporarily. When you use
PyArg_ParseTuple or PyArg_UnpackTuple you receive a borrowed reference to the objects in the tuple and
should not alter their reference count inside your function. With practice, you can learn to get reference counting right,
but it can be frustrating at first.
One common source of reference-count errors is the Py_BuildValue function. Pay careful attention to the difference
between the ‘N’ format character and the ‘O’ format character. If you create a new object in your subroutine (such as
an output array), and you are passing it back in a tuple of return values, then you should most- likely use the ‘N’ format
character in Py_BuildValue. The ‘O’ character will increase the reference count by one. This will leave the caller with
two reference counts for a brand-new array. When the variable is deleted and the reference count decremented by one,

174 8. Using NumPy C-API

https://docs.python.org/dev/c\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTupleAndKeywords
https://docs.python.org/dev/c-api/tuple.html#c.PyTuple_SET_ITEM
https://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF
https://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_UnpackTuple
https://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue
https://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue

NumPy User Guide, Release 1.22.0

there will still be that extra reference count, and the array will never be deallocated. You will have a reference-counting
induced memory leak. Using the ‘N’ character will avoid this situation as it will return to the caller an object (inside the
tuple) with a single reference count.

8.1.4 Dealing with array objects

Most extension modules for NumPy will need to access the memory for an ndarray object (or one of it’s sub-classes). The
easiest way to do this doesn’t require you to know much about the internals of NumPy. The method is to

1. Ensure you are dealing with a well-behaved array (aligned, in machine byte-order and single-segment) of the correct
type and number of dimensions.
1. By converting it from some Python object using PyArray_FromAny or a macro built on it.
2. By constructing a new ndarray of your desired shape and type using PyArray_NewFromDescr or a sim-

pler macro or function based on it.
2. Get the shape of the array and a pointer to its actual data.
3. Pass the data and shape information on to a subroutine or other section of code that actually performs the compu-

tation.
4. If you are writing the algorithm, then I recommend that you use the stride information contained in the array to

access the elements of the array (the PyArray_GetPtr macros make this painless). Then, you can relax your
requirements so as not to force a single-segment array and the data-copying that might result.

Each of these sub-topics is covered in the following sub-sections.

Converting an arbitrary sequence object

Themain routine for obtaining an array from any Python object that can be converted to an array isPyArray_FromAny.
This function is very flexible with many input arguments. Several macros make it easier to use the basic function.
PyArray_FROM_OTF is arguably the most useful of these macros for the most common uses. It allows you to convert
an arbitrary Python object to an array of a specific builtin data-type (e.g. float), while specifying a particular set of
requirements (e.g. contiguous, aligned, and writeable). The syntax is
PyArray_FROM_OTF

Return an ndarray from any Python object, obj, that can be converted to an array. The number of dimensions in
the returned array is determined by the object. The desired data-type of the returned array is provided in typenum
which should be one of the enumerated types. The requirements for the returned array can be any combination of
standard array flags. Each of these arguments is explained in more detail below. You receive a new reference to
the array on success. On failure, NULL is returned and an exception is set.
obj

The object can be any Python object convertible to an ndarray. If the object is already (a subclass of) the
ndarray that satisfies the requirements then a new reference is returned. Otherwise, a new array is con-
structed. The contents of obj are copied to the new array unless the array interface is used so that data does
not have to be copied. Objects that can be converted to an array include: 1) any nested sequence object, 2)
any object exposing the array interface, 3) any object with an __array__ method (which should return
an ndarray), and 4) any scalar object (becomes a zero-dimensional array). Sub-classes of the ndarray that
otherwise fit the requirements will be passed through. If you want to ensure a base-class ndarray, then use
NPY_ARRAY_ENSUREARRAY in the requirements flag. A copy is made only if necessary. If you want to
guarantee a copy, then pass in NPY_ARRAY_ENSURECOPY to the requirements flag.

typenum

8.1. How to extend NumPy 175

NumPy User Guide, Release 1.22.0

One of the enumerated types or NPY_NOTYPE if the data-type should be determined from the object itself.
The C-based names can be used:

NPY_BOOL, NPY_BYTE, NPY_UBYTE, NPY_SHORT, NPY_USHORT, NPY_INT,
NPY_UINT, NPY_LONG, NPY_ULONG, NPY_LONGLONG, NPY_ULONGLONG, NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE, NPY_OBJECT.

Alternatively, the bit-width names can be used as supported on the platform. For example:
NPY_INT8, NPY_INT16, NPY_INT32, NPY_INT64, NPY_UINT8, NPY_UINT16,
NPY_UINT32, NPY_UINT64, NPY_FLOAT32, NPY_FLOAT64, NPY_COMPLEX64,
NPY_COMPLEX128.

The object will be converted to the desired type only if it can be done without losing precision. Otherwise
NULL will be returned and an error raised. Use NPY_ARRAY_FORCECAST in the requirements flag to
override this behavior.

requirements

The memory model for an ndarray admits arbitrary strides in each dimension to advance to the next element
of the array. Often, however, you need to interface with code that expects a C-contiguous or a Fortran-
contiguous memory layout. In addition, an ndarray can be misaligned (the address of an element is not at an
integral multiple of the size of the element) which can cause your program to crash (or at least work more
slowly) if you try and dereference a pointer into the array data. Both of these problems can be solved by
converting the Python object into an array that is more “well-behaved” for your specific usage.
The requirements flag allows specification of what kind of array is acceptable. If the object passed in does not
satisfy this requirements then a copy is made so that the returned object will satisfy the requirements. these
ndarray can use a very generic pointer to memory. This flag allows specification of the desired properties of
the returned array object. All of the flags are explained in the detailed API chapter. The flags most commonly
needed are NPY_ARRAY_IN_ARRAY, NPY_OUT_ARRAY, and NPY_ARRAY_INOUT_ARRAY:
NPY_ARRAY_IN_ARRAY

This flag is useful for arrays that must be in C-contiguous order and aligned. These kinds of arrays are
usually input arrays for some algorithm.

NPY_ARRAY_OUT_ARRAY

This flag is useful to specify an array that is in C-contiguous order, is aligned, and can be written to as
well. Such an array is usually returned as output (although normally such output arrays are created from
scratch).

NPY_ARRAY_INOUT_ARRAY

This flag is useful to specify an array that will be used for both input and output.
PyArray_ResolveWritebackIfCopy must be called before Py_DECREF at the end of
the interface routine to write back the temporary data into the original array passed in. Use of the
NPY_ARRAY_WRITEBACKIFCOPY or NPY_ARRAY_UPDATEIFCOPY flags requires that the input
object is already an array (because other objects cannot be automatically updated in this fashion). If
an error occurs use PyArray_DiscardWritebackIfCopy (obj) on an array with these flags set.
This will set the underlying base array writable without causing the contents to be copied back into the
original array.

Other useful flags that can be OR’d as additional requirements are:
NPY_ARRAY_FORCECAST

Cast to the desired type, even if it can’t be done without losing information.
NPY_ARRAY_ENSURECOPY

Make sure the resulting array is a copy of the original.

176 8. Using NumPy C-API

https://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF

NumPy User Guide, Release 1.22.0

NPY_ARRAY_ENSUREARRAY

Make sure the resulting object is an actual ndarray and not a sub- class.

Note: Whether or not an array is byte-swapped is determined by the data-type of the array. Native byte-order arrays
are always requested by PyArray_FROM_OTF and so there is no need for a NPY_ARRAY_NOTSWAPPED flag in the
requirements argument. There is also no way to get a byte-swapped array from this routine.

Creating a brand-new ndarray

Quite often, new arrays must be created from within extension-module code. Perhaps an output array is needed and you
don’t want the caller to have to supply it. Perhaps only a temporary array is needed to hold an intermediate calculation.
Whatever the need there are simple ways to get an ndarray object of whatever data-type is needed. The most general
function for doing this is PyArray_NewFromDescr. All array creation functions go through this heavily re-used
code. Because of its flexibility, it can be somewhat confusing to use. As a result, simpler forms exist that are easier to
use. These forms are part of the PyArray_SimpleNew family of functions, which simplify the interface by providing
default values for common use cases.

Getting at ndarray memory and accessing elements of the ndarray

If obj is an ndarray (PyArrayObject*), then the data-area of the ndarray is pointed to by the void* pointer
PyArray_DATA (obj) or the char* pointer PyArray_BYTES (obj). Remember that (in general) this data-area may
not be aligned according to the data-type, it may represent byte-swapped data, and/or it may not be writeable. If the data
area is aligned and in native byte-order, then how to get at a specific element of the array is determined only by the array
of npy_intp variables, PyArray_STRIDES (obj). In particular, this c-array of integers shows how many bytes must
be added to the current element pointer to get to the next element in each dimension. For arrays less than 4-dimensions
there are PyArray_GETPTR{k} (obj, …) macros where {k} is the integer 1, 2, 3, or 4 that make using the array
strides easier. The arguments …. represent {k} non- negative integer indices into the array. For example, suppose E is a
3-dimensional ndarray. A (void*) pointer to the element E[i,j,k] is obtained as PyArray_GETPTR3 (E, i, j, k).
As explained previously, C-style contiguous arrays and Fortran-style contiguous arrays have particular striding patterns.
Two array flags (NPY_ARRAY_C_CONTIGUOUS and NPY_ARRAY_F_CONTIGUOUS) indicate whether or not the
striding pattern of a particular array matches the C-style contiguous or Fortran-style contiguous or neither. Whether or
not the striding pattern matches a standard C or Fortran one can be tested Using PyArray_IS_C_CONTIGUOUS (obj)
and PyArray_ISFORTRAN (obj) respectively. Most third-party libraries expect contiguous arrays. But, often it is not
difficult to support general-purpose striding. I encourage you to use the striding information in your own code whenever
possible, and reserve single-segment requirements for wrapping third-party code. Using the striding information provided
with the ndarray rather than requiring a contiguous striding reduces copying that otherwise must be made.

8.1.5 Example

The following example shows how you might write a wrapper that accepts two input arguments (that will be converted to
an array) and an output argument (that must be an array). The function returns None and updates the output array. Note
the updated use of WRITEBACKIFCOPY semantics for NumPy v1.14 and above

static PyObject *
example_wrapper(PyObject *dummy, PyObject *args)
{

PyObject *arg1=NULL, *arg2=NULL, *out=NULL;
PyObject *arr1=NULL, *arr2=NULL, *oarr=NULL;

(continues on next page)

8.1. How to extend NumPy 177

NumPy User Guide, Release 1.22.0

(continued from previous page)
if (!PyArg_ParseTuple(args, "OOO!", &arg1, &arg2,

&PyArray_Type, &out)) return NULL;

arr1 = PyArray_FROM_OTF(arg1, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY);
if (arr1 == NULL) return NULL;
arr2 = PyArray_FROM_OTF(arg2, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY);
if (arr2 == NULL) goto fail;

#if NPY_API_VERSION >= 0x0000000c
oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY2);

#else
oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY);

#endif
if (oarr == NULL) goto fail;

/* code that makes use of arguments */
/* You will probably need at least

nd = PyArray_NDIM(<..>) -- number of dimensions
dims = PyArray_DIMS(<..>) -- npy_intp array of length nd

showing length in each dim.
dptr = (double *)PyArray_DATA(<..>) -- pointer to data.

If an error occurs goto fail.
*/

Py_DECREF(arr1);
Py_DECREF(arr2);

#if NPY_API_VERSION >= 0x0000000c
PyArray_ResolveWritebackIfCopy(oarr);

#endif
Py_DECREF(oarr);
Py_INCREF(Py_None);
return Py_None;

fail:
Py_XDECREF(arr1);
Py_XDECREF(arr2);

#if NPY_API_VERSION >= 0x0000000c
PyArray_DiscardWritebackIfCopy(oarr);

#endif
Py_XDECREF(oarr);
return NULL;

}

8.2 Using Python as glue

There is no conversation more boring than the one where everybody
agrees.
— Michel de Montaigne

Duct tape is like the force. It has a light side, and a dark side, and
it holds the universe together.
— Carl Zwanzig

178 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

Many people like to say that Python is a fantastic glue language. Hopefully, this Chapter will convince you that this is
true. The first adopters of Python for science were typically people who used it to glue together large application codes
running on super-computers. Not only was it much nicer to code in Python than in a shell script or Perl, in addition, the
ability to easily extend Python made it relatively easy to create new classes and types specifically adapted to the problems
being solved. From the interactions of these early contributors, Numeric emerged as an array-like object that could be
used to pass data between these applications.
As Numeric has matured and developed into NumPy, people have been able to write more code directly in NumPy. Often
this code is fast-enough for production use, but there are still times that there is a need to access compiled code. Either
to get that last bit of efficiency out of the algorithm or to make it easier to access widely-available codes written in C/C++
or Fortran.
This chapter will review many of the tools that are available for the purpose of accessing code written in other compiled
languages. There are many resources available for learning to call other compiled libraries from Python and the purpose
of this Chapter is not to make you an expert. The main goal is to make you aware of some of the possibilities so that you
will know what to “Google” in order to learn more.

8.2.1 Calling other compiled libraries from Python

While Python is a great language and a pleasure to code in, its dynamic nature results in overhead that can cause some
code (i.e. raw computations inside of for loops) to be up 10-100 times slower than equivalent code written in a static
compiled language. In addition, it can cause memory usage to be larger than necessary as temporary arrays are created
and destroyed during computation. For many types of computing needs, the extra slow-down and memory consumption
can often not be spared (at least for time- or memory- critical portions of your code). Therefore one of the most common
needs is to call out from Python code to a fast, machine-code routine (e.g. compiled using C/C++ or Fortran). The
fact that this is relatively easy to do is a big reason why Python is such an excellent high-level language for scientific and
engineering programming.
Their are two basic approaches to calling compiled code: writing an extension module that is then imported to Python
using the import command, or calling a shared-library subroutine directly from Python using the ctypes module. Writing
an extension module is the most common method.

Warning: Calling C-code from Python can result in Python crashes if you are not careful. None of the approaches
in this chapter are immune. You have to know something about the way data is handled by both NumPy and by the
third-party library being used.

8.2.2 Hand-generated wrappers

Extension modules were discussed in Writing an extension module. The most basic way to interface with compiled code
is to write an extension module and construct a module method that calls the compiled code. For improved readability,
your method should take advantage of the PyArg_ParseTuple call to convert between Python objects and C data-
types. For standard C data-types there is probably already a built-in converter. For others you may need to write your
own converter and use the "O&" format string which allows you to specify a function that will be used to perform the
conversion from the Python object to whatever C-structures are needed.
Once the conversions to the appropriate C-structures and C data-types have been performed, the next step in the wrapper
is to call the underlying function. This is straightforward if the underlying function is in C or C++. However, in order
to call Fortran code you must be familiar with how Fortran subroutines are called from C/C++ using your compiler and
platform. This can vary somewhat platforms and compilers (which is another reason f2py makes life much simpler for
interfacing Fortran code) but generally involves underscore mangling of the name and the fact that all variables are passed
by reference (i.e. all arguments are pointers).

8.2. Using Python as glue 179

https://docs.python.org/3/library/ctypes.html

NumPy User Guide, Release 1.22.0

The advantage of the hand-generated wrapper is that you have complete control over how the C-library gets used and
called which can lead to a lean and tight interface with minimal over-head. The disadvantage is that you have to write,
debug, andmaintain C-code, althoughmost of it can be adapted using the time-honored technique of “cutting-pasting-and-
modifying” from other extension modules. Because, the procedure of calling out to additional C-code is fairly regimented,
code-generation procedures have been developed to make this process easier. One of these code-generation techniques
is distributed with NumPy and allows easy integration with Fortran and (simple) C code. This package, f2py, will be
covered briefly in the next section.

8.2.3 f2py

F2py allows you to automatically construct an extension module that interfaces to routines in Fortran 77/90/95 code. It has
the ability to parse Fortran 77/90/95 code and automatically generate Python signatures for the subroutines it encounters,
or you can guide how the subroutine interfaces with Python by constructing an interface-definition-file (or modifying the
f2py-produced one).

Creating source for a basic extension module

Probably the easiest way to introduce f2py is to offer a simple example. Here is one of the subroutines contained in a file
named add.f

C
SUBROUTINE ZADD(A,B,C,N)

C
DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N

C(J) = A(J)+B(J)
20 CONTINUE

END

This routine simply adds the elements in two contiguous arrays and places the result in a third. The memory for all three
arrays must be provided by the calling routine. A very basic interface to this routine can be automatically generated by
f2py:

f2py -m add add.f

You should be able to run this command assuming your search-path is set-up properly. This command will produce an
extension module named addmodule.c in the current directory. This extension module can now be compiled and used
from Python just like any other extension module.

Creating a compiled extension module

You can also get f2py to both compile add.f along with the produced extension module leaving only a shared-library
extension file that can be imported from Python:

f2py -c -m add add.f

This command leaves a file named add.{ext} in the current directory (where {ext} is the appropriate extension for a
Python extension module on your platform — so, pyd, etc.). This module may then be imported from Python. It will
contain a method for each subroutine in add (zadd, cadd, dadd, sadd). The docstring of each method contains information
about how the module method may be called:

180 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

>>> import add
>>> print(add.zadd.__doc__)
zadd(a,b,c,n)

Wrapper for ``zadd``.

Parameters

a : input rank-1 array('D') with bounds (*)
b : input rank-1 array('D') with bounds (*)
c : input rank-1 array('D') with bounds (*)
n : input int

Improving the basic interface

The default interface is a very literal translation of the Fortran code into Python. The Fortran array arguments must now
be NumPy arrays and the integer argument should be an integer. The interface will attempt to convert all arguments
to their required types (and shapes) and issue an error if unsuccessful. However, because it knows nothing about the
semantics of the arguments (such that C is an output and n should really match the array sizes), it is possible to abuse this
function in ways that can cause Python to crash. For example:

>>> add.zadd([1, 2, 3], [1, 2], [3, 4], 1000)

will cause a program crash on most systems. Under the covers, the lists are being converted to proper arrays but then the
underlying add loop is told to cycle way beyond the borders of the allocated memory.
In order to improve the interface, directives should be provided. This is accomplished by constructing an interface defi-
nition file. It is usually best to start from the interface file that f2py can produce (where it gets its default behavior from).
To get f2py to generate the interface file use the -h option:

f2py -h add.pyf -m add add.f

This command leaves the file add.pyf in the current directory. The section of this file corresponding to zadd is:

subroutine zadd(a,b,c,n) ! in :add:add.f
double complex dimension(*) :: a
double complex dimension(*) :: b
double complex dimension(*) :: c
integer :: n

end subroutine zadd

By placing intent directives and checking code, the interface can be cleaned up quite a bit until the Python module method
is both easier to use and more robust.

subroutine zadd(a,b,c,n) ! in :add:add.f
double complex dimension(n) :: a
double complex dimension(n) :: b
double complex intent(out),dimension(n) :: c
integer intent(hide),depend(a) :: n=len(a)

end subroutine zadd

The intent directive, intent(out) is used to tell f2py that c is an output variable and should be created by the interface
before being passed to the underlying code. The intent(hide) directive tells f2py to not allow the user to specify the
variable, n, but instead to get it from the size of a. The depend(a) directive is necessary to tell f2py that the value of n
depends on the input a (so that it won’t try to create the variable n until the variable a is created).

8.2. Using Python as glue 181

NumPy User Guide, Release 1.22.0

After modifying add.pyf, the new Python module file can be generated by compiling both add.f and add.pyf:

f2py -c add.pyf add.f

The new interface has docstring:

>>> import add
>>> print(add.zadd.__doc__)
c = zadd(a,b)

Wrapper for ``zadd``.

Parameters

a : input rank-1 array('D') with bounds (n)
b : input rank-1 array('D') with bounds (n)

Returns

c : rank-1 array('D') with bounds (n)

Now, the function can be called in a much more robust way:

>>> add.zadd([1, 2, 3], [4, 5, 6])
array([5.+0.j, 7.+0.j, 9.+0.j])

Notice the automatic conversion to the correct format that occurred.

Inserting directives in Fortran source

The nice interface can also be generated automatically by placing the variable directives as special comments in the original
Fortran code. Thus, if the source code is modified to contain:

C
SUBROUTINE ZADD(A,B,C,N)

C
CF2PY INTENT(OUT) :: C
CF2PY INTENT(HIDE) :: N
CF2PY DOUBLE COMPLEX :: A(N)
CF2PY DOUBLE COMPLEX :: B(N)
CF2PY DOUBLE COMPLEX :: C(N)

DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N

C(J) = A(J) + B(J)
20 CONTINUE

END

Then, one can compile the extension module using:

f2py -c -m add add.f

The resulting signature for the function add.zadd is exactly the same one that was created previously. If the original source
code had contained A(N) instead of A(*) and so forth with B and C, then nearly the same interface can be obtained by

182 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

placing the INTENT(OUT) :: C comment line in the source code. The only difference is that N would be an optional
input that would default to the length of A.

A filtering example

For comparison with the other methods to be discussed. Here is another example of a function that filters a two-
dimensional array of double precision floating-point numbers using a fixed averaging filter. The advantage of using
Fortran to index into multi-dimensional arrays should be clear from this example.

SUBROUTINE DFILTER2D(A,B,M,N)
C

DOUBLE PRECISION A(M,N)
DOUBLE PRECISION B(M,N)
INTEGER N, M

CF2PY INTENT(OUT) :: B
CF2PY INTENT(HIDE) :: N
CF2PY INTENT(HIDE) :: M

DO 20 I = 2,M-1
DO 40 J=2,N-1

B(I,J) = A(I,J) +
$ (A(I-1,J)+A(I+1,J) +
$ A(I,J-1)+A(I,J+1))*0.5D0 +
$ (A(I-1,J-1) + A(I-1,J+1) +
$ A(I+1,J-1) + A(I+1,J+1))*0.25D0

40 CONTINUE
20 CONTINUE

END

This code can be compiled and linked into an extension module named filter using:

f2py -c -m filter filter.f

This will produce an extension module named filter.so in the current directory with a method named dfilter2d that returns
a filtered version of the input.

Calling f2py from Python

The f2py program is written in Python and can be run from inside your code to compile Fortran code at runtime, as
follows:

from numpy import f2py
with open("add.f") as sourcefile:

sourcecode = sourcefile.read()
f2py.compile(sourcecode, modulename='add')
import add

The source string can be any valid Fortran code. If you want to save the extension-module source code then a suitable
file-name can be provided by the source_fn keyword to the compile function.

8.2. Using Python as glue 183

NumPy User Guide, Release 1.22.0

Automatic extension module generation

If you want to distribute your f2py extension module, then you only need to include the .pyf file and the Fortran code.
The distutils extensions in NumPy allow you to define an extension module entirely in terms of this interface file. A valid
setup.py file allowing distribution of the add.f module (as part of the package f2py_examples so that it would
be loaded as f2py_examples.add) is:

def configuration(parent_package='', top_path=None)
from numpy.distutils.misc_util import Configuration
config = Configuration('f2py_examples',parent_package, top_path)
config.add_extension('add', sources=['add.pyf','add.f'])
return config

if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

Installation of the new package is easy using:

pip install .

assuming you have the proper permissions to write to the main site- packages directory for the version of Python you
are using. For the resulting package to work, you need to create a file named __init__.py (in the same directory as
add.pyf). Notice the extension module is defined entirely in terms of the add.pyf and add.f files. The conversion
of the .pyf file to a .c file is handled by numpy.disutils.

Conclusion

The interface definition file (.pyf) is how you can fine-tune the interface between Python and Fortran. There is decent
documentation for f2py at F2PY user guide and reference manual. There is also more information on using f2py (including
how to use it to wrap C codes) at the “Interfacing With Other Languages” heading of the SciPy Cookbook.
The f2py method of linking compiled code is currently the most sophisticated and integrated approach. It allows clean
separation of Python with compiled code while still allowing for separate distribution of the extension module. The only
draw-back is that it requires the existence of a Fortran compiler in order for a user to install the code. However, with the
existence of the free-compilers g77, gfortran, and g95, as well as high-quality commercial compilers, this restriction is not
particularly onerous. In our opinion, Fortran is still the easiest way to write fast and clear code for scientific computing.
It handles complex numbers, and multi-dimensional indexing in the most straightforward way. Be aware, however, that
some Fortran compilers will not be able to optimize code as well as good hand- written C-code.

8.2.4 Cython

Cython is a compiler for a Python dialect that adds (optional) static typing for speed, and allows mixing C or C++ code
into your modules. It produces C or C++ extensions that can be compiled and imported in Python code.
If you are writing an extension module that will include quite a bit of your own algorithmic code as well, then Cython is
a good match. Among its features is the ability to easily and quickly work with multidimensional arrays.
Notice that Cython is an extension-module generator only. Unlike f2py, it includes no automatic facility for compiling and
linking the extension module (which must be done in the usual fashion). It does provide a modified distutils class called
build_ext which lets you build an extension module from a .pyx source. Thus, you could write in a setup.py file:

from Cython.Distutils import build_ext
from distutils.extension import Extension

(continues on next page)

184 8. Using NumPy C-API

https://scipy-cookbook.readthedocs.io/items/idx_interfacing_with_other_languages.html
http://cython.org

NumPy User Guide, Release 1.22.0

(continued from previous page)
from distutils.core import setup
import numpy

setup(name='mine', description='Nothing',
ext_modules=[Extension('filter', ['filter.pyx'],

include_dirs=[numpy.get_include()])],
cmdclass = {'build_ext':build_ext})

Adding the NumPy include directory is, of course, only necessary if you are using NumPy arrays in the extension module
(which is what we assume you are using Cython for). The distutils extensions in NumPy also include support for automat-
ically producing the extension-module and linking it from a .pyx file. It works so that if the user does not have Cython
installed, then it looks for a file with the same file-name but a .c extension which it then uses instead of trying to produce
the .c file again.
If you just use Cython to compile a standard Python module, then you will get a C extension module that typically runs
a bit faster than the equivalent Python module. Further speed increases can be gained by using the cdef keyword to
statically define C variables.
Let’s look at two examples we’ve seen before to see how they might be implemented using Cython. These examples were
compiled into extension modules using Cython 0.21.1.

Complex addition in Cython

Here is part of a Cython module named add.pyx which implements the complex addition functions we previously
implemented using f2py:

cimport cython
cimport numpy as np
import numpy as np

We need to initialize NumPy.
np.import_array()

#@cython.boundscheck(False)
def zadd(in1, in2):

cdef double complex[:] a = in1.ravel()
cdef double complex[:] b = in2.ravel()

out = np.empty(a.shape[0], np.complex64)
cdef double complex[:] c = out.ravel()

for i in range(c.shape[0]):
c[i].real = a[i].real + b[i].real
c[i].imag = a[i].imag + b[i].imag

return out

This module shows use of the cimport statement to load the definitions from the numpy.pxd header that ships with
Cython. It looks like NumPy is imported twice; cimport only makes the NumPy C-API available, while the regular
import causes a Python-style import at runtime and makes it possible to call into the familiar NumPy Python API.
The example also demonstrates Cython’s “typed memoryviews”, which are like NumPy arrays at the C level, in the sense
that they are shaped and strided arrays that know their own extent (unlike a C array addressed through a bare pointer).
The syntax double complex[:] denotes a one-dimensional array (vector) of doubles, with arbitrary strides. A
contiguous array of ints would be int[::1], while a matrix of floats would be float[:, :].

8.2. Using Python as glue 185

NumPy User Guide, Release 1.22.0

Shown commented is the cython.boundscheck decorator, which turns bounds-checking for memory view accesses
on or off on a per-function basis. We can use this to further speed up our code, at the expense of safety (or a manual
check prior to entering the loop).
Other than the view syntax, the function is immediately readable to a Python programmer. Static typing of the variable i
is implicit. Instead of the view syntax, we could also have used Cython’s special NumPy array syntax, but the view syntax
is preferred.

Image filter in Cython

The two-dimensional example we created using Fortran is just as easy to write in Cython:

cimport numpy as np
import numpy as np

np.import_array()

def filter(img):
cdef double[:, :] a = np.asarray(img, dtype=np.double)
out = np.zeros(img.shape, dtype=np.double)
cdef double[:, ::1] b = out

cdef np.npy_intp i, j

for i in range(1, a.shape[0] - 1):
for j in range(1, a.shape[1] - 1):

b[i, j] = (a[i, j]
+ .5 * (a[i-1, j] + a[i+1, j]

+ a[i, j-1] + a[i, j+1])
+ .25 * (a[i-1, j-1] + a[i-1, j+1]

+ a[i+1, j-1] + a[i+1, j+1]))

return out

This 2-d averaging filter runs quickly because the loop is in C and the pointer computations are done only as needed. If
the code above is compiled as a module image, then a 2-d image, img, can be filtered using this code very quickly using:

import image
out = image.filter(img)

Regarding the code, two things are of note: firstly, it is impossible to return a memory view to Python. Instead, a NumPy
array out is first created, and then a view b onto this array is used for the computation. Secondly, the view b is typed
double[:, ::1]. This means 2-d array with contiguous rows, i.e., C matrix order. Specifying the order explicitly
can speed up some algorithms since they can skip stride computations.

Conclusion

Cython is the extensionmechanism of choice for several scientific Python libraries, including Scipy, Pandas, SAGE, scikit-
image and scikit-learn, as well as the XML processing library LXML. The language and compiler are well-maintained.
There are several disadvantages of using Cython:

1. When coding custom algorithms, and sometimes when wrapping existing C libraries, some familiarity with C is
required. In particular, when using C memory management (malloc and friends), it’s easy to introduce memory
leaks. However, just compiling a Python module renamed to .pyx can already speed it up, and adding a few type
declarations can give dramatic speedups in some code.

186 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

2. It is easy to lose a clean separation between Python and C which makes re-using your C-code for other non-Python-
related projects more difficult.

3. The C-code generated by Cython is hard to read and modify (and typically compiles with annoying but harmless
warnings).

One big advantage of Cython-generated extension modules is that they are easy to distribute. In summary, Cython is a
very capable tool for either gluing C code or generating an extension module quickly and should not be over-looked. It is
especially useful for people that can’t or won’t write C or Fortran code.

8.2.5 ctypes

Ctypes is a Python extension module, included in the stdlib, that allows you to call an arbitrary function in a shared
library directly from Python. This approach allows you to interface with C-code directly from Python. This opens up
an enormous number of libraries for use from Python. The drawback, however, is that coding mistakes can lead to
ugly program crashes very easily (just as can happen in C) because there is little type or bounds checking done on the
parameters. This is especially true when array data is passed in as a pointer to a raw memory location. The responsibility
is then on you that the subroutine will not access memory outside the actual array area. But, if you don’t mind living a
little dangerously ctypes can be an effective tool for quickly taking advantage of a large shared library (or writing extended
functionality in your own shared library).
Because the ctypes approach exposes a raw interface to the compiled code it is not always tolerant of user mistakes.
Robust use of the ctypes module typically involves an additional layer of Python code in order to check the data types
and array bounds of objects passed to the underlying subroutine. This additional layer of checking (not to mention the
conversion from ctypes objects to C-data-types that ctypes itself performs), will make the interface slower than a hand-
written extension-module interface. However, this overhead should be negligible if the C-routine being called is doing
any significant amount of work. If you are a great Python programmer with weak C skills, ctypes is an easy way to write
a useful interface to a (shared) library of compiled code.
To use ctypes you must

1. Have a shared library.
2. Load the shared library.
3. Convert the Python objects to ctypes-understood arguments.
4. Call the function from the library with the ctypes arguments.

Having a shared library

There are several requirements for a shared library that can be used with ctypes that are platform specific. This guide
assumes you have some familiarity with making a shared library on your system (or simply have a shared library available
to you). Items to remember are:

• A shared library must be compiled in a special way (e.g. using the -shared flag with gcc).
• On some platforms (e.g. Windows), a shared library requires a .def file that specifies the functions to be exported.
For example a mylib.def file might contain:

LIBRARY mylib.dll
EXPORTS
cool_function1
cool_function2

Alternatively, you may be able to use the storage-class specifier __declspec(dllexport) in the C-definition
of the function to avoid the need for this .def file.

8.2. Using Python as glue 187

https://docs.python.org/3/library/ctypes.html

NumPy User Guide, Release 1.22.0

There is no standard way in Python distutils to create a standard shared library (an extension module is a “special” shared
library Python understands) in a cross-platform manner. Thus, a big disadvantage of ctypes at the time of writing this
book is that it is difficult to distribute in a cross-platform manner a Python extension that uses ctypes and includes your
own code which should be compiled as a shared library on the users system.

Loading the shared library

A simple, but robust way to load the shared library is to get the absolute path name and load it using the cdll object of
ctypes:

lib = ctypes.cdll[<full_path_name>]

However, on Windows accessing an attribute of the cdll method will load the first DLL by that name found in the
current directory or on the PATH. Loading the absolute path name requires a little finesse for cross-platform work since
the extension of shared libraries varies. There is a ctypes.util.find_library utility available that can simplify
the process of finding the library to load but it is not foolproof. Complicating matters, different platforms have different
default extensions used by shared libraries (e.g. .dll – Windows, .so – Linux, .dylib – Mac OS X). This must also be taken
into account if you are using ctypes to wrap code that needs to work on several platforms.
NumPy provides a convenience function called ctypeslib.load_library (name, path). This function takes the
name of the shared library (including any prefix like ‘lib’ but excluding the extension) and a path where the shared li-
brary can be located. It returns a ctypes library object or raises an OSError if the library cannot be found or raises
an ImportError if the ctypes module is not available. (Windows users: the ctypes library object loaded using
load_library is always loaded assuming cdecl calling convention. See the ctypes documentation under ctypes.
windll and/or ctypes.oledll for ways to load libraries under other calling conventions).
The functions in the shared library are available as attributes of the ctypes library object (returned from ctypeslib.
load_library) or as items using lib['func_name'] syntax. The latter method for retrieving a function name
is particularly useful if the function name contains characters that are not allowable in Python variable names.

Converting arguments

Python ints/longs, strings, and unicode objects are automatically converted as needed to equivalent ctypes arguments
The None object is also converted automatically to a NULL pointer. All other Python objects must be converted to
ctypes-specific types. There are two ways around this restriction that allow ctypes to integrate with other objects.

1. Don’t set the argtypes attribute of the function object and define an _as_parameter_ method for the object
you want to pass in. The _as_parameter_ method must return a Python int which will be passed directly to
the function.

2. Set the argtypes attribute to a list whose entries contain objects with a classmethod named from_param that knows
how to convert your object to an object that ctypes can understand (an int/long, string, unicode, or object with the
_as_parameter_ attribute).

NumPy uses both methods with a preference for the second method because it can be safer. The ctypes attribute of the
ndarray returns an object that has an _as_parameter_ attribute which returns an integer representing the address of
the ndarray to which it is associated. As a result, one can pass this ctypes attribute object directly to a function expecting
a pointer to the data in your ndarray. The caller must be sure that the ndarray object is of the correct type, shape, and has
the correct flags set or risk nasty crashes if the data-pointer to inappropriate arrays are passed in.
To implement the secondmethod, NumPy provides the class-factory function ndpointer in the numpy.ctypeslib
module. This class-factory function produces an appropriate class that can be placed in an argtypes attribute entry of a
ctypes function. The class will contain a from_param method which ctypes will use to convert any ndarray passed in to
the function to a ctypes-recognized object. In the process, the conversion will perform checking on any properties of the
ndarray that were specified by the user in the call to ndpointer. Aspects of the ndarray that can be checked include
the data-type, the number-of-dimensions, the shape, and/or the state of the flags on any array passed. The return value of

188 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

the from_param method is the ctypes attribute of the array which (because it contains the _as_parameter_ attribute
pointing to the array data area) can be used by ctypes directly.
The ctypes attribute of an ndarray is also endowed with additional attributes that may be convenient when passing ad-
ditional information about the array into a ctypes function. The attributes data, shape, and strides can provide ctypes
compatible types corresponding to the data-area, the shape, and the strides of the array. The data attribute returns a
c_void_p representing a pointer to the data area. The shape and strides attributes each return an array of ctypes inte-
gers (or None representing a NULL pointer, if a 0-d array). The base ctype of the array is a ctype integer of the same
size as a pointer on the platform. There are also methods data_as({ctype}), shape_as(<base ctype>),
and strides_as(<base ctype>). These return the data as a ctype object of your choice and the shape/strides
arrays using an underlying base type of your choice. For convenience, the ctypeslib module also contains c_intp
as a ctypes integer data-type whose size is the same as the size of c_void_p on the platform (its value is None if ctypes
is not installed).

Calling the function

The function is accessed as an attribute of or an item from the loaded shared-library. Thus, if ./mylib.so has a
function named cool_function1, it may be accessed either as:

lib = numpy.ctypeslib.load_library('mylib','.')
func1 = lib.cool_function1 # or equivalently
func1 = lib['cool_function1']

In ctypes, the return-value of a function is set to be ‘int’ by default. This behavior can be changed by setting the restype
attribute of the function. Use None for the restype if the function has no return value (‘void’):

func1.restype = None

As previously discussed, you can also set the argtypes attribute of the function in order to have ctypes check the types of
the input arguments when the function is called. Use the ndpointer factory function to generate a ready-made class
for data-type, shape, and flags checking on your new function. The ndpointer function has the signature
ndpointer(dtype=None, ndim=None, shape=None, flags=None)

Keyword arguments with the value None are not checked. Specifying a keyword enforces checking of that aspect
of the ndarray on conversion to a ctypes-compatible object. The dtype keyword can be any object understood as a
data-type object. The ndim keyword should be an integer, and the shape keyword should be an integer or a sequence
of integers. The flags keyword specifies the minimal flags that are required on any array passed in. This can be
specified as a string of comma separated requirements, an integer indicating the requirement bits OR’d together,
or a flags object returned from the flags attribute of an array with the necessary requirements.

Using an ndpointer class in the argtypes method can make it significantly safer to call a C function using ctypes and the
data- area of an ndarray. You may still want to wrap the function in an additional Python wrapper to make it user-friendly
(hiding some obvious arguments andmaking some arguments output arguments). In this process, therequires function
in NumPy may be useful to return the right kind of array from a given input.

8.2. Using Python as glue 189

NumPy User Guide, Release 1.22.0

Complete example

In this example, we will demonstrate how the addition function and the filter function implemented previously using the
other approaches can be implemented using ctypes. First, the C code which implements the algorithms contains the
functions zadd, dadd, sadd, cadd, and dfilter2d. The zadd function is:

/* Add arrays of contiguous data */
typedef struct {double real; double imag;} cdouble;
typedef struct {float real; float imag;} cfloat;
void zadd(cdouble *a, cdouble *b, cdouble *c, long n)
{

while (n--) {
c->real = a->real + b->real;
c->imag = a->imag + b->imag;
a++; b++; c++;

}
}

with similar code for cadd, dadd, and sadd that handles complex float, double, and float data-types, respectively:

void cadd(cfloat *a, cfloat *b, cfloat *c, long n)
{

while (n--) {
c->real = a->real + b->real;
c->imag = a->imag + b->imag;
a++; b++; c++;

}
}
void dadd(double *a, double *b, double *c, long n)
{

while (n--) {
*c++ = *a++ + *b++;

}
}
void sadd(float *a, float *b, float *c, long n)
{

while (n--) {
*c++ = *a++ + *b++;

}
}

The code.c file also contains the function dfilter2d:

/*
* Assumes b is contiguous and has strides that are multiples of
* sizeof(double)
*/

void
dfilter2d(double *a, double *b, ssize_t *astrides, ssize_t *dims)
{

ssize_t i, j, M, N, S0, S1;
ssize_t r, c, rm1, rp1, cp1, cm1;

M = dims[0]; N = dims[1];
S0 = astrides[0]/sizeof(double);
S1 = astrides[1]/sizeof(double);
for (i = 1; i < M - 1; i++) {

r = i*S0;
(continues on next page)

190 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
rp1 = r + S0;
rm1 = r - S0;
for (j = 1; j < N - 1; j++) {

c = j*S1;
cp1 = j + S1;
cm1 = j - S1;
b[i*N + j] = a[r + c] +

(a[rp1 + c] + a[rm1 + c] +
a[r + cp1] + a[r + cm1])*0.5 +

(a[rp1 + cp1] + a[rp1 + cm1] +
a[rm1 + cp1] + a[rm1 + cp1])*0.25;

}
}

}

A possible advantage this code has over the Fortran-equivalent code is that it takes arbitrarily strided (i.e. non-contiguous
arrays) and may also run faster depending on the optimization capability of your compiler. But, it is an obviously more
complicated than the simple code in filter.f. This code must be compiled into a shared library. On my Linux system
this is accomplished using:

gcc -o code.so -shared code.c

Which creates a shared_library named code.so in the current directory. On Windows don’t forget to either add
__declspec(dllexport) in front of void on the line preceding each function definition, or write a code.def
file that lists the names of the functions to be exported.
A suitable Python interface to this shared library should be constructed. To do this create a file named interface.py with
the following lines at the top:

__all__ = ['add', 'filter2d']

import numpy as np
import os

_path = os.path.dirname('__file__')
lib = np.ctypeslib.load_library('code', _path)
_typedict = {'zadd' : complex, 'sadd' : np.single,

'cadd' : np.csingle, 'dadd' : float}
for name in _typedict.keys():

val = getattr(lib, name)
val.restype = None
_type = _typedict[name]
val.argtypes = [np.ctypeslib.ndpointer(_type,

flags='aligned, contiguous'),
np.ctypeslib.ndpointer(_type,
flags='aligned, contiguous'),

np.ctypeslib.ndpointer(_type,
flags='aligned, contiguous,'\

'writeable'),
np.ctypeslib.c_intp]

This code loads the shared library named code.{ext} located in the same path as this file. It then adds a return type
of void to the functions contained in the library. It also adds argument checking to the functions in the library so that
ndarrays can be passed as the first three arguments along with an integer (large enough to hold a pointer on the platform)
as the fourth argument.
Setting up the filtering function is similar and allows the filtering function to be called with ndarray arguments as the first

8.2. Using Python as glue 191

NumPy User Guide, Release 1.22.0

two arguments and with pointers to integers (large enough to handle the strides and shape of an ndarray) as the last two
arguments.:

lib.dfilter2d.restype=None
lib.dfilter2d.argtypes = [np.ctypeslib.ndpointer(float, ndim=2,

flags='aligned'),
np.ctypeslib.ndpointer(float, ndim=2,

flags='aligned, contiguous,'\
'writeable'),

ctypes.POINTER(np.ctypeslib.c_intp),
ctypes.POINTER(np.ctypeslib.c_intp)]

Next, define a simple selection function that chooses which addition function to call in the shared library based on the
data-type:

def select(dtype):
if dtype.char in ['?bBhHf']:

return lib.sadd, single
elif dtype.char in ['F']:

return lib.cadd, csingle
elif dtype.char in ['DG']:

return lib.zadd, complex
else:

return lib.dadd, float
return func, ntype

Finally, the two functions to be exported by the interface can be written simply as:

def add(a, b):
requires = ['CONTIGUOUS', 'ALIGNED']
a = np.asanyarray(a)
func, dtype = select(a.dtype)
a = np.require(a, dtype, requires)
b = np.require(b, dtype, requires)
c = np.empty_like(a)
func(a,b,c,a.size)
return c

and:

def filter2d(a):
a = np.require(a, float, ['ALIGNED'])
b = np.zeros_like(a)
lib.dfilter2d(a, b, a.ctypes.strides, a.ctypes.shape)
return b

Conclusion

Using ctypes is a powerful way to connect Python with arbitrary C-code. Its advantages for extending Python include
• clean separation of C code from Python code

– no need to learn a new syntax except Python and C
– allows re-use of C code
– functionality in shared libraries written for other purposes can be obtained with a simple Python wrapper and
search for the library.

192 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

• easy integration with NumPy through the ctypes attribute
• full argument checking with the ndpointer class factory

Its disadvantages include
• It is difficult to distribute an extension module made using ctypes because of a lack of support for building shared
libraries in distutils.

• You must have shared-libraries of your code (no static libraries).
• Very little support for C++ code and its different library-calling conventions. You will probably need a C wrapper
around C++ code to use with ctypes (or just use Boost.Python instead).

Because of the difficulty in distributing an extension module made using ctypes, f2py and Cython are still the easiest ways
to extend Python for package creation. However, ctypes is in some cases a useful alternative. This should bring more
features to ctypes that should eliminate the difficulty in extending Python and distributing the extension using ctypes.

8.2.6 Additional tools you may find useful

These tools have been found useful by others using Python and so are included here. They are discussed separately
because they are either older ways to do things now handled by f2py, Cython, or ctypes (SWIG, PyFort) or because of a
lack of reasonable documentation (SIP, Boost). Links to these methods are not included since the most relevant can be
found using Google or some other search engine, and any links provided here would be quickly dated. Do not assume
that inclusion in this list means that the package deserves attention. Information about these packages are collected here
because many people have found them useful and we’d like to give you as many options as possible for tackling the
problem of easily integrating your code.

SWIG

Simplified Wrapper and Interface Generator (SWIG) is an old and fairly stable method for wrapping C/C++-libraries
to a large variety of other languages. It does not specifically understand NumPy arrays but can be made usable with
NumPy through the use of typemaps. There are some sample typemaps in the numpy/tools/swig directory under numpy.i
together with an example module that makes use of them. SWIG excels at wrapping large C/C++ libraries because it can
(almost) parse their headers and auto-produce an interface. Technically, you need to generate a .i file that defines the
interface. Often, however, this .i file can be parts of the header itself. The interface usually needs a bit of tweaking to
be very useful. This ability to parse C/C++ headers and auto-generate the interface still makes SWIG a useful approach
to adding functionalilty from C/C++ into Python, despite the other methods that have emerged that are more targeted
to Python. SWIG can actually target extensions for several languages, but the typemaps usually have to be language-
specific. Nonetheless, with modifications to the Python-specific typemaps, SWIG can be used to interface a library with
other languages such as Perl, Tcl, and Ruby.
My experience with SWIG has been generally positive in that it is relatively easy to use and quite powerful. It has been
used often before becoming more proficient at writing C-extensions. However, writing custom interfaces with SWIG is
often troublesome because it must be done using the concept of typemaps which are not Python specific and are written
in a C-like syntax. Therefore, other gluing strategies are preferred and SWIG would be probably considered only to wrap
a very-large C/C++ library. Nonetheless, there are others who use SWIG quite happily.

8.2. Using Python as glue 193

NumPy User Guide, Release 1.22.0

SIP

SIP is another tool for wrapping C/C++ libraries that is Python specific and appears to have very good support for C++.
Riverbank Computing developed SIP in order to create Python bindings to the QT library. An interface file must be
written to generate the binding, but the interface file looks a lot like a C/C++ header file. While SIP is not a full C++
parser, it understands quite a bit of C++ syntax as well as its own special directives that allow modification of how the
Python binding is accomplished. It also allows the user to define mappings between Python types and C/C++ structures
and classes.

Boost Python

Boost is a repository of C++ libraries and Boost.Python is one of those libraries which provides a concise interface for
binding C++ classes and functions to Python. The amazing part of the Boost.Python approach is that it works entirely in
pure C++ without introducing a new syntax. Many users of C++ report that Boost.Python makes it possible to combine
the best of both worlds in a seamless fashion. Using Boost to wrap simple C-subroutines is usually over-kill. Its primary
purpose is to make C++ classes available in Python. So, if you have a set of C++ classes that need to be integrated cleanly
into Python, consider learning about and using Boost.Python.

PyFort

PyFort is a nice tool for wrapping Fortran and Fortran-like C-code into Python with support for Numeric arrays. It was
written by Paul Dubois, a distinguished computer scientist and the very first maintainer of Numeric (now retired). It is
worth mentioning in the hopes that somebody will update PyFort to work with NumPy arrays as well which now support
either Fortran or C-style contiguous arrays.

8.3 Writing your own ufunc

I have the Power!
— He-Man

8.3.1 Creating a new universal function

Before reading this, it may help to familiarize yourself with the basics of C extensions for Python by reading/skimming
the tutorials in Section 1 of Extending and Embedding the Python Interpreter and in How to extend NumPy

The umath module is a computer-generated C-module that creates many ufuncs. It provides a great many examples of
how to create a universal function. Creating your own ufunc that will make use of the ufunc machinery is not difficult
either. Suppose you have a function that you want to operate element-by-element over its inputs. By creating a new ufunc
you will obtain a function that handles

• broadcasting
• N-dimensional looping
• automatic type-conversions with minimal memory usage
• optional output arrays

It is not difficult to create your own ufunc. All that is required is a 1-d loop for each data-type you want to support. Each
1-d loop must have a specific signature, and only ufuncs for fixed-size data-types can be used. The function call used to
create a new ufunc to work on built-in data-types is given below. A different mechanism is used to register ufuncs for
user-defined data-types.

194 8. Using NumPy C-API

https://docs.python.org/extending/index.html

NumPy User Guide, Release 1.22.0

In the next several sections we give example code that can be easily modified to create your own ufuncs. The examples
are successively more complete or complicated versions of the logit function, a common function in statistical modeling.
Logit is also interesting because, due to the magic of IEEE standards (specifically IEEE 754), all of the logit functions
created below automatically have the following behavior.

>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan

This is wonderful because the function writer doesn’t have to manually propagate infs or nans.

8.3.2 Example Non-ufunc extension

For comparison and general edification of the reader we provide a simple implementation of a C extension of logit that
uses no numpy.
To do this we need two files. The first is the C file which contains the actual code, and the second is the setup.py file used
to create the module.

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <math.h>

/*
* spammodule.c
* This is the C code for a non-numpy Python extension to
* define the logit function, where logit(p) = log(p/(1-p)).
* This function will not work on numpy arrays automatically.
* numpy.vectorize must be called in python to generate
* a numpy-friendly function.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*/

/* This declares the logit function */
static PyObject* spam_logit(PyObject *self, PyObject *args);

/*
* This tells Python what methods this module has.
* See the Python-C API for more information.
*/
static PyMethodDef SpamMethods[] = {

{"logit",
spam_logit,
METH_VARARGS, "compute logit"},

{NULL, NULL, 0, NULL}
};

(continues on next page)

8.3. Writing your own ufunc 195

NumPy User Guide, Release 1.22.0

(continued from previous page)

/*
* This actually defines the logit function for
* input args from Python.
*/

static PyObject* spam_logit(PyObject *self, PyObject *args)
{

double p;

/* This parses the Python argument into a double */
if(!PyArg_ParseTuple(args, "d", &p)) {

return NULL;
}

/* THE ACTUAL LOGIT FUNCTION */
p = p/(1-p);
p = log(p);

/*This builds the answer back into a python object */
return Py_BuildValue("d", p);

}

/* This initiates the module using the above definitions. */
static struct PyModuleDef moduledef = {

PyModuleDef_HEAD_INIT,
"spam",
NULL,
-1,
SpamMethods,
NULL,
NULL,
NULL,
NULL

};

PyMODINIT_FUNC PyInit_spam(void)
{

PyObject *m;
m = PyModule_Create(&moduledef);
if (!m) {

return NULL;
}
return m;

}

To use the setup.py file, place setup.py and spammodule.c in the same folder. Then python setup.py build will build the
module to import, or setup.py install will install the module to your site-packages directory.

'''
setup.py file for spammodule.c

Calling
$python setup.py build_ext --inplace

(continues on next page)

196 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
will build the extension library in the current file.

Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so

Calling
$python setup.py install
will install the module in your site-packages file.

See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org for more information.

'''

from distutils.core import setup, Extension

module1 = Extension('spam', sources=['spammodule.c'],
include_dirs=['/usr/local/lib'])

setup(name = 'spam',
version='1.0',
description='This is my spam package',
ext_modules = [module1])

Once the spammodule is imported into python, you can call logit via spam.logit. Note that the function used above cannot
be applied as-is to numpy arrays. To do so we must call numpy.vectorize on it. For example, if a python interpreter is
opened in the file containing the spam library or spam has been installed, one can perform the following commands:

>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([-inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,

0.22314355, 0.69314718, 1.25276297, 2.07944154, inf])

THE RESULTING LOGIT FUNCTION IS NOT FAST! numpy.vectorize simply loops over spam.logit. The loop is
done at the C level, but the numpy array is constantly being parsed and build back up. This is expensive. When the author
compared numpy.vectorize(spam.logit) against the logit ufuncs constructed below, the logit ufuncs were almost exactly 4
times faster. Larger or smaller speedups are, of course, possible depending on the nature of the function.

8.3. Writing your own ufunc 197

NumPy User Guide, Release 1.22.0

8.3.3 Example NumPy ufunc for one dtype

For simplicity we give a ufunc for a single dtype, the ‘f8’ double. As in the previous section, we first give the .c file and
then the setup.py file used to create the module containing the ufunc.
The place in the code corresponding to the actual computations for the ufunc are marked with /*BEGIN main ufunc
computation*/ and /*END main ufunc computation*/. The code in between those lines is the primary thing that must be
changed to create your own ufunc.

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"
#include <math.h>

/*
* single_type_logit.c
* This is the C code for creating your own
* NumPy ufunc for a logit function.
*
* In this code we only define the ufunc for
* a single dtype. The computations that must
* be replaced to create a ufunc for
* a different function are marked with BEGIN
* and END.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*/

static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}

};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void double_logit(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];

double tmp;

for (i = 0; i < n; i++) {
/*BEGIN main ufunc computation*/
tmp = *(double *)in;
tmp /= 1-tmp;
*((double *)out) = log(tmp);
/*END main ufunc computation*/

in += in_step;
out += out_step;

}

(continues on next page)

198 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
}

/*This a pointer to the above function*/
PyUFuncGenericFunction funcs[1] = {&double_logit};

/* These are the input and return dtypes of logit.*/
static char types[2] = {NPY_DOUBLE, NPY_DOUBLE};

static void *data[1] = {NULL};

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL

};

PyMODINIT_FUNC PyInit_npufunc(void)
{

PyObject *m, *logit, *d;
m = PyModule_Create(&moduledef);
if (!m) {

return NULL;
}

import_array();
import_umath();

logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
PyUFunc_None, "logit",
"logit_docstring", 0);

d = PyModule_GetDict(m);

PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);

return m;
}

This is a setup.py file for the above code. As before, the module can be build via calling python setup.py build at the
command prompt, or installed to site-packages via python setup.py install.

'''
setup.py file for logit.c
Note that since this is a numpy extension
we use numpy.distutils instead of
distutils from the python standard library.

Calling
$python setup.py build_ext --inplace

(continues on next page)

8.3. Writing your own ufunc 199

NumPy User Guide, Release 1.22.0

(continued from previous page)
will build the extension library in the current file.

Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so

Calling
$python setup.py install
will install the module in your site-packages file.

See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org and the documentation
on numpy.distutils for more information.

'''

def configuration(parent_package='', top_path=None):
import numpy
from numpy.distutils.misc_util import Configuration

config = Configuration('npufunc_directory',
parent_package,
top_path)

config.add_extension('npufunc', ['single_type_logit.c'])

return config

if __name__ == "__main__":
from numpy.distutils.core import setup
setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([-inf, -1.09861229, 0. , 1.09861229, inf])

8.3.4 Example NumPy ufunc with multiple dtypes

We finally give an example of a full ufunc, with inner loops for half-floats, floats, doubles, and long doubles. As in the
previous sections we first give the .c file and then the corresponding setup.py file.
The places in the code corresponding to the actual computations for the ufunc are marked with /*BEGIN main ufunc
computation*/ and /*END main ufunc computation*/. The code in between those lines is the primary thing that must be
changed to create your own ufunc.

200 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include <math.h>

/*
* multi_type_logit.c
* This is the C code for creating your own
* NumPy ufunc for a logit function.
*
* Each function of the form type_logit defines the
* logit function for a different numpy dtype. Each
* of these functions must be modified when you
* create your own ufunc. The computations that must
* be replaced to create a ufunc for
* a different function are marked with BEGIN
* and END.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*
*/

static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}

};

/* The loop definitions must precede the PyMODINIT_FUNC. */

static void long_double_logit(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out=args[1];
npy_intp in_step = steps[0], out_step = steps[1];

long double tmp;

for (i = 0; i < n; i++) {
/*BEGIN main ufunc computation*/
tmp = *(long double *)in;
tmp /= 1-tmp;
*((long double *)out) = logl(tmp);
/*END main ufunc computation*/

in += in_step;
out += out_step;

}
}

static void double_logit(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

(continues on next page)

8.3. Writing your own ufunc 201

NumPy User Guide, Release 1.22.0

(continued from previous page)
{

npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];

double tmp;

for (i = 0; i < n; i++) {
/*BEGIN main ufunc computation*/
tmp = *(double *)in;
tmp /= 1-tmp;
*((double *)out) = log(tmp);
/*END main ufunc computation*/

in += in_step;
out += out_step;

}
}

static void float_logit(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp n = dimensions[0];
char *in=args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];

float tmp;

for (i = 0; i < n; i++) {
/*BEGIN main ufunc computation*/
tmp = *(float *)in;
tmp /= 1-tmp;
*((float *)out) = logf(tmp);
/*END main ufunc computation*/

in += in_step;
out += out_step;

}
}

static void half_float_logit(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];

float tmp;

for (i = 0; i < n; i++) {

/*BEGIN main ufunc computation*/
tmp = *(npy_half *)in;

(continues on next page)

202 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
tmp = npy_half_to_float(tmp);
tmp /= 1-tmp;
tmp = logf(tmp);
*((npy_half *)out) = npy_float_to_half(tmp);
/*END main ufunc computation*/

in += in_step;
out += out_step;

}
}

/*This gives pointers to the above functions*/
PyUFuncGenericFunction funcs[4] = {&half_float_logit,

&float_logit,
&double_logit,
&long_double_logit};

static char types[8] = {NPY_HALF, NPY_HALF,
NPY_FLOAT, NPY_FLOAT,
NPY_DOUBLE,NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_LONGDOUBLE};

static void *data[4] = {NULL, NULL, NULL, NULL};

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL

};

PyMODINIT_FUNC PyInit_npufunc(void)
{

PyObject *m, *logit, *d;
m = PyModule_Create(&moduledef);
if (!m) {

return NULL;
}

import_array();
import_umath();

logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1,
PyUFunc_None, "logit",
"logit_docstring", 0);

d = PyModule_GetDict(m);

PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);

return m;
(continues on next page)

8.3. Writing your own ufunc 203

NumPy User Guide, Release 1.22.0

(continued from previous page)
}

This is a setup.py file for the above code. As before, the module can be build via calling python setup.py build at the
command prompt, or installed to site-packages via python setup.py install.

'''
setup.py file for logit.c
Note that since this is a numpy extension
we use numpy.distutils instead of
distutils from the python standard library.

Calling
$python setup.py build_ext --inplace
will build the extension library in the current file.

Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so

Calling
$python setup.py install
will install the module in your site-packages file.

See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org and the documentation
on numpy.distutils for more information.

'''

def configuration(parent_package='', top_path=None):
import numpy
from numpy.distutils.misc_util import Configuration
from numpy.distutils.misc_util import get_info

#Necessary for the half-float d-type.
info = get_info('npymath')

config = Configuration('npufunc_directory',
parent_package,
top_path)

config.add_extension('npufunc',
['multi_type_logit.c'],
extra_info=info)

return config

if __name__ == "__main__":
from numpy.distutils.core import setup
setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

204 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([-inf, -1.09861229, 0. , 1.09861229, inf])

8.3.5 Example NumPy ufunc with multiple arguments/return values

Our final example is a ufunc with multiple arguments. It is a modification of the code for a logit ufunc for data with a
single dtype. We compute (A*B, logit(A*B)).
We only give the C code as the setup.py file is exactly the same as the setup.py file in Example NumPy ufunc for one dtype,
except that the line

config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

config.add_extension('npufunc', ['multi_arg_logit.c'])

The C file is given below. The ufunc generated takes two arguments A and B. It returns a tuple whose first element is A*B
and whose second element is logit(A*B). Note that it automatically supports broadcasting, as well as all other properties
of a ufunc.

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include <math.h>

/*
* multi_arg_logit.c
* This is the C code for creating your own
* NumPy ufunc for a multiple argument, multiple
* return value ufunc. The places where the
* ufunc computation is carried out are marked
* with comments.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*
*/

static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}

};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void double_logitprod(char **args, npy_intp *dimensions,

(continues on next page)

8.3. Writing your own ufunc 205

NumPy User Guide, Release 1.22.0

(continued from previous page)
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp n = dimensions[0];
char *in1 = args[0], *in2 = args[1];
char *out1 = args[2], *out2 = args[3];
npy_intp in1_step = steps[0], in2_step = steps[1];
npy_intp out1_step = steps[2], out2_step = steps[3];

double tmp;

for (i = 0; i < n; i++) {
/*BEGIN main ufunc computation*/
tmp = *(double *)in1;
tmp *= *(double *)in2;
*((double *)out1) = tmp;
*((double *)out2) = log(tmp/(1-tmp));
/*END main ufunc computation*/

in1 += in1_step;
in2 += in2_step;
out1 += out1_step;
out2 += out2_step;

}
}

/*This a pointer to the above function*/
PyUFuncGenericFunction funcs[1] = {&double_logitprod};

/* These are the input and return dtypes of logit.*/

static char types[4] = {NPY_DOUBLE, NPY_DOUBLE,
NPY_DOUBLE, NPY_DOUBLE};

static void *data[1] = {NULL};

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL

};

PyMODINIT_FUNC PyInit_npufunc(void)
{

PyObject *m, *logit, *d;
m = PyModule_Create(&moduledef);
if (!m) {

return NULL;
}

(continues on next page)

206 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)

import_array();
import_umath();

logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
PyUFunc_None, "logit",
"logit_docstring", 0);

d = PyModule_GetDict(m);

PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);

return m;
}

8.3.6 Example NumPy ufunc with structured array dtype arguments

This example shows how to create a ufunc for a structured array dtype. For the example we show a trivial ufunc
for adding two arrays with dtype ‘u8,u8,u8’. The process is a bit different from the other examples since a call to
PyUFunc_FromFuncAndData doesn’t fully register ufuncs for custom dtypes and structured array dtypes. We need
to also call PyUFunc_RegisterLoopForDescr to finish setting up the ufunc.
We only give the C code as the setup.py file is exactly the same as the setup.py file in Example NumPy ufunc for one dtype,
except that the line

config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

config.add_extension('npufunc', ['add_triplet.c'])

The C file is given below.

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"
#include <math.h>

/*
* add_triplet.c
* This is the C code for creating your own
* NumPy ufunc for a structured array dtype.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*/

static PyMethodDef StructUfuncTestMethods[] = {
{NULL, NULL, 0, NULL}

};

(continues on next page)

8.3. Writing your own ufunc 207

NumPy User Guide, Release 1.22.0

(continued from previous page)

/* The loop definition must precede the PyMODINIT_FUNC. */

static void add_uint64_triplet(char **args, npy_intp *dimensions,
npy_intp* steps, void* data)

{
npy_intp i;
npy_intp is1=steps[0];
npy_intp is2=steps[1];
npy_intp os=steps[2];
npy_intp n=dimensions[0];
uint64_t *x, *y, *z;

char *i1=args[0];
char *i2=args[1];
char *op=args[2];

for (i = 0; i < n; i++) {

x = (uint64_t*)i1;
y = (uint64_t*)i2;
z = (uint64_t*)op;

z[0] = x[0] + y[0];
z[1] = x[1] + y[1];
z[2] = x[2] + y[2];

i1 += is1;
i2 += is2;
op += os;

}
}

/* This a pointer to the above function */
PyUFuncGenericFunction funcs[1] = {&add_uint64_triplet};

/* These are the input and return dtypes of add_uint64_triplet. */
static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64};

static void *data[1] = {NULL};

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"struct_ufunc_test",
NULL,
-1,
StructUfuncTestMethods,
NULL,
NULL,
NULL,
NULL

};

PyMODINIT_FUNC PyInit_struct_ufunc_test(void)
{

PyObject *m, *add_triplet, *d;
PyObject *dtype_dict;

(continues on next page)

208 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
PyArray_Descr *dtype;
PyArray_Descr *dtypes[3];

m = PyModule_Create(&moduledef);

if (m == NULL) {
return NULL;

}

import_array();
import_umath();

/* Create a new ufunc object */
add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1,

PyUFunc_None, "add_triplet",
"add_triplet_docstring", 0);

dtype_dict = Py_BuildValue("[(s, s), (s, s), (s, s)]",
"f0", "u8", "f1", "u8", "f2", "u8");

PyArray_DescrConverter(dtype_dict, &dtype);
Py_DECREF(dtype_dict);

dtypes[0] = dtype;
dtypes[1] = dtype;
dtypes[2] = dtype;

/* Register ufunc for structured dtype */
PyUFunc_RegisterLoopForDescr(add_triplet,

dtype,
&add_uint64_triplet,
dtypes,
NULL);

d = PyModule_GetDict(m);

PyDict_SetItemString(d, "add_triplet", add_triplet);
Py_DECREF(add_triplet);
return m;

}

The returned ufunc object is a callable Python object. It should be placed in a (module) dictionary under the same name as
was used in the name argument to the ufunc-creation routine. The following example is adapted from the umath module

static PyUFuncGenericFunction atan2_functions[] = {
PyUFunc_ff_f, PyUFunc_dd_d,
PyUFunc_gg_g, PyUFunc_OO_O_method};

static void* atan2_data[] = {
(void *)atan2f,(void *) atan2,
(void *)atan2l,(void *)"arctan2"};

static char atan2_signatures[] = {
NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE
NPY_OBJECT, NPY_OBJECT, NPY_OBJECT};

...
/* in the module initialization code */

(continues on next page)

8.3. Writing your own ufunc 209

NumPy User Guide, Release 1.22.0

(continued from previous page)
PyObject *f, *dict, *module;
...
dict = PyModule_GetDict(module);
...
f = PyUFunc_FromFuncAndData(atan2_functions,

atan2_data, atan2_signatures, 4, 2, 1,
PyUFunc_None, "arctan2",
"a safe and correct arctan(x1/x2)", 0);

PyDict_SetItemString(dict, "arctan2", f);
Py_DECREF(f);
...

8.4 Beyond the Basics

The voyage of discovery is not in seeking new landscapes but in having
new eyes.
— Marcel Proust

Discovery is seeing what everyone else has seen and thinking what no
one else has thought.
— Albert Szent-Gyorgi

8.4.1 Iterating over elements in the array

Basic Iteration

One common algorithmic requirement is to be able to walk over all elements in a multidimensional array. The array
iterator object makes this easy to do in a generic way that works for arrays of any dimension. Naturally, if you know
the number of dimensions you will be using, then you can always write nested for loops to accomplish the iteration. If,
however, you want to write code that works with any number of dimensions, then you can make use of the array iterator.
An array iterator object is returned when accessing the .flat attribute of an array.
Basic usage is to call PyArray_IterNew (array) where array is an ndarray object (or one of its sub-classes).
The returned object is an array-iterator object (the same object returned by the .flat attribute of the ndarray). This
object is usually cast to PyArrayIterObject* so that its members can be accessed. The only members that are needed are
iter->size which contains the total size of the array, iter->index, which contains the current 1-d index into the
array, and iter->dataptr which is a pointer to the data for the current element of the array. Sometimes it is also
useful to access iter->ao which is a pointer to the underlying ndarray object.
After processing data at the current element of the array, the next element of the array can be obtained using the macro
PyArray_ITER_NEXT (iter). The iteration always proceeds in a C-style contiguous fashion (last index varying the
fastest). The PyArray_ITER_GOTO (iter, destination) can be used to jump to a particular point in the array,
where destination is an array of npy_intp data-type with space to handle at least the number of dimensions in the
underlying array. Occasionally it is useful to use PyArray_ITER_GOTO1D (iter, index) which will jump to the
1-d index given by the value of index. The most common usage, however, is given in the following example.

PyObject *obj; /* assumed to be some ndarray object */
PyArrayIterObject *iter;
...

(continues on next page)

210 8. Using NumPy C-API

NumPy User Guide, Release 1.22.0

(continued from previous page)
iter = (PyArrayIterObject *)PyArray_IterNew(obj);
if (iter == NULL) goto fail; /* Assume fail has clean-up code */
while (iter->index < iter->size) {

/* do something with the data at it->dataptr */
PyArray_ITER_NEXT(it);

}
...

You can also use PyArrayIter_Check (obj) to ensure you have an iterator object and PyArray_ITER_RESET
(iter) to reset an iterator object back to the beginning of the array.
It should be emphasized at this point that you may not need the array iterator if your array is already contiguous (using an
array iterator will work but will be slower than the fastest code you could write). The major purpose of array iterators is to
encapsulate iteration over N-dimensional arrays with arbitrary strides. They are used in many, many places in the NumPy
source code itself. If you already know your array is contiguous (Fortran or C), then simply adding the element- size to
a running pointer variable will step you through the array very efficiently. In other words, code like this will probably be
faster for you in the contiguous case (assuming doubles).

npy_intp size;
double *dptr; /* could make this any variable type */
size = PyArray_SIZE(obj);
dptr = PyArray_DATA(obj);
while(size--) {

/* do something with the data at dptr */
dptr++;

}

Iterating over all but one axis

A common algorithm is to loop over all elements of an array and perform some function with each element by issuing a
function call. As function calls can be time consuming, one way to speed up this kind of algorithm is to write the function
so it takes a vector of data and then write the iteration so the function call is performed for an entire dimension of data at a
time. This increases the amount of work done per function call, thereby reducing the function-call over-head to a small(er)
fraction of the total time. Even if the interior of the loop is performed without a function call it can be advantageous to
perform the inner loop over the dimension with the highest number of elements to take advantage of speed enhancements
available on micro- processors that use pipelining to enhance fundamental operations.
The PyArray_IterAllButAxis (array, &dim) constructs an iterator object that is modified so that it
will not iterate over the dimension indicated by dim. The only restriction on this iterator object, is that the
PyArray_ITER_GOTO1D (it, ind) macro cannot be used (thus flat indexing won’t work either if you pass this
object back to Python — so you shouldn’t do this). Note that the returned object from this routine is still usually cast
to PyArrayIterObject *. All that’s been done is to modify the strides and dimensions of the returned iterator to simulate
iterating over array[…,0,…] where 0 is placed on the dimth dimension. If dim is negative, then the dimension with the
largest axis is found and used.

8.4. Beyond the Basics 211

NumPy User Guide, Release 1.22.0

Iterating over multiple arrays

Very often, it is desirable to iterate over several arrays at the same time. The universal functions are an example of this
kind of behavior. If all you want to do is iterate over arrays with the same shape, then simply creating several iterator
objects is the standard procedure. For example, the following code iterates over two arrays assumed to be the same shape
and size (actually obj1 just has to have at least as many total elements as does obj2):

/* It is already assumed that obj1 and obj2
are ndarrays of the same shape and size.

*/
iter1 = (PyArrayIterObject *)PyArray_IterNew(obj1);
if (iter1 == NULL) goto fail;
iter2 = (PyArrayIterObject *)PyArray_IterNew(obj2);
if (iter2 == NULL) goto fail; /* assume iter1 is DECREF'd at fail */
while (iter2->index < iter2->size) {

/* process with iter1->dataptr and iter2->dataptr */
PyArray_ITER_NEXT(iter1);
PyArray_ITER_NEXT(iter2);

}

Broadcasting over multiple arrays

When multiple arrays are involved in an operation, you may want to use the same broadcasting rules that the math
operations (i.e. the ufuncs) use. This can be done easily using the PyArrayMultiIterObject. This is the
object returned from the Python command numpy.broadcast and it is almost as easy to use from C. The function
PyArray_MultiIterNew (n, ...) is used (with n input objects in place of ...). The input objects can be
arrays or anything that can be converted into an array. A pointer to a PyArrayMultiIterObject is returned. Broad-
casting has already been accomplished which adjusts the iterators so that all that needs to be done to advance to the
next element in each array is for PyArray_ITER_NEXT to be called for each of the inputs. This incrementing is
automatically performed by PyArray_MultiIter_NEXT (obj) macro (which can handle a multiterator obj
as either a PyArrayMultiIterObject* or a PyObject*). The data from input number i is available using
PyArray_MultiIter_DATA (obj, i). An example of using this feature follows.

mobj = PyArray_MultiIterNew(2, obj1, obj2);
size = mobj->size;
while(size--) {

ptr1 = PyArray_MultiIter_DATA(mobj, 0);
ptr2 = PyArray_MultiIter_DATA(mobj, 1);
/* code using contents of ptr1 and ptr2 */
PyArray_MultiIter_NEXT(mobj);

}

The function PyArray_RemoveSmallest (multi) can be used to take a multi-iterator object and adjust all the
iterators so that iteration does not take place over the largest dimension (it makes that dimension of size 1). The code
being looped over that makes use of the pointers will very-likely also need the strides data for each of the iterators. This
information is stored in multi->iters[i]->strides.
There are several examples of using the multi-iterator in the NumPy source code as it makes N-dimensional broadcasting-
code very simple to write. Browse the source for more examples.

212 8. Using NumPy C-API

https://docs.python.org/dev/c\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} api/structures.html#c.PyObject

NumPy User Guide, Release 1.22.0

8.4.2 User-defined data-types

NumPy comes with 24 builtin data-types. While this covers a large majority of possible use cases, it is conceivable that
a user may have a need for an additional data-type. There is some support for adding an additional data-type into the
NumPy system. This additional data- type will behave much like a regular data-type except ufuncs must have 1-d loops
registered to handle it separately. Also checking for whether or not other data-types can be cast “safely” to and from this
new type or not will always return “can cast” unless you also register which types your new data-type can be cast to and
from.
The NumPy source code includes an example of a custom data-type as part of its test suite. The file
_rational_tests.c.src in the source code directory numpy/numpy/core/src/umath/ contains an im-
plementation of a data-type that represents a rational number as the ratio of two 32 bit integers.

Adding the new data-type

To begin to make use of the new data-type, you need to first define a new Python type to hold the scalars of your new
data-type. It should be acceptable to inherit from one of the array scalars if your new type has a binary compatible layout.
This will allow your new data type to have the methods and attributes of array scalars. New data- types must have a fixed
memory size (if you want to define a data-type that needs a flexible representation, like a variable-precision number, then
use a pointer to the object as the data-type). The memory layout of the object structure for the new Python type must be
PyObject_HEAD followed by the fixed-size memory needed for the data- type. For example, a suitable structure for the
new Python type is:

typedef struct {
PyObject_HEAD;
some_data_type obval;
/* the name can be whatever you want */

} PySomeDataTypeObject;

After you have defined a new Python type object, you must then define a new PyArray_Descr structure whose type-
object member will contain a pointer to the data-type you’ve just defined. In addition, the required functions in the
“.f” member must be defined: nonzero, copyswap, copyswapn, setitem, getitem, and cast. The more functions in the “.f”
member you define, however, the more useful the new data-type will be. It is very important to initialize unused functions
to NULL. This can be achieved using PyArray_InitArrFuncs (f).
Once a new PyArray_Descr structure is created and filled with the needed information and useful functions you
call PyArray_RegisterDataType (new_descr). The return value from this call is an integer providing you
with a unique type_number that specifies your data-type. This type number should be stored and made available
by your module so that other modules can use it to recognize your data-type (the other mechanism for finding a
user-defined data-type number is to search based on the name of the type-object associated with the data-type using
PyArray_TypeNumFromName).

Registering a casting function

You may want to allow builtin (and other user-defined) data-types to be cast automatically to your data-type. In order to
make this possible, you must register a casting function with the data-type you want to be able to cast from. This requires
writing low-level casting functions for each conversion you want to support and then registering these functions with the
data-type descriptor. A low-level casting function has the signature.
void castfunc(void *from, void *to, npy_intp n, void *fromarr, void *toarr)

Cast n elements from one type to another. The data to cast from is in a contiguous, correctly-swapped and aligned
chunk of memory pointed to by from. The buffer to cast to is also contiguous, correctly-swapped and aligned. The
fromarr and toarr arguments should only be used for flexible-element-sized arrays (string, unicode, void).

An example castfunc is:

8.4. Beyond the Basics 213

NumPy User Guide, Release 1.22.0

static void
double_to_float(double *from, float* to, npy_intp n,

void* ignore1, void* ignore2) {
while (n--) {

(*to++) = (double) *(from++);
}

}

This could then be registered to convert doubles to floats using the code:

doub = PyArray_DescrFromType(NPY_DOUBLE);
PyArray_RegisterCastFunc(doub, NPY_FLOAT,

(PyArray_VectorUnaryFunc *)double_to_float);
Py_DECREF(doub);

Registering coercion rules

By default, all user-defined data-types are not presumed to be safely castable to any builtin data-types. In addition builtin
data-types are not presumed to be safely castable to user-defined data-types. This situation limits the ability of user-
defined data-types to participate in the coercion system used by ufuncs and other times when automatic coercion takes
place in NumPy. This can be changed by registering data-types as safely castable from a particular data-type object. The
function PyArray_RegisterCanCast (from_descr, totype_number, scalarkind) should be used to specify that the
data-type object from_descr can be cast to the data-type with type number totype_number. If you are not trying to alter
scalar coercion rules, then use NPY_NOSCALAR for the scalarkind argument.
If you want to allow your new data-type to also be able to share in the scalar coercion rules, then you need to specify the
scalarkind function in the data-type object’s “.f” member to return the kind of scalar the new data-type should be seen as
(the value of the scalar is available to that function). Then, you can register data-types that can be cast to separately for
each scalar kind that may be returned from your user-defined data-type. If you don’t register scalar coercion handling,
then all of your user-defined data-types will be seen as NPY_NOSCALAR.

Registering a ufunc loop

You may also want to register low-level ufunc loops for your data-type so that an ndarray of your data-type can have math
applied to it seamlessly. Registering a new loop with exactly the same arg_types signature, silently replaces any previously
registered loops for that data-type.
Before you can register a 1-d loop for a ufunc, the ufunc must be previously created. Then you call
PyUFunc_RegisterLoopForType (…) with the information needed for the loop. The return value of this function
is 0 if the process was successful and -1 with an error condition set if it was not successful.

8.4.3 Subtyping the ndarray in C

One of the lesser-used features that has been lurking in Python since 2.2 is the ability to sub-class types in C. This facility
is one of the important reasons for basing NumPy off of the Numeric code-base which was already in C. A sub-type in C
allows much more flexibility with regards to memory management. Sub-typing in C is not difficult even if you have only
a rudimentary understanding of how to create new types for Python. While it is easiest to sub-type from a single parent
type, sub-typing from multiple parent types is also possible. Multiple inheritance in C is generally less useful than it is in
Python because a restriction on Python sub-types is that they have a binary compatible memory layout. Perhaps for this
reason, it is somewhat easier to sub-type from a single parent type.
All C-structures corresponding to Python objects must begin with PyObject_HEAD (or PyObject_VAR_HEAD). In
the same way, any sub-type must have a C-structure that begins with exactly the same memory layout as the parent type

214 8. Using NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
https://docs.python.org/dev/c-api/structures.html#c.PyObject_VAR_HEAD

NumPy User Guide, Release 1.22.0

(or all of the parent types in the case of multiple-inheritance). The reason for this is that Python may attempt to access
a member of the sub-type structure as if it had the parent structure (i.e. it will cast a given pointer to a pointer to the
parent structure and then dereference one of it’s members). If the memory layouts are not compatible, then this attempt
will cause unpredictable behavior (eventually leading to a memory violation and program crash).
One of the elements inPyObject_HEAD is a pointer to a type-object structure. A new Python type is created by creating
a new type-object structure and populating it with functions and pointers to describe the desired behavior of the type.
Typically, a new C-structure is also created to contain the instance-specific information needed for each object of the type
as well. For example, &PyArray_Type is a pointer to the type-object table for the ndarray while aPyArrayObject*
variable is a pointer to a particular instance of an ndarray (one of the members of the ndarray structure is, in turn, a pointer
to the type- object table &PyArray_Type). Finally PyType_Ready (<pointer_to_type_object>) must be called for
every new Python type.

Creating sub-types

To create a sub-type, a similar procedure must be followed except only behaviors that are different require new entries
in the type- object structure. All other entries can be NULL and will be filled in by PyType_Ready with appropriate
functions from the parent type(s). In particular, to create a sub-type in C follow these steps:

1. If needed create a new C-structure to handle each instance of your type. A typical C-structure would be:

typedef _new_struct {
PyArrayObject base;
/* new things here */

} NewArrayObject;

Notice that the full PyArrayObject is used as the first entry in order to ensure that the binary layout of instances of
the new type is identical to the PyArrayObject.

2. Fill in a newPython type-object structure with pointers to new functions that will over-ride the default behavior while
leaving any function that should remain the same unfilled (or NULL). The tp_name element should be different.

3. Fill in the tp_base member of the new type-object structure with a pointer to the (main) parent type object. For
multiple-inheritance, also fill in the tp_bases member with a tuple containing all of the parent objects in the order
they should be used to define inheritance. Remember, all parent-types must have the same C-structure for multiple
inheritance to work properly.

4. Call PyType_Ready (<pointer_to_new_type>). If this function returns a negative number, a failure occurred
and the type is not initialized. Otherwise, the type is ready to be used. It is generally important to place a reference
to the new type into the module dictionary so it can be accessed from Python.

More information on creating sub-types in C can be learned by reading PEP 253 (available at https://www.python.org/
dev/peps/pep-0253).

Specific features of ndarray sub-typing

Some special methods and attributes are used by arrays in order to facilitate the interoperation of sub-types with the base
ndarray type.

8.4. Beyond the Basics 215

https://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
https://docs.python.org/dev/c-api/type.html#c.PyType_Ready
https://docs.python.org/dev/c-api/type.html#c.PyType_Ready
https://docs.python.org/dev/c-api/type.html#c.PyType_Ready
https://www.python.org/dev/peps/pep-0253
https://www.python.org/dev/peps/pep-0253

NumPy User Guide, Release 1.22.0

The __array_finalize__ method
ndarray.__array_finalize__

Several array-creation functions of the ndarray allow specification of a particular sub-type to be created. This al-
lows sub-types to be handled seamlessly in many routines. When a sub-type is created in such a fashion, however,
neither the __new__ method nor the __init__ method gets called. Instead, the sub-type is allocated and the ap-
propriate instance-structure members are filled in. Finally, the __array_finalize__ attribute is looked-up
in the object dictionary. If it is present and not None, then it can be either a CObject containing a pointer to a
PyArray_FinalizeFunc or it can be a method taking a single argument (which could be None)
If the __array_finalize__ attribute is a CObject, then the pointer must be a pointer to a function with the
signature:

(int) (PyArrayObject *, PyObject *)

The first argument is the newly created sub-type. The second argument (if not NULL) is the “parent” array (if
the array was created using slicing or some other operation where a clearly-distinguishable parent is present). This
routine can do anything it wants to. It should return a -1 on error and 0 otherwise.
If the __array_finalize__ attribute is not None nor a CObject, then it must be a Python method that takes
the parent array as an argument (which could be None if there is no parent), and returns nothing. Errors in this
method will be caught and handled.

The __array_priority__ attribute
ndarray.__array_priority__

This attribute allows simple but flexible determination of which sub- type should be considered “primary” when an
operation involving two or more sub-types arises. In operations where different sub-types are being used, the sub-
type with the largest __array_priority__ attribute will determine the sub-type of the output(s). If two sub-
types have the same __array_priority__ then the sub-type of the first argument determines the output. The
default __array_priority__ attribute returns a value of 0.0 for the base ndarray type and 1.0 for a sub-type.
This attribute can also be defined by objects that are not sub-types of the ndarray and can be used to determine
which __array_wrap__ method should be called for the return output.

The __array_wrap__ method
ndarray.__array_wrap__

Any class or type can define this method which should take an ndarray argument and return an instance of the
type. It can be seen as the opposite of the __array__ method. This method is used by the ufuncs (and other
NumPy functions) to allow other objects to pass through. For Python >2.4, it can also be used to write a decorator
that converts a function that works only with ndarrays to one that works with any type with __array__ and
__array_wrap__ methods.

216 8. Using NumPy C-API

CHAPTER

NINE

NUMPY HOW TOS

These documents are intended as recipes to common tasks using NumPy. For detailed reference documentation of the
functions and classes contained in the package, see the API reference.

9.1 How to write a NumPy how-to

How-tos get straight to the point – they
• answer a focused question, or
• narrow a broad question into focused questions that the user can choose among.

9.1.1 A stranger has asked for directions…

“I need to refuel my car.”

9.1.2 Give a brief but explicit answer

• “Three kilometers/miles, take a right at Hayseed Road, it’s on your left.”

Add helpful details for newcomers (“Hayseed Road”, even though it’s the only turnoff at three km/mi). But not irrelevant
ones:

• Don’t also give directions from Route 7.
• Don’t explain why the town has only one filling station.

If there’s related background (tutorial, explanation, reference, alternative approach), bring it to the user’s attention with a
link (“Directions from Route 7,” “Why so few filling stations?”).

9.1.3 Delegate

• “Three km/mi, take a right at Hayseed Road, follow the signs.”

If the information is already documented and succinct enough for a how-to, just link to it, possibly after an introduction
(“Three km/mi, take a right”).

217

NumPy User Guide, Release 1.22.0

9.1.4 If the question is broad, narrow and redirect it

“I want to see the sights.”
The See the sights how-to should link to a set of narrower how-tos:

• Find historic buildings
• Find scenic lookouts
• Find the town center

and these might in turn link to still narrower how-tos – so the town center page might link to
• Find the court house
• Find city hall

By organizing how-tos this way, you not only display the options for people who need to narrow their question, you also
have provided answers for users who start with narrower questions (“I want to see historic buildings,” “Which way to city
hall?”).

9.1.5 If there are many steps, break them up

If a how-to has many steps:
• Consider breaking a step out into an individual how-to and linking to it.
• Include subheadings. They help readers grasp what’s coming and return where they left off.

9.1.6 Why write how-tos when there’s Stack Overflow, Reddit, Gitter…?

• We have authoritative answers.
• How-tos make the site less forbidding to non-experts.
• How-tos bring people into the site and help them discover other information that’s here .
• Creating how-tos helps us see NumPy usability through new eyes.

9.1.7 Aren’t how-tos and tutorials the same thing?

People use the terms “how-to” and “tutorial” interchangeably, but we draw a distinction, following Daniele Procida’s
taxonomy of documentation.

Documentation needs to meet users where they are. How-tos offer get-it-done information; the user wants steps to copy
and doesn’t necessarily want to understand NumPy. Tutorials are warm-fuzzy information; the user wants a feel for some
aspect of NumPy (and again, may or may not care about deeper knowledge).
We distinguish both tutorials and how-tos from Explanations, which are deep dives intended to give understanding rather
than immediate assistance, and References, which give complete, authoritative data on some concrete part of NumPy (like
its API) but aren’t obligated to paint a broader picture.
For more on tutorials, see Learn to write a NumPy tutorial

218 9. NumPy How Tos

https://documentation.divio.com/
https://numpy.org/numpy-tutorials/content/tutorial-style-guide.html

NumPy User Guide, Release 1.22.0

9.1.8 Is this page an example of a how-to?

Yes – until the sections with question-mark headings; they explain rather than giving directions. In a how-to, those would
be links.

9.2 Reading and writing files

This page tackles common applications; for the full collection of I/O routines, see routines.io.

9.2.1 Reading text and CSV files

With no missing values

Use numpy.loadtxt.

With missing values

Use numpy.genfromtxt.
numpy.genfromtxt will either

• return a masked array masking out missing values (if usemask=True), or
• fill in the missing value with the value specified in filling_values (default is np.nan for float, -1 for int).

With non-whitespace delimiters

>>> print(open("csv.txt").read())
1, 2, 3
4,, 6
7, 8, 9

Masked-array output

>>> np.genfromtxt("csv.txt", delimiter=",", usemask=True)
masked_array(

data=[[1.0, 2.0, 3.0],
[4.0, --, 6.0],
[7.0, 8.0, 9.0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1e+20)

9.2. Reading and writing files 219

NumPy User Guide, Release 1.22.0

Array output

>>> np.genfromtxt("csv.txt", delimiter=",")
array([[1., 2., 3.],

[4., nan, 6.],
[7., 8., 9.]])

Array output, specified fill-in value

>>> np.genfromtxt("csv.txt", delimiter=",", dtype=np.int8, filling_values=99)
array([[1, 2, 3],

[4, 99, 6],
[7, 8, 9]], dtype=int8)

Whitespace-delimited
numpy.genfromtxt can also parse whitespace-delimited data files that have missing values if

• Each field has a fixed width: Use the width as the delimiter argument.

File with width=4. The data does not have to be justified (for example,
the 2 in row 1), the last column can be less than width (for example, the 6
in row 2), and no delimiting character is required (for instance 8888 and 9
in row 3)

>>> f = open("fixedwidth.txt").read() # doctest: +SKIP
>>> print(f) # doctest: +SKIP
1 2 3
44 6
7 88889

Showing spaces as ^
>>> print(f.replace(" ","^")) # doctest: +SKIP
1^^^2^^^^^^3
44^^^^^^6
7^^^88889

>>> np.genfromtxt("fixedwidth.txt", delimiter=4) # doctest: +SKIP
array([[1.000e+00, 2.000e+00, 3.000e+00],

[4.400e+01, nan, 6.000e+00],
[7.000e+00, 8.888e+03, 9.000e+00]])

• A special value (e.g. “x”) indicates a missing field: Use it as the missing_values argument.

>>> print(open("nan.txt").read())
1 2 3
44 x 6
7 8888 9

>>> np.genfromtxt("nan.txt", missing_values="x")
array([[1.000e+00, 2.000e+00, 3.000e+00],

[4.400e+01, nan, 6.000e+00],
[7.000e+00, 8.888e+03, 9.000e+00]])

• You want to skip the rows with missing values: Set invalid_raise=False.

220 9. NumPy How Tos

NumPy User Guide, Release 1.22.0

>>> print(open("skip.txt").read())
1 2 3
44 6
7 888 9

>>> np.genfromtxt("skip.txt", invalid_raise=False)
__main__:1: ConversionWarning: Some errors were detected !

Line #2 (got 2 columns instead of 3)
array([[1., 2., 3.],

[7., 888., 9.]])

• The delimiter whitespace character is different from the whitespace that indicates missing data. For in-
stance, if columns are delimited by \t, then missing data will be recognized if it consists of one or more spaces.

>>> f = open("tabs.txt").read()
>>> print(f)
1 2 3
44 6
7 888 9

Tabs vs. spaces
>>> print(f.replace("\t","^"))
1^2^3
44^ ^6
7^888^9

>>> np.genfromtxt("tabs.txt", delimiter="\t", missing_values=" +")
array([[1., 2., 3.],

[44., nan, 6.],
[7., 888., 9.]])

9.2.2 Read a file in .npy or .npz format

Choices:
• Use numpy.load. It can read files generated by any of numpy.save, numpy.savez, or numpy.
savez_compressed.

• Use memory mapping. See numpy.lib.format.open_memmap.

9.2.3 Write to a file to be read back by NumPy

Binary

Use numpy.save, or to store multiple arrays numpy.savez or numpy.savez_compressed.
For security and portability, set allow_pickle=False unless the dtype contains Python objects, which requires
pickling.
Masked arrays can't currently be saved, nor can other arbitrary array subclasses.

9.2. Reading and writing files 221

NumPy User Guide, Release 1.22.0

Human-readable

numpy.save and numpy.savez create binary files. To write a human-readable file, use numpy.savetxt. The
array can only be 1- or 2-dimensional, and there’s no ‘ savetxtz‘ for multiple files.

Large arrays

SeeWrite or read large arrays.

9.2.4 Read an arbitrarily formatted binary file (“binary blob”)

Use a structured array.
Example:
The .wav file header is a 44-byte block preceding data_size bytes of the actual sound data:

chunk_id "RIFF"
chunk_size 4-byte unsigned little-endian integer
format "WAVE"
fmt_id "fmt "
fmt_size 4-byte unsigned little-endian integer
audio_fmt 2-byte unsigned little-endian integer
num_channels 2-byte unsigned little-endian integer
sample_rate 4-byte unsigned little-endian integer
byte_rate 4-byte unsigned little-endian integer
block_align 2-byte unsigned little-endian integer
bits_per_sample 2-byte unsigned little-endian integer
data_id "data"
data_size 4-byte unsigned little-endian integer

The .wav file header as a NumPy structured dtype:

wav_header_dtype = np.dtype([
("chunk_id", (bytes, 4)), # flexible-sized scalar type, item size 4
("chunk_size", "<u4"), # little-endian unsigned 32-bit integer
("format", "S4"), # 4-byte string, alternate spelling of (bytes, 4)
("fmt_id", "S4"),
("fmt_size", "<u4"),
("audio_fmt", "<u2"), #
("num_channels", "<u2"), # .. more of the same ...
("sample_rate", "<u4"), #
("byte_rate", "<u4"),
("block_align", "<u2"),
("bits_per_sample", "<u2"),
("data_id", "S4"),
("data_size", "<u4"),
#
the sound data itself cannot be represented here:
it does not have a fixed size

])

header = np.fromfile(f, dtype=wave_header_dtype, count=1)[0]

This .wav example is for illustration; to read a .wav file in real life, use Python’s built-in module wave.
(Adapted from Pauli Virtanen, Advanced NumPy, licensed under CC BY 4.0.)

222 9. NumPy How Tos

https://docs.python.org/dev/library/wave.html#module-wave
https://scipy-lectures.org/advanced/advanced_numpy/index.html#advanced-numpy
https://creativecommons.org/licenses/by/4.0/

NumPy User Guide, Release 1.22.0

9.2.5 Write or read large arrays

Arrays too large to fit in memory can be treated like ordinary in-memory arrays using memory mapping.
• Raw array data written with numpy.ndarray.tofile or numpy.ndarray.tobytes can be read with
numpy.memmap:

array = numpy.memmap("mydata/myarray.arr", mode="r", dtype=np.int16, shape=(1024,␣
↪→1024))

• Files output by numpy.save (that is, using the numpy format) can be read using numpy.load with the
mmap_mode keyword argument:

large_array[some_slice] = np.load("path/to/small_array", mmap_mode="r")

Memory mapping lacks features like data chunking and compression; more full-featured formats and libraries usable with
NumPy include:

• HDF5: h5py or PyTables.
• Zarr: here.
• NetCDF: scipy.io.netcdf_file.

For tradeoffs among memmap, Zarr, and HDF5, see pythonspeed.com.

9.2.6 Write files for reading by other (non-NumPy) tools

Formats for exchanging data with other tools include HDF5, Zarr, and NetCDF (seeWrite or read large arrays).

9.2.7 Write or read a JSON file

NumPy arrays are not directly JSON serializable.

9.2.8 Save/restore using a pickle file

Avoid when possible; pickles are not secure against erroneous or maliciously constructed data.
Use numpy.save and numpy.load. Set allow_pickle=False, unless the array dtype includes Python objects,
in which case pickling is required.

9.2.9 Convert from a pandas DataFrame to a NumPy array

See pandas.DataFrame.to_numpy.

9.2. Reading and writing files 223

https://www.h5py.org/
https://www.pytables.org/
https://zarr.readthedocs.io/en/stable/tutorial.html#reading-and-writing-data
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.io.netcdf_file.html#scipy.io.netcdf_file
https://pythonspeed.com/articles/mmap-vs-zarr-hdf5/
https://github.com/numpy/numpy/issues/12481
https://docs.python.org/dev/library/pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy

NumPy User Guide, Release 1.22.0

9.2.10 Save/restore using tofile and fromfile

In general, prefer numpy.save and numpy.load.
numpy.ndarray.tofile and numpy.fromfile lose information on endianness and precision and so are unsuit-
able for anything but scratch storage.

224 9. NumPy How Tos

CHAPTER

TEN

FOR DOWNSTREAM PACKAGE AUTHORS

This document aims to explain some best practices for authoring a package that depends on NumPy.

10.1 Understanding NumPy’s versioning and API/ABI stability

NumPy uses a standard, PEP 440 compliant, versioning scheme: major.minor.bugfix. A major release is highly
unusual (NumPy is still at version 1.xx) and if it happens it will likely indicate an ABI break. Minor versions are
released regularly, typically every 6months. Minor versions contain new features, deprecations, and removals of previously
deprecated code. Bugfix releases are made even more frequently; they do not contain any new features or deprecations.
It is important to know that NumPy, like Python itself and most other well known scientific Python projects, does not use
semantic versioning. Instead, backwards incompatible API changes require deprecation warnings for at least two releases.
For more details, see NEP 23 — Backwards compatibility and deprecation policy.
NumPy has both a Python API and a C API. The C API can be used directly or via Cython, f2py, or other such tools.
If your package uses the C API, then ABI (application binary interface) stability of NumPy is important. NumPy’s ABI
is forward but not backward compatible. This means: binaries compiled against a given version of NumPy will still run
correctly with newer NumPy versions, but not with older versions.

10.2 Testing against the NumPy main branch or pre-releases

For large, actively maintained packages that depend on NumPy, we recommend testing against the development version
of NumPy in CI. To make this easy, nightly builds are provided as wheels at https://anaconda.org/scipy-wheels-nightly/.
This helps detect regressions in NumPy that need fixing before the next NumPy release. Furthermore, we recommend
to raise errors on warnings in CI for this job, either all warnings or otherwise at least DeprecationWarning and
FutureWarning. This gives you an early warning about changes in NumPy to adapt your code.

10.3 Adding a dependency on NumPy

10.3.1 Build-time dependency

If a package either uses the NumPy C API directly or it uses some other tool that depends on it like Cython or Pythran,
NumPy is a build-time dependency of the package. Because the NumPy ABI is only forward compatible, you must build
your own binaries (wheels or other package formats) against the lowest NumPy version that you support (or an even older
version).

225

https://www.python.org/dev/peps/pep-0440
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://anaconda.org/scipy-wheels-nightly/

NumPy User Guide, Release 1.22.0

Picking the correct NumPy version to build against for each Python version and platform can get complicated. There are
a couple of ways to do this. Build-time dependencies are specified in pyproject.toml (see PEP 517), which is the
file used to build wheels by PEP 517 compliant tools (e.g., when using pip wheel).
You can specify everything manually in pyproject.toml, or you can instead rely on the oldest-supported-numpy
metapackage. oldest-supported-numpy will specify the correct NumPy version at build time for wheels, taking
into account Python version, Python implementation (CPython or PyPy), operating system and hardware platform. It
will specify the oldest NumPy version that supports that combination of characteristics. Note: for platforms for which
NumPy provides wheels on PyPI, it will be the first version with wheels (even if some older NumPy version happens to
build).
For conda-forge it’s a little less complicated: there’s dedicated handling for NumPy in build-time and runtime dependen-
cies, so typically this is enough (see here for docs):

host:
- numpy

run:
- {{ pin_compatible('numpy') }}

Note: pip has --no-use-pep517 and --no-build-isolation flags that may ignore pyproject.toml
or treat it differently - if users use those flags, they are responsible for installing the correct build dependencies themselves.
condawill always use-no-build-isolation; dependencies for conda builds are given in the conda recipe (meta.
yaml), the ones in pyproject.toml have no effect.
Please do not use setup_requires (it is deprecated and may invoke easy_install).

Because for NumPy you have to care about ABI compatibility, you specify the version with == to the lowest supported
version. For your other build dependencies you can probably be looser, however it’s still important to set lower and upper
bounds for each dependency. It’s fine to specify either a range or a specific version for a dependency like wheel or
setuptools. It’s recommended to set the upper bound of the range to the latest already released version of wheel
and setuptools - this prevents future releases from breaking your packages on PyPI.

10.3.2 Runtime dependency & version ranges

NumPy itself and many core scientific Python packages have agreed on a schedule for dropping support for old Python
and NumPy versions: NEP 29 — Recommend Python and NumPy version support as a community policy standard. We
recommend all packages depending on NumPy to follow the recommendations in NEP 29.
For run-time dependencies, you specify the range of versions in install_requires in setup.py (assuming you
use numpy.distutils or setuptools to build). Getting the upper bound right for NumPy is slightly tricky. If
we don’t set any bound, a too-new version will be pulled in a few years down the line, and NumPy may have deprecated
and removed some API that your package depended on by then. On the other hand if you set the upper bound to the
newest already-released version, then as soon as a new NumPy version is released there will be no matching version of
your package that works with it.
What to do here depends on your release frequency. Given that NumPy releases come in a 6-monthly cadence and that
features that get deprecated in NumPy should stay around for another two releases, a good upper bound is <1.(xx+3).
0 - where xx is the minor version of the latest already-released NumPy. This is safe to do if you release at least once
a year. If your own releases are much less frequent, you may set the upper bound a little further into the future - this
is a trade-off between a future NumPy version _maybe_ removing something you rely on, and the upper bound being
exceeded which _may_ lead to your package being hard to install in combination with other packages relying on the latest
NumPy.

226 10. For downstream package authors

https://github.com/scipy/oldest-supported-numpy/
https://conda-forge.org/docs/maintainer/knowledge_base.html#building-against-numpy
https://numpy.org/neps/nep-0029-deprecation_policy.html#nep29

NumPy User Guide, Release 1.22.0

Note: SciPy has more documentation on how it builds wheels and deals with its build-time and runtime dependencies
here.
NumPy and SciPy wheel build CI may also be useful as a reference, it can be found here for NumPy and here for SciPy.

10.3. Adding a dependency on NumPy 227

https://scipy.github.io/devdocs/dev/core-dev/index.html#distributing
https://github.com/MacPython/numpy-wheels
https://github.com/MacPython/scipy-wheels

NumPy User Guide, Release 1.22.0

228 10. For downstream package authors

CHAPTER

ELEVEN

F2PY USER GUIDE AND REFERENCE MANUAL

The purpose of the F2PY –Fortran to Python interface generator– utility is to provide a connection between Python and
Fortran languages. F2PY is a part of NumPy (numpy.f2py) and also available as a standalone command line tool
f2py when numpy is installed that facilitates creating/building Python C/API extension modules that make it possible

• to call Fortran 77/90/95 external subroutines and Fortran 90/95 module subroutines as well as C functions;
• to access Fortran 77 COMMON blocks and Fortran 90/95 module data, including allocatable arrays

from Python.

11.1 Using F2PY

F2PY can be used either as a command line tool f2py or as a Python module numpy.f2py. While we try to provide
the command line tool as part of the numpy setup, some platforms like Windows make it difficult to reliably put the
executables on the PATH. We will refer to f2py in this document but you may have to run it as a module:

python -m numpy.f2py

If you run f2py with no arguments, and the line numpy Version at the end matches the NumPy version printed
from python -m numpy.f2py, then you can use the shorter version. If not, or if you cannot run f2py, you should
replace all calls to f2py here with the longer version.

11.1.1 Command f2py

When used as a command line tool, f2py has three major modes, distinguished by the usage of -c and -h switches:

Signature file generation

1. To scan Fortran sources and generate a signature file, use

f2py -h <filename.pyf> <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran files> ...]

Note: A Fortran source file can contain many routines, and it is often not necessary to allow all routines be usable
from Python. In such cases, either specify which routines should be wrapped (in the only: .. : part) or which
routines F2PY should ignored (in the skip: .. : part).

229

https://www.numpy.org/

NumPy User Guide, Release 1.22.0

If <filename.pyf> is specified as stdout then signatures are written to standard output instead of a file.
Among other options (see below), the following can be used in this mode:
--overwrite-signature

Overwrites an existing signature file.

Extension module construction

2. To construct an extension module, use

f2py -m <modulename> <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran files> ...]

The constructed extension module is saved as <modulename>module.c to the current directory.
Here <fortran files> may also contain signature files. Among other options (see below), the following
options can be used in this mode:
--debug-capi

Adds debugging hooks to the extension module. When using this extension module, various diagnostic in-
formation about the wrapper is written to the standard output, for example, the values of variables, the steps
taken, etc.

-include'<includefile>'

Add a CPP #include statement to the extension module source. <includefile> should be given in
one of the following forms

"filename.ext"
<filename.ext>

The include statement is inserted just before the wrapper functions. This feature enables using arbitrary C
functions (defined in <includefile>) in F2PY generated wrappers.

Note: This option is deprecated. Use usercode statement to specify C code snippets directly in signature
files.

--[no-]wrap-functions

Create Fortran subroutinewrappers to Fortran functions. --wrap-functions is default because it ensures
maximum portability and compiler independence.

--include-paths <path1>:<path2>:..

Search include files from given directories.
--help-link [<list of resources names>]

List system resources found by numpy_distutils/system_info.py. For example, try f2py
--help-link lapack_opt.

230 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

Building a module

3. To build an extension module, use

f2py -c <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran/c source files>] [<.o, .a, .so files>]

If <fortran files> contains a signature file, then the source for an extension module is constructed, all
Fortran and C sources are compiled, and finally all object and library files are linked to the extension module
<modulename>.so which is saved into the current directory.
If <fortran files> does not contain a signature file, then an extension module is constructed by scanning all
Fortran source codes for routine signatures, before proceeding to build the extension module.
Among other options (see below) and options described for previous modes, the following options can be used in
this mode:
--help-fcompiler

List the available Fortran compilers.
--help-compiler [depreciated]

List the available Fortran compilers.
--fcompiler=<Vendor>

Specify a Fortran compiler type by vendor.
--f77exec=<path>

Specify the path to a F77 compiler
--fcompiler-exec=<path> [depreciated]

Specify the path to a F77 compiler
--f90exec=<path>

Specify the path to a F90 compiler
--f90compiler-exec=<path> [depreciated]

Specify the path to a F90 compiler
--f77flags=<string>

Specify F77 compiler flags
--f90flags=<string>

Specify F90 compiler flags
--opt=<string>

Specify optimization flags
--arch=<string>

Specify architecture specific optimization flags
--noopt

Compile without optimization flags

11.1. Using F2PY 231

NumPy User Guide, Release 1.22.0

--noarch

Compile without arch-dependent optimization flags
--debug

Compile with debugging information
-l<libname>

Use the library <libname> when linking.
-D<macro>[=<defn=1>]

Define macro <macro> as <defn>.
-U<macro>

Define macro <macro>
-I<dir>

Append directory <dir> to the list of directories searched for include files.
-L<dir>

Add directory <dir> to the list of directories to be searched for -l.
link-<resource>

Link the extension module with <resource> as defined by numpy_distutils/system_info.
py. E.g. to link with optimized LAPACK libraries (vecLib on MacOSX, ATLAS elsewhere), use
--link-lapack_opt. See also --help-link switch.

Note: The f2py -c option must be applied either to an existing .pyf file (plus the source/object/library files) or
one must specify the -m <modulename> option (plus the sources/object/library files). Use one of the following
options:

f2py -c -m fib1 fib1.f

or

f2py -m fib1 fib1.f -h fib1.pyf
f2py -c fib1.pyf fib1.f

For more information, see the Building C and C++ Extensions Python documentation for details.
When building an extension module, a combination of the following macros may be required for non-gcc Fortran
compilers:

-DPREPEND_FORTRAN
-DNO_APPEND_FORTRAN
-DUPPERCASE_FORTRAN

To test the performance of F2PY generated interfaces, use -DF2PY_REPORT_ATEXIT. Then a report of various
timings is printed out at the exit of Python. This feature may not work on all platforms, currently only Linux
platform is supported.
To see whether F2PY generated interface performs copies of array arguments, use
-DF2PY_REPORT_ON_ARRAY_COPY=<int>. When the size of an array argument is larger than <int>, a
message about the coping is sent to stderr.

232 11. F2PY user guide and reference manual

https://docs.python.org/3/extending/building.html

NumPy User Guide, Release 1.22.0

Other options

-m <modulename>

Name of an extension module. Default is untitled.

Warning: Don’t use this option if a signature file (*.pyf) is used.

--[no-]lower

Do [not] lower the cases in <fortran files>. By default, --lower is assumed with -h switch, and
--no-lower without the -h switch.

--build-dir <dirname>

All F2PY generated files are created in <dirname>. Default is tempfile.mkdtemp().
--quiet

Run quietly.
--verbose

Run with extra verbosity.
-v

Print the F2PY version and exit.
Execute f2py without any options to get an up-to-date list of available options.

11.1.2 Python module numpy.f2py

Warning: The current Python interface to the f2py module is not mature and may change in the future.

Fortran to Python Interface Generator.
numpy.f2py.compile(source, modulename=’untitled’, extra_args=”, verbose=True, source_fn=None,

extension=’.f’, full_output=False)
Build extension module from a Fortran 77 source string with f2py.

Parameters

source
[str or bytes] Fortran source of module / subroutine to compile
Changed in version 1.16.0: Accept str as well as bytes

modulename
[str, optional] The name of the compiled python module

extra_args
[str or list, optional] Additional parameters passed to f2py
Changed in version 1.16.0: A list of args may also be provided.

11.1. Using F2PY 233

NumPy User Guide, Release 1.22.0

verbose
[bool, optional] Print f2py output to screen

source_fn
[str, optional] Name of the file where the fortran source is written. The default is to use a
temporary file with the extension provided by the extension parameter

extension
[{‘.f’, ‘.f90’}, optional] Filename extension if source_fn is not provided. The extension tells
which fortran standard is used. The default is f, which implies F77 standard.
New in version 1.11.0.

full_output
[bool, optional] If True, return a subprocess.CompletedProcess containing the std-
out and stderr of the compile process, instead of just the status code.
New in version 1.20.0.

Returns

result
[int or subprocess.CompletedProcess] 0 on success, or a subprocess.
CompletedProcess if full_output=True

Examples

>>> import numpy.f2py
>>> fsource = '''
... subroutine foo
... print*, "Hello world!"
... end
... '''
>>> numpy.f2py.compile(fsource, modulename='hello', verbose=0)
0
>>> import hello
>>> hello.foo()
Hello world!

numpy.f2py.get_include()
Return the directory that contains the fortranobject.c and .h files.

Note: This function is not needed when building an extension with numpy.distutils directly from .f and/or
.pyf files in one go.

Python extension modules built with f2py-generated code need to use fortranobject.c as a source file, and
include the fortranobject.h header. This function can be used to obtain the directory containing both of
these files.

Returns

include_path

234 11. F2PY user guide and reference manual

https://docs.python.org/dev/library/subprocess.html#subprocess.CompletedProcess
https://docs.python.org/dev/library/subprocess.html#subprocess.CompletedProcess
https://docs.python.org/dev/library/subprocess.html#subprocess.CompletedProcess
https://docs.python.org/dev/library/subprocess.html#subprocess.CompletedProcess

NumPy User Guide, Release 1.22.0

[str] Absolute path to the directory containing fortranobject.c and
fortranobject.h.

See also:

numpy.get_include

function that returns the numpy include directory

Notes

New in version 1.22.0.
Unless the build system you are using has specific support for f2py, building a Python extension using a .pyf
signature file is a two-step process. For a module mymod:

• Step 1: run python -m numpy.f2py mymod.pyf --quiet. This generates _mymodmodule.c
and (if needed) _fblas-f2pywrappers.f files next to mymod.pyf.

• Step 2: build your Python extension module. This requires the following source files:
– _mymodmodule.c

– _mymod-f2pywrappers.f (if it was generated in step 1)
– fortranobject.c

numpy.f2py.run_main(comline_list)
Equivalent to running:

f2py <args>

where <args>=string.join(<list>,' '), but in Python. Unless -h is used, this function returns a
dictionary containing information on generated modules and their dependencies on source files. For example, the
command f2py -m scalar scalar.f can be executed from Python as follows
You cannot build extension modules with this function, that is, using -c is not allowed. Use compile command
instead

Examples

>>> import numpy.f2py
>>> r = numpy.f2py.run_main(['-m','scalar','doc/source/f2py/scalar.f'])
Reading fortran codes...

Reading file 'doc/source/f2py/scalar.f' (format:fix,strict)
Post-processing...

Block: scalar
Block: FOO

Building modules...
Building module "scalar"...
Wrote C/API module "scalar" to file "./scalarmodule.c"

>>> print(r)
{'scalar': {'h': ['/home/users/pearu/src_cvs/f2py/src/fortranobject.h'],

'csrc': ['./scalarmodule.c',
'/home/users/pearu/src_cvs/f2py/src/fortranobject.c']}}

11.1. Using F2PY 235

NumPy User Guide, Release 1.22.0

11.2 Three ways to wrap - getting started

Wrapping Fortran or C functions to Python using F2PY consists of the following steps:
• Creating the so-called signature file that contains descriptions of wrappers to Fortran or C functions, also called
the signatures of the functions. For Fortran routines, F2PY can create an initial signature file by scanning Fortran
source codes and tracking all relevant information needed to create wrapper functions.

– Optionally, F2PY created signature files can be edited to optimize wrapper functions, to make them “smarter”
and more “Pythonic”.

• F2PY reads a signature file and writes a Python C/API module containing Fortran/C/Python bindings.
• F2PY compiles all sources and builds an extension module containing the wrappers.

– In building the extension modules, F2PY uses numpy_distutils which supports a number of Fortran
77/90/95 compilers, including Gnu, Intel, Sun Fortran, SGI MIPSpro, Absoft, NAG, Compaq etc.

Depending on the situation, these steps can be carried out in a single composite command or step-by-step; in which case
some steps can be omitted or combined with others.
Below, we describe three typical approaches of using F2PY. These can be read in order of increasing effort, but also cater
to different access levels depending on whether the Fortran code can be freely modified.
The following example Fortran 77 code will be used for illustration, save it as fib1.f:

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

11.2.1 The quick way

The quickest way to wrap the Fortran subroutine FIB for use in Python is to run

python -m numpy.f2py -c fib1.f -m fib1

This command compiles and wraps fib1.f (-c) to create the extensionmodule fib1.so (-m) in the current directory.
A list of command line options can be seen by executing python -m numpy.f2py. Now, in Python the Fortran
subroutine FIB is accessible via fib1.fib:

>>> import numpy as np
>>> import fib1

(continues on next page)

236 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> print(fib1.fib.__doc__)
fib(a,[n])

Wrapper for ``fib``.

Parameters

a : input rank-1 array('d') with bounds (n)

Other Parameters

n : input int, optional

Default: len(a)

>>> a = np.zeros(8, 'd')
>>> fib1.fib(a)
>>> print(a)
[0. 1. 1. 2. 3. 5. 8. 13.]

Note:
• Note that F2PY recognized that the second argument n is the dimension of the first array argument a. Since
by default all arguments are input-only arguments, F2PY concludes that n can be optional with the default value
len(a).

• One can use different values for optional n:

>>> a1 = np.zeros(8, 'd')
>>> fib1.fib(a1, 6)
>>> print(a1)
[0. 1. 1. 2. 3. 5. 0. 0.]

but an exception is raised when it is incompatible with the input array a:

>>> fib1.fib(a, 10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

fib.error: (len(a)>=n) failed for 1st keyword n: fib:n=10
>>>

F2PY implements basic compatibility checks between related arguments in order to avoid unexpected crashes.
• When a NumPy array, that is Fortran contiguous and has a dtype corresponding to a presumed Fortran type, is
used as an input array argument, then its C pointer is directly passed to Fortran.
Otherwise F2PY makes a contiguous copy (with the proper dtype) of the input array and passes a C pointer of
the copy to the Fortran subroutine. As a result, any possible changes to the (copy of) input array have no effect to
the original argument, as demonstrated below:

>>> a = np.ones(8, 'i')
>>> fib1.fib(a)
>>> print(a)
[1 1 1 1 1 1 1 1]

Clearly, this is unexpected, as Fortran typically passes by reference. That the above example worked with
dtype=float is considered accidental.

11.2. Three ways to wrap - getting started 237

NumPy User Guide, Release 1.22.0

F2PY provides an intent(inplace) attribute that modifies the attributes of an input array so that any
changes made by Fortran routine will be reflected in the input argument. For example, if one specifies the
intent(inplace) a directive (see subsequent sections on how), then the example above would read:

>>> a = np.ones(8, 'i')
>>> fib1.fib(a)
>>> print(a)
[0. 1. 1. 2. 3. 5. 8. 13.]

However, the recommended way to have changes made by Fortran subroutine propagate to Python is to use the
intent(out) attribute. That approach is more efficient and also cleaner.

• The usage offib1.fib in Python is very similar to usingFIB in Fortran. However, using in situ output arguments
in Python is poor style, as there are no safety mechanisms in Python to protect against wrong argument types. When
using Fortran or C, compilers discover any type mismatches during the compilation process, but in Python the types
must be checked at runtime. Consequently, using in situ output arguments in Python may lead to difficult to find
bugs, not to mention the fact that the codes will be less readable when all required type checks are implemented.

Though the approach to wrapping Fortran routines for Python discussed so far is very straightforward, it has several
drawbacks (see the comments above). The drawbacks are due to the fact that there is no way for F2PY to determine
the actual intention of the arguments; that is there is ambiguity in distinguishing between input and output arguments.
Consequently, F2PY assumes that all arguments are input arguments by default.
However, there are ways (see below) to remove this ambiguity by “teaching” F2PY about the true intentions of function
arguments, and F2PY is then able to generate more explicit, easier to use, and less error prone wrappers for Fortran
functions.

11.2.2 The smart way

Let us apply the steps for wrapping Fortran functions to Python one by one.
• First, we create a signature file from fib1.f by running:

python -m numpy.f2py fib1.f -m fib2 -h fib1.pyf

The signature file is saved to fib1.pyf (see the -h flag) and its contents are shown below.

! -*- f90 -*-
python module fib2 ! in

interface ! in :fib2
subroutine fib(a,n) ! in :fib2:fib1.f

real*8 dimension(n) :: a
integer optional,check(len(a)>=n),depend(a) :: n=len(a)

end subroutine fib
end interface

end python module fib2

! This file was auto-generated with f2py (version:2.28.198-1366).
! See http://cens.ioc.ee/projects/f2py2e/

• Next, we’ll teach F2PY that the argument n is an input argument (using the intent(in) attribute) and that
the result, i.e., the contents of a after calling the Fortran function FIB, should be returned to Python (using the
intent(out) attribute). In addition, an array a should be created dynamically using the size determined by the
input argument n (using the depend(n) attribute to indicate this dependence relation).
The contents of a suitably modified version of fib1.pyf (saved as fib2.pyf) is as follows:

238 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

! -*- f90 -*-
python module fib2

interface
subroutine fib(a,n)

real*8 dimension(n),intent(out),depend(n) :: a
integer intent(in) :: n

end subroutine fib
end interface

end python module fib2

• Finally, we build the extension module with numpy.distutils by running:

python -m numpy.f2py -c fib2.pyf fib1.f

In Python:

>>> import fib2
>>> print(fib2.fib.__doc__)
a = fib(n)

Wrapper for ``fib``.

Parameters

n : input int

Returns

a : rank-1 array('d') with bounds (n)

>>> print(fib2.fib(8))
[0. 1. 1. 2. 3. 5. 8. 13.]

Note:
• The signature of fib2.fib now more closely corresponds to the intention of Fortran subroutine FIB: given
the number n, fib2.fib returns the first n Fibonacci numbers as a NumPy array. The new Python signature
fib2.fib also rules out the unexpected behaviour in fib1.fib.

• Note that by default, using a single intent(out) also implies intent(hide). Arguments that have the
intent(hide) attribute specified will not be listed in the argument list of a wrapper function.

11.2.3 The quick and smart way

The “smart way” of wrapping Fortran functions, as explained above, is suitable for wrapping (e.g. third party) Fortran
codes for which modifications to their source codes are not desirable nor even possible.
However, if editing Fortran codes is acceptable, then the generation of an intermediate signature file can be skipped in
most cases. F2PY specific attributes can be inserted directly into Fortran source codes using F2PY directives. A F2PY
directive consists of special comment lines (starting with Cf2py or !f2py, for example) which are ignored by Fortran
compilers but interpreted by F2PY as normal lines.
Consider a modified version of the previous Fortran code with F2PY directives, saved as fib3.f:

11.2. Three ways to wrap - getting started 239

NumPy User Guide, Release 1.22.0

C FILE: FIB3.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)

Cf2py intent(in) n
Cf2py intent(out) a
Cf2py depend(n) a

DO I=1,N
IF (I.EQ.1) THEN

A(I) = 0.0D0
ELSEIF (I.EQ.2) THEN

A(I) = 1.0D0
ELSE

A(I) = A(I-1) + A(I-2)
ENDIF

ENDDO
END

C END FILE FIB3.F

Building the extension module can be now carried out in one command:

python -m numpy.f2py -c -m fib3 fib3.f

Notice that the resulting wrapper to FIB is as “smart” (unambiguous) as in the previous case:

>>> import fib3
>>> print(fib3.fib.__doc__)
a = fib(n)

Wrapper for ``fib``.

Parameters

n : input int

Returns

a : rank-1 array('d') with bounds (n)

>>> print(fib3.fib(8))
[0. 1. 1. 2. 3. 5. 8. 13.]

11.3 Using F2PY bindings in Python

All wrappers for Fortran/C routines, common blocks, or for Fortran 90 module data generated by F2PY are exposed to
Python as fortran type objects. Routine wrappers are callable fortran type objects while wrappers to Fortran data
have attributes referring to data objects.
All fortran type objects have an attribute _cpointer that contains a CObject referring to the C pointer of the
corresponding Fortran/C function or variable at the C level. Such CObjects can be used as a callback argument for
F2PY generated functions to bypass the Python C/API layer for calling Python functions from Fortran or C when the

240 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

computational aspects of such functions are implemented in C or Fortran and wrapped with F2PY (or any other tool
capable of providing the CObject of a function).
Consider a Fortran 77 file `ftype.f:

C FILE: FTYPE.F
SUBROUTINE FOO(N)
INTEGER N

Cf2py integer optional,intent(in) :: n = 13
REAL A,X
COMMON /DATA/ A,X(3)
PRINT*, "IN FOO: N=",N," A=",A," X=[",X(1),X(2),X(3),"]"
END

C END OF FTYPE.F

and a wrapper built using f2py -c ftype.f -m ftype.
In Python:

>>> import ftype
>>> print(ftype.__doc__)
This module 'ftype' is auto-generated with f2py (version:2).
Functions:
foo(n=13)

COMMON blocks:
/data/ a,x(3)

.
>>> type(ftype.foo), type(ftype.data)
(<class 'fortran'>, <class 'fortran'>)
>>> ftype.foo()
IN FOO: N= 13 A= 0. X=[0. 0. 0.]
>>> ftype.data.a = 3
>>> ftype.data.x = [1,2,3]
>>> ftype.foo()
IN FOO: N= 13 A= 3. X=[1. 2. 3.]
>>> ftype.data.x[1] = 45
>>> ftype.foo(24)
IN FOO: N= 24 A= 3. X=[1. 45. 3.]
>>> ftype.data.x
array([1., 45., 3.], dtype=float32)

11.3.1 Scalar arguments

In general, a scalar argument for a F2PY generated wrapper function can be an ordinary Python scalar (integer, float,
complex number) as well as an arbitrary sequence object (list, tuple, array, string) of scalars. In the latter case, the first
element of the sequence object is passed to Fortran routine as a scalar argument.

Note:
• When type-casting is required and there is possible loss of information via narrowing e.g. when type-casting float
to integer or complex to float, F2PY does not raise an exception.

– For complex to real type-casting only the real part of a complex number is used.
• intent(inout) scalar arguments are assumed to be array objects in order to have in situ changes be effective.
It is recommended to use arrays with proper type but also other types work.

11.3. Using F2PY bindings in Python 241

NumPy User Guide, Release 1.22.0

Consider the following Fortran 77 code:

C FILE: SCALAR.F
SUBROUTINE FOO(A,B)
REAL*8 A, B

Cf2py intent(in) a
Cf2py intent(inout) b

PRINT*, " A=",A," B=",B
PRINT*, "INCREMENT A AND B"
A = A + 1D0
B = B + 1D0
PRINT*, "NEW A=",A," B=",B
END

C END OF FILE SCALAR.F

and wrap it using f2py -c -m scalar scalar.f.
In Python:

>>> import scalar
>>> print(scalar.foo.__doc__)
foo(a,b)

Wrapper for ``foo``.

Parameters

a : input float
b : in/output rank-0 array(float,'d')

>>> scalar.foo(2, 3)
A= 2. B= 3.

INCREMENT A AND B
NEW A= 3. B= 4.
>>> import numpy
>>> a = numpy.array(2) # these are integer rank-0 arrays
>>> b = numpy.array(3)
>>> scalar.foo(a, b)

A= 2. B= 3.
INCREMENT A AND B
NEW A= 3. B= 4.
>>> print(a, b) # note that only b is changed in situ
2 4

11.3.2 String arguments

F2PY generated wrapper functions accept almost any Python object as a string argument, since str is applied for non-
string objects. Exceptions are NumPy arrays that must have type code 'c' or '1' when used as string arguments.
A string can have an arbitrary length when used as a string argument for an F2PY generated wrapper function. If the
length is greater than expected, the string is truncated silently. If the length is smaller than expected, additional memory
is allocated and filled with \0.
Because Python strings are immutable, an intent(inout) argument expects an array version of a string in order to
have in situ changes be effective.
Consider the following Fortran 77 code:

242 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

C FILE: STRING.F
SUBROUTINE FOO(A,B,C,D)
CHARACTER*5 A, B
CHARACTER*(*) C,D

Cf2py intent(in) a,c
Cf2py intent(inout) b,d

PRINT*, "A=",A
PRINT*, "B=",B
PRINT*, "C=",C
PRINT*, "D=",D
PRINT*, "CHANGE A,B,C,D"
A(1:1) = 'A'
B(1:1) = 'B'
C(1:1) = 'C'
D(1:1) = 'D'
PRINT*, "A=",A
PRINT*, "B=",B
PRINT*, "C=",C
PRINT*, "D=",D
END

C END OF FILE STRING.F

and wrap it using f2py -c -m mystring string.f.
Python session:

>>> import mystring
>>> print(mystring.foo.__doc__)
foo(a,b,c,d)

Wrapper for ``foo``.

Parameters

a : input string(len=5)
b : in/output rank-0 array(string(len=5),'c')
c : input string(len=-1)
d : in/output rank-0 array(string(len=-1),'c')

>>> from numpy import array
>>> a = array(b'123\0\0')
>>> b = array(b'123\0\0')
>>> c = array(b'123')
>>> d = array(b'123')
>>> mystring.foo(a, b, c, d)
A=123
B=123
C=123
D=123
CHANGE A,B,C,D
A=A23
B=B23
C=C23
D=D23
>>> a[()], b[()], c[()], d[()]
(b'123', b'B23', b'123', b'D2')

11.3. Using F2PY bindings in Python 243

NumPy User Guide, Release 1.22.0

11.3.3 Array arguments

In general, array arguments for F2PY generated wrapper functions accept arbitrary sequences that can be transformed to
NumPy array objects. There are two notable exceptions:

• intent(inout) array arguments must always be proper-contiguous (defined below) and have a compatible
dtype, otherwise an exception is raised.

• intent(inplace) array arguments will be changed in situ if the argument has a different type than expected
(see the intent(inplace) attribute for more information).

In general, if a NumPy array is proper-contiguous and has a proper type then it is directly passed to the wrapped Fortran/C
function. Otherwise, an element-wise copy of the input array is made and the copy, being proper-contiguous and with
proper type, is used as the array argument.
There are two types of proper-contiguous NumPy arrays:

• Fortran-contiguous arrays refer to data that is stored columnwise, i.e. the indexing of data as stored in memory
starts from the lowest dimension;

• C-contiguous, or simply contiguous arrays, refer to data that is stored rowwise, i.e. the indexing of data as stored
in memory starts from the highest dimension.

For one-dimensional arrays these notions coincide.
For example, a 2x2 array A is Fortran-contiguous if its elements are stored in memory in the following order:

A[0,0] A[1,0] A[0,1] A[1,1]

and C-contiguous if the order is as follows:

A[0,0] A[0,1] A[1,0] A[1,1]

To test whether an array is C-contiguous, use the .flags.c_contiguous attribute of NumPy arrays. To test for
Fortran contiguity, use the .flags.f_contiguous attribute.
Usually there is no need to worry about how the arrays are stored in memory and whether the wrapped functions, being
either Fortran or C functions, assume one or another storage order. F2PY automatically ensures that wrapped functions
get arguments with the proper storage order; the underlying algorithm is designed to make copies of arrays only when
absolutely necessary. However, when dealing with very large multidimensional input arrays with sizes close to the size
of the physical memory in your computer, then care must be taken to ensure the usage of proper-contiguous and proper
type arguments.
To transform input arrays to columnmajor storage order before passing them to Fortran routines, use the functionnumpy.
asfortranarray(<array>).
Consider the following Fortran 77 code:

C FILE: ARRAY.F
SUBROUTINE FOO(A,N,M)

C
C INCREMENT THE FIRST ROW AND DECREMENT THE FIRST COLUMN OF A
C

INTEGER N,M,I,J
REAL*8 A(N,M)

Cf2py intent(in,out,copy) a
Cf2py integer intent(hide),depend(a) :: n=shape(a,0), m=shape(a,1)

DO J=1,M
A(1,J) = A(1,J) + 1D0

ENDDO

(continues on next page)

244 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
DO I=1,N

A(I,1) = A(I,1) - 1D0
ENDDO
END

C END OF FILE ARRAY.F

and wrap it using f2py -c -m arr array.f -DF2PY_REPORT_ON_ARRAY_COPY=1.
In Python:

>>> import arr
>>> from numpy import asfortranarray
>>> print(arr.foo.__doc__)
a = foo(a,[overwrite_a])

Wrapper for ``foo``.

Parameters

a : input rank-2 array('d') with bounds (n,m)

Other Parameters

overwrite_a : input int, optional

Default: 0

Returns

a : rank-2 array('d') with bounds (n,m)

>>> a = arr.foo([[1, 2, 3],
... [4, 5, 6]])
created an array from object
>>> print(a)
[[1. 3. 4.]
[3. 5. 6.]]
>>> a.flags.c_contiguous
False
>>> a.flags.f_contiguous
True
even if a is proper-contiguous and has proper type,
a copy is made forced by intent(copy) attribute
to preserve its original contents
>>> b = arr.foo(a)
copied an array: size=6, elsize=8
>>> print(a)
[[1. 3. 4.]
[3. 5. 6.]]
>>> print(b)
[[1. 4. 5.]
[2. 5. 6.]]
>>> b = arr.foo(a, overwrite_a = 1) # a is passed directly to Fortran
... # routine and its contents is discarded
...
>>> print(a)
[[1. 4. 5.]
[2. 5. 6.]]

(continues on next page)

11.3. Using F2PY bindings in Python 245

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> print(b)
[[1. 4. 5.]
[2. 5. 6.]]
>>> a is b # a and b are actually the same objects
True
>>> print(arr.foo([1, 2, 3])) # different rank arrays are allowed
created an array from object
[1. 1. 2.]
>>> print(arr.foo([[[1], [2], [3]]]))
created an array from object
[[[1.]
[1.]
[2.]]]

>>>
>>> # Creating arrays with column major data storage order:
...
>>> s = asfortranarray([[1, 2, 3], [4, 5, 6]])
>>> s.flags.f_contiguous
True
>>> print(s)
[[1 2 3]
[4 5 6]]
>>> print(arr.foo(s))
>>> s2 = asfortranarray(s)
>>> s2 is s # an array with column major storage order

is returned immediately
True
>>> # Note that arr.foo returns a column major data storage order array:
...
>>> s3 = ascontiguousarray(s)
>>> s3.flags.f_contiguous
False
>>> s3.flags.c_contiguous
True
>>> s3 = arr.foo(s3)
copied an array: size=6, elsize=8
>>> s3.flags.f_contiguous
True
>>> s3.flags.c_contiguous
False

11.3.4 Call-back arguments

F2PY supports calling Python functions from Fortran or C codes.
Consider the following Fortran 77 code:

C FILE: CALLBACK.F
SUBROUTINE FOO(FUN,R)
EXTERNAL FUN
INTEGER I
REAL*8 R, FUN

Cf2py intent(out) r
R = 0D0
DO I=-5,5

(continues on next page)

246 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
R = R + FUN(I)

ENDDO
END

C END OF FILE CALLBACK.F

and wrap it using f2py -c -m callback callback.f.
In Python:

>>> import callback
>>> print(callback.foo.__doc__)
r = foo(fun,[fun_extra_args])

Wrapper for ``foo``.

Parameters

fun : call-back function

Other Parameters

fun_extra_args : input tuple, optional

Default: ()

Returns

r : float

Notes

Call-back functions::

def fun(i): return r
Required arguments:
i : input int

Return objects:
r : float

>>> def f(i): return i*i
...
>>> print(callback.foo(f))
110.0
>>> print(callback.foo(lambda i:1))
11.0

In the above example F2PY was able to guess accurately the signature of the call-back function. However, sometimes
F2PY cannot establish the appropriate signature; in these cases the signature of the call-back function must be explicitly
defined in the signature file.
To facilitate this, signature files may contain special modules (the names of these modules contain the special __user__
sub-string) that defines the various signatures for call-back functions. Callback arguments in routine signatures have the
external attribute (see also the intent(callback) attribute). To relate a callback argument with its signature
in a __user__ module block, a use statement can be utilized as illustrated below. The same signature for a callback
argument can be referred to in different routine signatures.
We use the same Fortran 77 code as in the previous example but now we will pretend that F2PY was not able to guess
the signatures of call-back arguments correctly. First, we create an initial signature file callback2.pyf using F2PY:

11.3. Using F2PY bindings in Python 247

NumPy User Guide, Release 1.22.0

f2py -m callback2 -h callback2.pyf callback.f

Then modify it as follows

! -*- f90 -*-
python module __user__routines

interface
function fun(i) result (r)

integer :: i
real*8 :: r

end function fun
end interface

end python module __user__routines

python module callback2
interface

subroutine foo(f,r)
use __user__routines, f=>fun
external f
real*8 intent(out) :: r

end subroutine foo
end interface

end python module callback2

Finally, we build the extension module using f2py -c callback2.pyf callback.f.
An example Python session for this snippet would be identical to the previous example except that the argument names
would differ.
Sometimes a Fortran package may require that users provide routines that the package will use. F2PY can construct an
interface to such routines so that Python functions can be called from Fortran.
Consider the following Fortran 77 subroutine that takes an array as its input and applies a function func to its elements.

subroutine calculate(x,n)
cf2py intent(callback) func

external func
c The following lines define the signature of func for F2PY:
cf2py real*8 y
cf2py y = func(y)
c
cf2py intent(in,out,copy) x

integer n,i
real*8 x(n), func
do i=1,n

x(i) = func(x(i))
end do
end

The Fortran code expects that the function func has been defined externally. In order to use a Python function for func,
it must have an attribute intent(callback) and, it must be specified before the external statement.
Finally, build an extension module using f2py -c -m foo calculate.f

In Python:

>>> import foo
>>> foo.calculate(range(5), lambda x: x*x)
array([0., 1., 4., 9., 16.])

(continues on next page)

248 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
>>> import math
>>> foo.calculate(range(5), math.exp)
array([1. , 2.71828183, 7.3890561, 20.08553692, 54.59815003])

The function is included as an argument to the python function call to the Fortran subroutine even though it was not in
the Fortran subroutine argument list. The “external” keyword refers to the C function generated by f2py, not the python
function itself. The python function is essentially being supplied to the C function.
The callback function may also be explicitly set in the module. Then it is not necessary to pass the function in the argument
list to the Fortran function. This may be desired if the Fortran function calling the python callback function is itself called
by another Fortran function.
Consider the following Fortran 77 subroutine:

subroutine f1()
print *, "in f1, calling f2 twice.."
call f2()
call f2()
return

end

subroutine f2()
cf2py intent(callback, hide) fpy

external fpy
print *, "in f2, calling f2py.."
call fpy()
return

end

and wrap it using f2py -c -m pfromf extcallback.f.
In Python:

>>> import pfromf
>>> pfromf.f2()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

pfromf.error: Callback fpy not defined (as an argument or module pfromf␣
↪→attribute).

>>> def f(): print("python f")
...
>>> pfromf.fpy = f
>>> pfromf.f2()
in f2, calling f2py..
python f
>>> pfromf.f1()
in f1, calling f2 twice..
in f2, calling f2py..
python f
in f2, calling f2py..
python f
>>>

11.3. Using F2PY bindings in Python 249

NumPy User Guide, Release 1.22.0

11.3.5 Resolving arguments to call-back functions

F2PY generated interfaces are very flexible with respect to call-back arguments. For each call-back argument an additional
optional argument <name>_extra_args is introduced by F2PY. This argument can be used to pass extra arguments
to user provided call-back functions.
If a F2PY generated wrapper function expects the following call-back argument:

def fun(a_1,...,a_n):
...
return x_1,...,x_k

but the following Python function

def gun(b_1,...,b_m):
...
return y_1,...,y_l

is provided by a user, and in addition,

fun_extra_args = (e_1,...,e_p)

is used, then the following rules are applied when a Fortran or C function evaluates the call-back argument gun:
• If p == 0 then gun(a_1, ..., a_q) is called, here q = min(m, n).
• If n + p <= m then gun(a_1, ..., a_n, e_1, ..., e_p) is called.
• If p <= m < n + p then gun(a_1, ..., a_q, e_1, ..., e_p) is called, here q=m-p.
• If p > m then gun(e_1, ..., e_m) is called.
• If n + p is less than the number of required arguments to gun then an exception is raised.

If the function gun may return any number of objects as a tuple; then the following rules are applied:
• If k < l, then y_{k + 1}, ..., y_l are ignored.
• If k > l, then only x_1, ..., x_l are set.

11.3.6 Common blocks

F2PY generates wrappers to common blocks defined in a routine signature block. Common blocks are visible to all
Fortran codes linked to the current extension module, but not to other extension modules (this restriction is due to the
way Python imports shared libraries). In Python, the F2PY wrappers to common blocks are fortran type objects that
have (dynamic) attributes related to the data members of the common blocks. When accessed, these attributes return as
NumPy array objects (multidimensional arrays are Fortran-contiguous) which directly link to data members in common
blocks. Data members can be changed by direct assignment or by in-place changes to the corresponding array objects.
Consider the following Fortran 77 code:

C FILE: COMMON.F
SUBROUTINE FOO
INTEGER I,X
REAL A
COMMON /DATA/ I,X(4),A(2,3)
PRINT*, "I=",I
PRINT*, "X=[",X,"]"
PRINT*, "A=["

(continues on next page)

250 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
PRINT*, "[",A(1,1),",",A(1,2),",",A(1,3),"]"
PRINT*, "[",A(2,1),",",A(2,2),",",A(2,3),"]"
PRINT*, "]"
END

C END OF COMMON.F

and wrap it using f2py -c -m common common.f.
In Python:

>>> import common
>>> print(common.data.__doc__)
i : 'i'-scalar
x : 'i'-array(4)
a : 'f'-array(2,3)

>>> common.data.i = 5
>>> common.data.x[1] = 2
>>> common.data.a = [[1,2,3],[4,5,6]]
>>> common.foo()
>>> common.foo()
I= 5
X=[0 2 0 0]
A=[
[1.00000000 , 2.00000000 , 3.00000000]
[4.00000000 , 5.00000000 , 6.00000000]
]
>>> common.data.a[1] = 45
>>> common.foo()
I= 5
X=[0 2 0 0]
A=[
[1.00000000 , 2.00000000 , 3.00000000]
[45.0000000 , 45.0000000 , 45.0000000]
]
>>> common.data.a # a is Fortran-contiguous
array([[1., 2., 3.],

[45., 45., 45.]], dtype=float32)
>>> common.data.a.flags.f_contiguous
True

11.3.7 Fortran 90 module data

The F2PY interface to Fortran 90 module data is similar to the handling of Fortran 77 common blocks.
Consider the following Fortran 90 code:

module mod
integer i
integer :: x(4)
real, dimension(2,3) :: a
real, allocatable, dimension(:,:) :: b

contains
subroutine foo
integer k

(continues on next page)

11.3. Using F2PY bindings in Python 251

NumPy User Guide, Release 1.22.0

(continued from previous page)
print*, "i=",i
print*, "x=[",x,"]"
print*, "a=["
print*, "[",a(1,1),",",a(1,2),",",a(1,3),"]"
print*, "[",a(2,1),",",a(2,2),",",a(2,3),"]"
print*, "]"
print*, "Setting a(1,2)=a(1,2)+3"
a(1,2) = a(1,2)+3

end subroutine foo
end module mod

and wrap it using f2py -c -m moddata moddata.f90.
In Python:

>>> import moddata
>>> print(moddata.mod.__doc__)
i : 'i'-scalar
x : 'i'-array(4)
a : 'f'-array(2,3)
b : 'f'-array(-1,-1), not allocated
foo()

Wrapper for ``foo``.

>>> moddata.mod.i = 5
>>> moddata.mod.x[:2] = [1,2]
>>> moddata.mod.a = [[1,2,3],[4,5,6]]
>>> moddata.mod.foo()
i= 5
x=[1 2 0 0]
a=[
[1.000000 , 2.000000 , 3.000000]
[4.000000 , 5.000000 , 6.000000]
]
Setting a(1,2)=a(1,2)+3
>>> moddata.mod.a # a is Fortran-contiguous
array([[1., 5., 3.],

[4., 5., 6.]], dtype=float32)
>>> moddata.mod.a.flags.f_contiguous
True

11.3.8 Allocatable arrays

F2PY has basic support for Fortran 90 module allocatable arrays.
Consider the following Fortran 90 code:

module mod
real, allocatable, dimension(:,:) :: b

contains
subroutine foo
integer k

(continues on next page)

252 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
if (allocated(b)) then

print*, "b=["
do k = 1,size(b,1)

print*, b(k,1:size(b,2))
enddo
print*, "]"

else
print*, "b is not allocated"

endif
end subroutine foo

end module mod

and wrap it using f2py -c -m allocarr allocarr.f90.
In Python:

>>> import allocarr
>>> print(allocarr.mod.__doc__)
b : 'f'-array(-1,-1), not allocated
foo()

Wrapper for ``foo``.

>>> allocarr.mod.foo()
b is not allocated
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6]] # allocate/
↪→initialize b
>>> allocarr.mod.foo()
b=[

1.000000 2.000000 3.000000
4.000000 5.000000 6.000000

]
>>> allocarr.mod.b # b is Fortran-
↪→contiguous
array([[1., 2., 3.],

[4., 5., 6.]], dtype=float32)
>>> allocarr.mod.b.flags.f_contiguous
True
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # reallocate/
↪→initialize b
>>> allocarr.mod.foo()
b=[

1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
7.000000 8.000000 9.000000

]
>>> allocarr.mod.b = None # deallocate array
>>> allocarr.mod.foo()
b is not allocated

11.3. Using F2PY bindings in Python 253

NumPy User Guide, Release 1.22.0

11.4 Signature file

The syntax specification for signature files (.pyf files) is modeled on the Fortran 90/95 language specification. Almost
all Fortran 90/95 standard constructs are understood, both in free and fixed format (recall that Fortran 77 is a subset of
Fortran 90/95). F2PY introduces some extensions to the Fortran 90/95 language specification that help in the design of
the Fortran to Python interface, making it more “Pythonic”.
Signature files may contain arbitrary Fortran code so that any Fortran 90/95 codes can be treated as signature files. F2PY
silently ignores Fortran constructs that are irrelevant for creating the interface. However, this also means that syntax errors
are not caught by F2PY and will only be caught when the library is built.
In general, the contents of the signature files are case-sensitive. When scanning Fortran codes to generate a signature file,
F2PY lowers all cases automatically except in multi-line blocks or when the --no-lower option is used.
The syntax of signature files is presented below.

11.4.1 Python module block

A signature file may contain one (recommended) or more python module blocks. The python module block
describes the contents of a Python/C extension module <modulename>module.c that F2PY generates.

Warning: Exception: if <modulename> contains a substring __user__, then the corresponding python
module block describes the signatures of call-back functions (see Call-back arguments).

A python module block has the following structure:

python module <modulename>
[<usercode statement>]...
[
interface
<usercode statement>
<Fortran block data signatures>
<Fortran/C routine signatures>

end [interface]
]...
[
interface
module <F90 modulename>

[<F90 module data type declarations>]
[<F90 module routine signatures>]

end [module [<F90 modulename>]]
end [interface]
]...

end [python module [<modulename>]]

Here brackets [] indicate an optional section, dots ... indicate one or more of a previous section. So, []... is to be
read as zero or more of a previous section.

254 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

11.4.2 Fortran/C routine signatures

The signature of a Fortran routine has the following structure:

[<typespec>] function | subroutine <routine name> \
[([<arguments>])] [result (<entityname>)]

[<argument/variable type declarations>]
[<argument/variable attribute statements>]
[<use statements>]
[<common block statements>]
[<other statements>]

end [function | subroutine [<routine name>]]

From a Fortran routine signature F2PY generates a Python/C extension function that has the following signature:

def <routine name>(<required arguments>[,<optional arguments>]):
...
return <return variables>

The signature of a Fortran block data has the following structure:

block data [<block data name>]
[<variable type declarations>]
[<variable attribute statements>]
[<use statements>]
[<common block statements>]
[<include statements>]

end [block data [<block data name>]]

11.4.3 Type declarations

The definition of the <argument/variable type declaration> part is

<typespec> [[<attrspec>] ::] <entitydecl>

where

<typespec> := byte | character [<charselector>]
| complex [<kindselector>] | real [<kindselector>]
| double complex | double precision
| integer [<kindselector>] | logical [<kindselector>]

<charselector> := * <charlen>
| ([len=] <len> [, [kind=] <kind>])
| (kind= <kind> [, len= <len>])

<kindselector> := * <intlen> | ([kind=] <kind>)

<entitydecl> := <name> [[* <charlen>] [(<arrayspec>)]
| [(<arrayspec>)] * <charlen>]

| [/ <init_expr> / | = <init_expr>] \
[, <entitydecl>]

and
• <attrspec> is a comma separated list of attributes;
• <arrayspec> is a comma separated list of dimension bounds;

11.4. Signature file 255

NumPy User Guide, Release 1.22.0

• <init_expr> is a C expression;
• <intlen>may be negative integer for integer type specifications. In such cases integer*<negintlen>
represents unsigned C integers;

If an argument has no <argument type declaration>, its type is determined by applying implicit rules to
its name.

11.4.4 Statements

Attribute statements

• The <argument/variable attribute statement> is <argument/variable type
declaration> without <typespec>.

• In addition, in an attribute statement one cannot use other attributes, also <entitydecl> can be only a list of
names.

Use statements

• The definition of the <use statement> part is

use <modulename> [, <rename_list> | , ONLY : <only_list>]

where

<rename_list> := <local_name> => <use_name> [, <rename_list>]

• Currently F2PY uses use statement only for linking call-back modules and external arguments (call-back
functions), see Call-back arguments.

Common block statements

• The definition of the <common block statement> part is

common / <common name> / <shortentitydecl>

where

<shortentitydecl> := <name> [(<arrayspec>)] [, <shortentitydecl>]

• If a python module block contains two or more common blocks with the same name, the variables
from the additional declarations are appended. The types of variables in <shortentitydecl> are
defined using <argument type declarations>. Note that the corresponding <argument type
declarations>may contain array specifications; then these need not be specified in <shortentitydecl>.

256 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

Other statements

• The <other statement> part refers to any other Fortran language constructs that are not described above.
F2PY ignores most of them except the following:

– call statements and function calls of external arguments (more details?);
– include statements

include '<filename>'
include "<filename>"

If a file <filename> does not exist, the include statement is ignored. Otherwise, the file
<filename> is included to a signature file. include statements can be used in any part of a signature
file, also outside the Fortran/C routine signature blocks.

– implicit statements

implicit none
implicit <list of implicit maps>

where

<implicit map> := <typespec> (<list of letters or range of letters>)

Implicit rules are used to determine the type specification of a variable (from the first-letter of its name)
if the variable is not defined using <variable type declaration>. Default implicit rules are
given by:

implicit real (a-h,o-z,$_), integer (i-m)

– entry statements

entry <entry name> [([<arguments>])]

F2PY generates wrappers for all entry names using the signature of the routine block.

Note: The entry statement can be used to describe the signature of an arbitrary subroutine or
function allowing F2PY to generate a number of wrappers from only one routine block signature.
There are few restrictions while doing this: fortranname cannot be used, callstatement and
callprotoargument can be used only if they are valid for all entry routines, etc.

F2PY statements

In addition, F2PY introduces the following statements:
threadsafe

Uses a Py_BEGIN_ALLOW_THREADS .. Py_END_ALLOW_THREADS block around the call to Fortran/C
function.

callstatement <C-expr|multi-line block>

Replaces the F2PY generated call statement to Fortran/C function with<C-expr|multi-line block>. The
wrapped Fortran/C function is available as (*f2py_func).
To raise an exception, set f2py_success = 0 in <C-expr|multi-line block>.

11.4. Signature file 257

NumPy User Guide, Release 1.22.0

callprotoargument <C-typespecs>

When the callstatement statement is used then F2PY may not generate proper prototypes for Fortran/C
functions (because <C-expr> may contain any function calls and F2PY has no way to determine what should be
the proper prototype).
With this statement you can explicitly specify the arguments of the corresponding prototype:

extern <return type> FUNC_F(<routine name>,<ROUTINE NAME>)(<callprotoargument>);

fortranname [<actual Fortran/C routine name>]

F2PY allows for the use of an arbitrary <routine name> for a given Fortran/C function. Then this statement
is used for the <actual Fortran/C routine name>.
If fortranname statement is used without <actual Fortran/C routine name> then a dummy wrap-
per is generated.

usercode <multi-line block>

When this is used inside a python module block, the given C code will be inserted to generated C/API source
just before wrapper function definitions.
Here you can define arbitrary C functions to be used for the initialization of optional arguments.
For example, if usercode is used twice inside python module block then the second multi-line block is
inserted after the definition of the external routines.
When used inside <routine signature>, then the given C code will be inserted into the corresponding
wrapper function just after the declaration of variables but before any C statements. So, the usercode follow-up
can contain both declarations and C statements.
When used inside the first interface block, then the given C code will be inserted at the end of the initialization
function of the extension module. This is how the extension modules dictionary can be modified and has many
use-cases; for example, to define additional variables.

pymethoddef <multiline block>

This is a multi-line block which will be inserted into the definition of a module methods PyMethodDef-array.
It must be a comma-separated list of C arrays (see Extending and Embedding Python documentation for details).
pymethoddef statement can be used only inside python module block.

11.4.5 Attributes

The following attributes are used by F2PY:
optional

The corresponding argument is moved to the end of <optional arguments> list. A default value for an
optional argument can be specified via <init_expr>, see the entitydecl definition.

Note:
• The default value must be given as a valid C expression.
• Whenever <init_expr> is used, optional attribute is set automatically by F2PY.
• For an optional array argument, all its dimensions must be bounded.

258 11. F2PY user guide and reference manual

https://docs.python.org/extending/index.html

NumPy User Guide, Release 1.22.0

required

The corresponding argument with this attribute considered mandatory. This is the default. required should only
be specified if there is a need to disable the automatic optional setting when <init_expr> is used.
If a Python None object is used as a required argument, the argument is treated as optional. That is, in the case
of array argument, the memory is allocated. If <init_expr> is given, then the corresponding initialization is
carried out.

dimension(<arrayspec>)

The corresponding variable is considered as an array with dimensions given in <arrayspec>.
intent(<intentspec>)

This specifies the “intention” of the corresponding argument. <intentspec> is a comma separated list of the
following keys:

• in

The corresponding argument is considered to be input-only. This means that the value of the argument is
passed to a Fortran/C function and that the function is expected to not change the value of this argument.

• inout

The corresponding argument is marked for input/output or as an in situ output argument.
intent(inout) arguments can be only “contiguous” NumPy arrays with proper type and
size. Here “contiguous” can be either in the Fortran or C sense. The latter coincides with the
default contiguous concept used in NumPy and is effective only if intent(c) is used. F2PY
assumes Fortran contiguous arguments by default.

Note: Using intent(inout) is generally not recommended, use intent(in,out)
instead.

See also the intent(inplace) attribute.
• inplace

The corresponding argument is considered to be an input/output or in situ output argument.
intent(inplace) arguments must be NumPy arrays of a proper size. If the type of an array is
not “proper” or the array is non-contiguous then the array will be modified in-place to fix the type and
make it contiguous.

Note: Using intent(inplace) is generally not recommended either.
For example, when slices have been taken from an intent(inplace) argument then after in-place
changes, the data pointers for the slices may point to an unallocated memory area.

• out

The corresponding argument is considered to be a return variable. It is appended to the <returned
variables> list. Usingintent(out) setsintent(hide) automatically, unlessintent(in)
or intent(inout) are specified as well.
By default, returned multidimensional arrays are Fortran-contiguous. If intent(c) attribute is used,
then the returned multidimensional arrays are C-contiguous.

• hide

11.4. Signature file 259

NumPy User Guide, Release 1.22.0

The corresponding argument is removed from the list of required or optional arguments. Typically
intent(hide) is used with intent(out) or when <init_expr> completely determines the
value of the argument like in the following example:

integer intent(hide),depend(a) :: n = len(a)
real intent(in),dimension(n) :: a

• c

The corresponding argument is treated as a C scalar or C array argument. For the case of a scalar
argument, its value is passed to a C function as a C scalar argument (recall that Fortran scalar argu-
ments are actually C pointer arguments). For array arguments, the wrapper function is assumed to treat
multidimensional arrays as C-contiguous arrays.
There is no need to use intent(c) for one-dimensional arrays, irrespective of whether the wrapped
function is in Fortran or C. This is because the concepts of Fortran- and C contiguity overlap in one-
dimensional cases.
If intent(c) is used as a statement but without an entity declaration list, then F2PY adds the
intent(c) attribute to all arguments.
Also, when wrapping C functions, onemust use intent(c) attribute for <routine name> in order
to disable Fortran specific F_FUNC(..,..) macros.

• cache

The corresponding argument is treated as junk memory. No Fortran nor C contiguity checks are car-
ried out. Using intent(cache) makes sense only for array arguments, also in conjunction with
intent(hide) or optional attributes.

• copy

Ensures that the original contents of intent(in) argument is preserved. Typically used with
the intent(in,out) attribute. F2PY creates an optional argument overwrite_<argument
name> with the default value 0.

• overwrite

This indicates that the original contents of the intent(in) argument may be altered by the Fortran/C
function. F2PY creates an optional argument overwrite_<argument name> with the default
value 1.

• out=<new name>

Replaces the returned name with <new name> in the __doc__ string of the wrapper function.
• callback

Constructs an external function suitable for calling Python functions from Fortran.
intent(callback) must be specified before the corresponding external statement. If
the ‘argument’ is not in the argument list then it will be added to Python wrapper but only by initializing
an external function.

Note: Use intent(callback) in situations where the Fortran/C code assumes that the
user implemented a function with a given prototype and linked it to an executable. Don’t use
intent(callback) if the function appears in the argument list of a Fortran routine.

With intent(hide) or optional attributes specified and using a wrapper function without spec-
ifying the callback argument in the argument list; then the call-back function is assumed to be found in

260 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

the namespace of the F2PY generated extension module where it can be set as a module attribute by a
user.

• aux

Defines an auxiliary C variable in the F2PY generated wrapper function. Useful to save parameter values
so that they can be accessed in initialization expressions for other variables.

Note: intent(aux) silently implies intent(c).

The following rules apply:
• If none of intent(in | inout | out | hide) are specified, intent(in) is assumed.

– intent(in,inout) is intent(in);
– intent(in,hide) or intent(inout,hide) is intent(hide);
– intent(out) is intent(out,hide) unless intent(in) or intent(inout) is specified.

• If intent(copy) or intent(overwrite) is used, then an additional optional argument is introduced
with a name overwrite_<argument name> and a default value 0 or 1, respectively.
– intent(inout,inplace) is intent(inplace);
– intent(in,inplace) is intent(inplace);
– intent(hide) disables optional and required.

check([<C-booleanexpr>])

Performs a consistency check on the arguments by evaluating <C-booleanexpr>; if <C-booleanexpr>
returns 0, an exception is raised.

Note: If check(..) is not used then F2PY automatically generates a few standard checks (e.g. in a case of an
array argument, it checks for the proper shape and size). Use check() to disable checks generated by F2PY.

depend([<names>])

This declares that the corresponding argument depends on the values of variables in the<names> list. For example,
<init_expr> may use the values of other arguments. Using information given by depend(..) attributes,
F2PY ensures that arguments are initialized in a proper order. If the depend(..) attribute is not used then F2PY
determines dependence relations automatically. Use depend() to disable the dependence relations generated by
F2PY.
When you edit dependence relations that were initially generated by F2PY, be careful not to break the dependence
relations of other relevant variables. Another thing to watch out for is cyclic dependencies. F2PY is able to detect
cyclic dependencies when constructing wrappers and it complains if any are found.

allocatable

The corresponding variable is a Fortran 90 allocatable array defined as Fortran 90 module data.
external

The corresponding argument is a function provided by user. The signature of this call-back function can be defined
• in __user__ module block,
• or by demonstrative (or real, if the signature file is a real Fortran code) call in the <other statements>
block.

11.4. Signature file 261

NumPy User Guide, Release 1.22.0

For example, F2PY generates from:

external cb_sub, cb_fun
integer n
real a(n),r
call cb_sub(a,n)
r = cb_fun(4)

the following call-back signatures:

subroutine cb_sub(a,n)
real dimension(n) :: a
integer optional,check(len(a)>=n),depend(a) :: n=len(a)

end subroutine cb_sub
function cb_fun(e_4_e) result (r)

integer :: e_4_e
real :: r

end function cb_fun

The corresponding user-provided Python function are then:

def cb_sub(a,[n]):
...
return

def cb_fun(e_4_e):
...
return r

See also the intent(callback) attribute.
parameter

This indicates that the corresponding variable is a parameter and it must have a fixed value. F2PY replaces all
parameter occurrences by their corresponding values.

11.4.6 Extensions

F2PY directives

The F2PY directives allow using F2PY signature file constructs in Fortran 77/90 source codes. With this feature one can
(almost) completely skip the intermediate signature file generation and apply F2PY directly to Fortran source codes.
F2PY directives have the following form:

<comment char>f2py ...

where allowed comment characters for fixed and free format Fortran codes are cC*!# and !, respectively. Everything
that follows <comment char>f2py is ignored by a compiler but read by F2PY as a normal non-comment Fortran
line:

Note: When F2PY finds a line with F2PY directive, the directive is first replaced by 5 spaces and then the line is reread.

For fixed format Fortran codes, <comment char> must be at the first column of a file, of course. For free format
Fortran codes, the F2PY directives can appear anywhere in a file.

262 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

C expressions

C expressions are used in the following parts of signature files:
• <init_expr> for variable initialization;
• <C-booleanexpr> of the check attribute;
• <arrayspec> of the dimension attribute;
• callstatement statement, here also a C multi-line block can be used.

A C expression may contain:
• standard C constructs;
• functions from math.h and Python.h;
• variables from the argument list, presumably initialized before according to given dependence relations;
• the following CPP macros:

– rank(<name>) Returns the rank of an array <name>.
– shape(<name>,<n>) Returns the <n>-th dimension of an array <name>.
– len(<name>) Returns the length of an array <name>.
– size(<name>) Returns the size of an array <name>.
– slen(<name>) Returns the length of a string <name>.

For initializing an array <array name>, F2PY generates a loop over all indices and dimensions that executes the
following pseudo-statement:

<array name>(_i[0],_i[1],...) = <init_expr>;

where _i[<i>] refers to the <i>-th index value and that runs from 0 to shape(<array name>,<i>)-1.
For example, a function myrange(n) generated from the following signature

subroutine myrange(a,n)
fortranname ! myrange is a dummy wrapper
integer intent(in) :: n
real*8 intent(c,out),dimension(n),depend(n) :: a = _i[0]

end subroutine myrange

is equivalent to numpy.arange(n,dtype=float).

Warning: F2PYmay lower cases also in C expressions when scanning Fortran codes (see --[no]-lower option).

11.4. Signature file 263

NumPy User Guide, Release 1.22.0

Multi-line blocks

A multi-line block starts with ''' (triple single-quotes) and ends with ''' in some strictly subsequent line. Multi-line
blocks can be used only within .pyf files. The contents of a multi-line block can be arbitrary (except that it cannot contain
''') and no transformations (e.g. lowering cases) are applied to it.
Currently, multi-line blocks can be used in the following constructs:

• as a C expression of the callstatement statement;
• as a C type specification of the callprotoargument statement;
• as a C code block of the usercode statement;
• as a list of C arrays of the pymethoddef statement;
• as a documentation string.

11.5 F2PY and Build Systems

In this section we will cover the various popular build systems and their usage with f2py.

Note: As of November 2021
The default build system for F2PY has traditionally been the through the enhanced numpy.distutils module. This
module is based on distutils which will be removed in Python 3.12.0 in October 2023; setuptools does
not have support for Fortran or F2PY and it is unclear if it will be supported in the future. Alternative methods are thus
increasingly more important.

11.5.1 Basic Concepts

Building an extension module which includes Python and Fortran consists of:
• Fortran source(s)
• One or more generated files from f2py

– A C wrapper file is always created
– Code with modules require an additional .f90 wrapper

• fortranobject.{c,h}

– Distributed with numpy
– Can be queried via python -c "import numpy.f2py; print(numpy.f2py.
get_include())"

• NumPy headers
– Can be queried via python -c "import numpy; print(numpy.get_include())"

• Python libraries and development headers
Broadly speaking there are three cases which arise when considering the outputs of f2py:
Fortran 77 programs

• Input file blah.f

264 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

• Generates
– blahmodule.c

– f2pywrappers.f

When no COMMON blocks are present only a C wrapper file is generated. Wrappers are also generated to rewrite
assumed shape arrays as automatic arrays.

Fortran 90 programs
• Input file blah.f90
• Generates:

– blahmodule.c

– blah-f2pywrappers2.f90

The secondary wrapper is used to handle code which is subdivided into modules. It rewrites assumed shape arrays
as automatic arrays.

Signature files
• Input file blah.pyf
• Generates:

– blahmodule.c

– blah-f2pywrappers2.f90 (occasionally)
– f2pywrappers.f (occasionally)

Signature files .pyf do not signal their language standard via the file extension, they may generate the F90 and
F77 specific wrappers depending on their contents; which shifts the burden of checking for generated files onto the
build system.

Note: The signature file output situation is being reconsidered in issue 20385 .

In theory keeping the above requirements in hand, any build system can be adapted to generate f2py extension modules.
Here we will cover a subset of the more popular systems.

Note: make has no place in a modern multi-language setup, and so is not discussed further.

11.5.2 Build Systems

Using via numpy.distutils

numpy.distutils is part of NumPy, and extends the standard Python distutils module to deal with Fortran
sources and F2PY signature files, e.g. compile Fortran sources, call F2PY to construct extension modules, etc.

Example

Consider the following setup_file.py for the fib and scalar examples from Three ways to wrap - getting
started section:

11.5. F2PY and Build Systems 265

https://github.com/numpy/numpy/issues/20385

NumPy User Guide, Release 1.22.0

from numpy.distutils.core import Extension

ext1 = Extension(name = 'scalar',
sources = ['scalar.f'])

ext2 = Extension(name = 'fib2',
sources = ['fib2.pyf', 'fib1.f'])

if __name__ == "__main__":
from numpy.distutils.core import setup
setup(name = 'f2py_example',

description = "F2PY Users Guide examples",
author = "Pearu Peterson",
author_email = "pearu@cens.ioc.ee",
ext_modules = [ext1, ext2]
)

End of setup_example.py

Running
python setup_example.py build

will build two extension modules scalar and fib2 to the build directory.

Extensions to distutils
numpy.distutils extends distutils with the following features:

• Extension class argument sources may contain Fortran source files. In addition, the list sources may
contain at most one F2PY signature file, and in this case, the name of an Extension module must match with the
<modulename> used in signature file. It is assumed that an F2PY signature file contains exactly one python
module block.
If sources do not contain a signature file, then F2PY is used to scan Fortran source files to construct wrappers
to the Fortran codes.
Additional options to the F2PY executable can be given using the Extension class argument f2py_options.

• The following new distutils commands are defined:
build_src

to construct Fortran wrapper extension modules, among many other things.
config_fc

to change Fortran compiler options.
Additionally, the build_ext and build_clib commands are also enhanced to support Fortran sources.
Run

python <setup.py file> config_fc build_src build_ext --help

to see available options for these commands.
• When building Python packages containing Fortran sources, one can choose different Fortran compilers by using
the build_ext command option --fcompiler=<Vendor>. Here <Vendor> can be one of the following
names (on linux systems):

absoft compaq fujitsu g95 gnu gnu95 intel intele intelem lahey nag nagfor nv␣
↪→pathf95 pg vast

266 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

Seenumpy_distutils/fcompiler.py for an up-to-date list of supported compilers for different platforms,
or run

python -m numpy.f2py -c --help-fcompiler

Using via meson

The key advantage gained by leveraging meson over the techniques described in Using via numpy.distutils is that this
feeds into existing systems and larger projects with ease. meson has a rather pythonic syntax which makes it more
comfortable and amenable to extension for python users.

Note: Meson needs to be at-least 0.46.0 in order to resolve the python include directories.

Fibonacci Walkthrough (F77)
We will need the generated C wrapper before we can use a general purpose build system like meson. We will acquire
this by:

python -n numpy.f2py fib1.f -m fib2

Now, consider the following meson.build file for the fib and scalar examples from Three ways to wrap - getting
started section:

project('f2py_examples', 'c',
version : '0.1',
default_options : ['warning_level=2'])

add_languages('fortran')

py_mod = import('python')
py3 = py_mod.find_installation('python3')
py3_dep = py3.dependency()
message(py3.path())
message(py3.get_install_dir())

incdir_numpy = run_command(py3,
['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
check : true

).stdout().strip()

incdir_f2py = run_command(py3,
['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_

↪→include())'],
check : true

).stdout().strip()

fibby_source = custom_target('fibbymodule.c',
input : ['fib1.f'],
output : ['fibbymodule.c'],
command : [py3, '-m', 'numpy.f2py', '@INPUT@',
'-m', 'fibby', '--lower']
)

inc_np = include_directories(incdir_numpy, incdir_f2py)

(continues on next page)

11.5. F2PY and Build Systems 267

NumPy User Guide, Release 1.22.0

(continued from previous page)

py3.extension_module('fibby',
'fib1.f',
fibby_source,
incdir_f2py+'/fortranobject.c',
include_directories: inc_np,
dependencies : py3_dep,
install : true)

At this point the build will complete, but the import will fail:

meson setup builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: fib2.cpython-39-x86_64-linux-gnu.so: undefined symbol: FIB_
Check this isn't a false positive
nm -A fib2.cpython-39-x86_64-linux-gnu.so | grep FIB_
fib2.cpython-39-x86_64-linux-gnu.so: U FIB_

Recall that the original example, as reproduced below, was in SCREAMCASE:

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

With the standard approach, the subroutine exposed to python is fib and not FIB. This means we have a few options.
One approach (where possible) is to lowercase the original Fortran file with say:

tr "[:upper:]" "[:lower:]" < fib1.f > fib1.f
python -n numpy.f2py fib1.f -m fib2
meson --wipe builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'

However this requires the ability to modify the source which is not always possible. The easiest way to solve this is to let
f2py deal with it:

268 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

python -n numpy.f2py fib1.f -m fib2 --lower
meson --wipe builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'

Automating wrapper generation

Amajor pain point in the workflow defined above, is the manual tracking of inputs. Although it would require more effort
to figure out the actual outputs for reasons discussed in F2PY and Build Systems.
However, we can augment our workflow in a straightforward to take into account files for which the outputs are known
when the build system is set up.

project('f2py_examples', 'c',
version : '0.1',
default_options : ['warning_level=2'])

add_languages('fortran')

py_mod = import('python')
py3 = py_mod.find_installation('python3')
py3_dep = py3.dependency()
message(py3.path())
message(py3.get_install_dir())

incdir_numpy = run_command(py3,
['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
check : true

).stdout().strip()

incdir_f2py = run_command(py3,
['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_

↪→include())'],
check : true

).stdout().strip()

fibby_source = custom_target('fibbymodule.c',
input : ['fib1.f'],
output : ['fibbymodule.c'],
command : [py3, '-m', 'numpy.f2py', '@INPUT@',
'-m', 'fibby', '--lower'])

inc_np = include_directories(incdir_numpy, incdir_f2py)

py3.extension_module('fibby',
'fib1.f',
fibby_source,
incdir_f2py+'/fortranobject.c',
include_directories: inc_np,
dependencies : py3_dep,
install : true)

This can be compiled and run as before.

11.5. F2PY and Build Systems 269

NumPy User Guide, Release 1.22.0

rm -rf builddir
meson setup builddir
meson compile -C builddir
cd builddir
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

Salient points
It is worth keeping in mind the following:

• meson will default to passing -fimplicit-none under gfortran by default, which differs from that of the
standard np.distutils behaviour

• It is not possible to use SCREAMCASE in this context, so either the contents of the .f file or the generated
wrapper .c needs to be lowered to regular letters; which can be facilitated by the --lower option of F2PY

Using via cmake

In terms of complexity, cmake falls between make and meson. The learning curve is steeper since CMake syntax is
not pythonic and is closer to make with environment variables.
However, the trade-off is enhanced flexibility and support for most architectures and compilers. An introduction to the
syntax is out of scope for this document, but this extensive CMake collection of resources is great.

Note: cmake is very popular for mixed-language systems, however support for f2py is not particularly native or
pleasant; and a more natural approach is to consider Using via scikit-build

Fibonacci Walkthrough (F77)
Returning to the fib example from Three ways to wrap - getting started section.

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

We do not need to explicitly generate the python -m numpy.f2py fib1.f output, which is fib1module.c,
which is beneficial. With this; we can now initialize a CMakeLists.txt file as follows:

270 11. F2PY user guide and reference manual

https://cliutils.gitlab.io/modern-cmake/

NumPy User Guide, Release 1.22.0

setup project
cmake_minimum_required(VERSION 3.17.3) # 3.17 > for Python3_SOABI
set(CMAKE_CXX_STANDARD_REQUIRED ON)

project(fibby
VERSION 1.0
DESCRIPTION "FIB module"
LANGUAGES C Fortran
)

Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)

message(
FATAL_ERROR

"In-source builds not allowed. Please make a new directory (called a build␣
↪→directory) and run CMake from there.\n"
)

endif()

Grab Python
find_package(Python3 3.9 REQUIRED

COMPONENTS Interpreter Development NumPy)

Grab the variables from a local Python installation
F2PY headers
execute_process(

COMMAND "${Python3_EXECUTABLE}"
-c "import numpy.f2py; print(numpy.f2py.get_include())"
OUTPUT_VARIABLE F2PY_INCLUDE_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE

)

Project scope; consider using target_include_directories instead
include_directories(

BEFORE
${Python3_INCLUDE_DIRS}
${Python3_NumPy_INCLUDE_DIRS}
${F2PY_INCLUDE_DIR}
)

message(STATUS ${Python3_INCLUDE_DIRS})
message(STATUS ${F2PY_INCLUDE_DIR})
message(STATUS ${Python3_NumPy_INCLUDE_DIRS})

Vars
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(f2py_module_c "${f2py_module_name}module.c")
set(generated_module_file "${f2py_module_name}${Python3_SOABI}")

Generate sources
add_custom_target(

genpyf
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
)

add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"

(continues on next page)

11.5. F2PY and Build Systems 271

NumPy User Guide, Release 1.22.0

(continued from previous page)
COMMAND ${Python3_EXECUTABLE} -m "numpy.f2py"

"${fortran_src_file}"
-m "fibby"
--lower # Important

DEPENDS fib1.f # Fortran source
)

Set up target
add_library(${CMAKE_PROJECT_NAME} SHARED

"${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}" # Generated
"${F2PY_INCLUDE_DIR}/fortranobject.c" # From NumPy
"${fortran_src_file}" # Fortran source(s)
)

Depend on sources
add_dependencies(${CMAKE_PROJECT_NAME} genpyf)

set_target_properties(
${CMAKE_PROJECT_NAME}

PROPERTIES
PREFIX ""
OUTPUT_NAME "${CMAKE_PROJECT_NAME}"
LINKER_LANGUAGE C

)

A key element of the CMakeLists.txt file defined above is that the add_custom_command is used to generate
the wrapper C files and then added as a dependency of the actual shared library target via a add_custom_target
directive which prevents the command from running every time. Additionally, the method used for obtaining the
fortranobject.c file can also be used to grab the numpy headers on older cmake versions.
This then works in the same manner as the other modules, although the naming conventions are different and the output
library is not automatically prefixed with the cython information.

ls .
CMakeLists.txt fib1.f
mkdir build && cd build
cmake ..
make
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

This is particularly useful where an existing toolchain already exists and scikit-build or other additional python
dependencies are discouraged.

Using via scikit-build

scikit-build provides two separate concepts geared towards the users of Python extension modules.
1. A setuptools replacement (legacy behaviour)
2. A series of cmake modules with definitions which help building Python extensions

Note: It is possible to use scikit-build’s cmake modules to bypass the cmake setup mechanism completely, and
to write targets which call f2py -c. This usage is not recommended since the point of these build system documents
are to move away from the internal numpy.distutils methods.

272 11. F2PY user guide and reference manual

https://scikit-build.readthedocs.io/en/latest/cmake-modules/F2PY.html

NumPy User Guide, Release 1.22.0

For situations where no setuptools replacements are required or wanted (i.e. if wheels are not needed), it is
recommended to instead use the vanilla cmake setup described in Using via cmake.

Fibonacci Walkthrough (F77)
We will consider the fib example from Three ways to wrap - getting started section.

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

CMake modules only

Consider using the following CMakeLists.txt.

setup project
cmake_minimum_required(VERSION 3.17.3)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

project(fibby
VERSION 1.0
DESCRIPTION "FIB module"
LANGUAGES C Fortran
)

Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)

message(
FATAL_ERROR

"In-source builds not allowed. Please make a new directory (called a build␣
↪→directory) and run CMake from there.\n"
)

endif()

Grab Python
find_package(Python3 3.9 REQUIRED

COMPONENTS Interpreter Development)

Ensure scikit-build modules
if (NOT SKBUILD)

Kanged -->https://github.com/Kitware/torch_liberator/blob/master/CMakeLists.txt

(continues on next page)

11.5. F2PY and Build Systems 273

NumPy User Guide, Release 1.22.0

(continued from previous page)
If skbuild is not the driver; include its utilities in CMAKE_MODULE_PATH
execute_process(
COMMAND "${Python3_EXECUTABLE}"
-c "import os, skbuild; print(os.path.dirname(skbuild.__file__))"
OUTPUT_VARIABLE SKBLD_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(SKBLD_CMAKE_DIR "${SKBLD_DIR}/resources/cmake")
list(APPEND CMAKE_MODULE_PATH ${SKBLD_CMAKE_DIR})

endif()

scikit-build style includes
find_package(PythonExtensions REQUIRED) # for ${PYTHON_EXTENSION_MODULE_SUFFIX}
find_package(NumPy REQUIRED) # for ${NumPy_INCLUDE_DIRS}
find_package(F2PY REQUIRED) # for ${F2PY_INCLUDE_DIR}

Prepping the module
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(generated_module_file ${f2py_module_name}${PYTHON_EXTENSION_MODULE_SUFFIX})

Target for enforcing dependencies
add_custom_target(${f2py_module_name} ALL

DEPENDS "${fortran_src_file}"
)

Custom command for generating .c
add_custom_command(

OUTPUT "${f2py_module_name}module.c"
COMMAND ${F2PY_EXECUTABLE}
-m ${f2py_module_name}
${fortran_src_file}
--lower

WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS ${fortran_src_file}
)

add_library(${generated_module_file} MODULE
"${f2py_module_name}module.c"
"${F2PY_INCLUDE_DIR}/fortranobject.c"
"${fortran_src_file}")

target_include_directories(${generated_module_file} PUBLIC
${F2PY_INCLUDE_DIRS}
${PYTHON_INCLUDE_DIRS})

set_target_properties(${generated_module_file} PROPERTIES SUFFIX "")
set_target_properties(${generated_module_file} PROPERTIES PREFIX "")

Linker fixes
if (UNIX)

if (APPLE)
set_target_properties(${generated_module_file} PROPERTIES
LINK_FLAGS '-Wl,-dylib,-undefined,dynamic_lookup')

else()
set_target_properties(${generated_module_file} PROPERTIES

LINK_FLAGS '-Wl,--allow-shlib-undefined')
endif()

(continues on next page)

274 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

(continued from previous page)
endif()

if (SKBUILD)
install(TARGETS ${generated_module_file} DESTINATION fibby)

else()
install(TARGETS ${generated_module_file} DESTINATION ${CMAKE_SOURCE_DIR}/fibby)

endif()

Much of the logic is the same as in Using via cmake, however notably here the appropriate module suffix is generated via
sysconfig.get_config_var("SO"). The resulting extension can be built and loaded in the standard workflow.

ls .
CMakeLists.txt fib1.f
mkdir build && cd build
cmake ..
make
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

setuptools replacement

Note: As of November 2021
The behavior described here of driving the cmake build of a module is considered to be legacy behaviour and should not
be depended on.

The utility of scikit-build lies in being able to drive the generation of more than extension modules, in particular a
common usage pattern is the generation of Python distributables (for example for PyPI).
The workflow with scikit-build straightforwardly supports such packaging requirements. Consider augmenting the
project with a setup.py as defined:

from skbuild import setup

setup(
name="fibby",
version="0.0.1",
description="a minimal example package (fortran version)",
license="MIT",
packages=['fibby'],
cmake_args=['-DSKBUILD=ON']

)

Along with a commensurate pyproject.toml

[project]
requires-python = ">=3.7"

[build-system]
requires = ["setuptools>=42", "wheel", "scikit-build", "cmake>=3.18", "numpy>=1.21"]

Together these can build the extension using cmake in tandem with other standard setuptools outputs. Running
cmake throughsetup.py is mostly used when it is necessary to integrate with extensionmodules not built withcmake.

11.5. F2PY and Build Systems 275

NumPy User Guide, Release 1.22.0

ls .
CMakeLists.txt fib1.f pyproject.toml setup.py
python setup.py build_ext --inplace
python -c "import numpy as np; import fibby.fibby; a = np.zeros(9); fibby.fibby.
↪→fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

Where we have modified the path to the module as --inplace places the extension module in a subfolder.

11.6 Advanced F2PY use cases

11.6.1 Adding user-defined functions to F2PY generated modules

User-defined Python C/API functions can be defined inside signature files using usercode and pymethoddef state-
ments (they must be used inside the python module block). For example, the following signature file spam.pyf

! -*- f90 -*-
python module spam

usercode '''
static char doc_spam_system[] = "Execute a shell command.";
static PyObject *spam_system(PyObject *self, PyObject *args)
{
char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return Py_BuildValue("i", sts);

}
'''
pymethoddef '''
{"system", spam_system, METH_VARARGS, doc_spam_system},
'''

end python module spam

wraps the C library function system():

f2py -c spam.pyf

In Python this can then be used as:

>>> import spam
>>> status = spam.system('whoami')
pearu
>>> status = spam.system('blah')
sh: line 1: blah: command not found

276 11. F2PY user guide and reference manual

NumPy User Guide, Release 1.22.0

11.6.2 Adding user-defined variables

The following example illustrates how to add user-defined variables to a F2PY generated extension module by modifying
the dictionary of a F2PY generated module. Consider the following signature file (compiled with f2py -c var.pyf):

! -*- f90 -*-
python module var

usercode '''
int BAR = 5;

'''
interface
usercode '''

PyDict_SetItemString(d,"BAR",PyInt_FromLong(BAR));
'''

end interface
end python module

Notice that the second usercode statement must be defined inside an interface block and the module dictionary
is available through the variable d (see varmodule.c generated by f2py var.pyf for additional details).
Usage in Python:

>>> import var
>>> var.BAR
5

11.6.3 Dealing with KIND specifiers

Currently, F2PY can handle only <type spec>(kind=<kindselector>) declarations where
<kindselector> is a numeric integer (e.g. 1, 2, 4,…), but not a function call KIND(..) or any other ex-
pression. F2PY needs to know what would be the corresponding C type and a general solution for that would be too
complicated to implement.
However, F2PY provides a hook to overcome this difficulty, namely, users can define their own <Fortran type> to <C
type> maps. For example, if Fortran 90 code contains:

REAL(kind=KIND(0.0D0)) ...

then create a mapping file containing a Python dictionary:

{'real': {'KIND(0.0D0)': 'double'}}

for instance.
Use the --f2cmap command-line option to pass the file name to F2PY. By default, F2PY assumes file name is .
f2py_f2cmap in the current working directory.
More generally, the f2cmap file must contain a dictionary with items:

<Fortran typespec> : {<selector_expr>:<C type>}

that defines mapping between Fortran type:

<Fortran typespec>([kind=]<selector_expr>)

and the corresponding <C type>. The <C type> can be one of the following:

11.6. Advanced F2PY use cases 277

NumPy User Guide, Release 1.22.0

char
signed_char
short
int
long_long
float
double
long_double
complex_float
complex_double
complex_long_double
string

For more information, see the F2Py source code numpy/f2py/capi_maps.py.

278 11. F2PY user guide and reference manual

CHAPTER

TWELVE

GLOSSARY

(n,)
A parenthesized number followed by a comma denotes a tuple with one element. The trailing comma distinguishes
a one-element tuple from a parenthesized n.

-1
• In a dimension entry, instructs NumPy to choose the length that will keep the total number of array elements
the same.

>>> np.arange(12).reshape(4, -1).shape
(4, 3)

• In an index, any negative value denotes indexing from the right.
…

An Ellipsis.
• When indexing an array, shorthand that the missing axes, if they exist, are full slices.

>>> a = np.arange(24).reshape(2,3,4)

>>> a[...].shape
(2, 3, 4)

>>> a[...,0].shape
(2, 3)

>>> a[0,...].shape
(3, 4)

>>> a[0,...,0].shape
(3,)

It can be used at most once; a[...,0,...] raises an IndexError.
• In printouts, NumPy substitutes ... for the middle elements of large arrays. To see the entire array, use
numpy.printoptions

:
The Python slice operator. In ndarrays, slicing can be applied to every axis:

279

https://docs.python.org/dev/faq/programming.html#what-s-a-negative-index
https://docs.python.org/dev/library/constants.html#Ellipsis
https://docs.python.org/dev/library/exceptions.html#IndexError
https://docs.python.org/dev/glossary.html#term-slice

NumPy User Guide, Release 1.22.0

>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> a[1:,-2:,:-1]
array([[[16, 17, 18],

[20, 21, 22]]])

Trailing slices can be omitted:

>>> a[1] == a[1,:,:]
array([[True, True, True, True],

[True, True, True, True],
[True, True, True, True]])

In contrast to Python, where slicing creates a copy, in NumPy slicing creates a view.
For details, see Combining advanced and basic indexing.

<
In a dtype declaration, indicates that the data is little-endian (the bracket is big on the right).

>>> dt = np.dtype('<f') # little-endian single-precision float

>
In a dtype declaration, indicates that the data is big-endian (the bracket is big on the left).

>>> dt = np.dtype('>H') # big-endian unsigned short

advanced indexing
Rather than using a scalar or slice as an index, an axis can be indexed with an array, providing fine-grained selection.
This is known as advanced indexing or “fancy indexing”.

along an axis
An operation along axis n of array a behaves as if its argument were an array of slices of a where each slice has a
successive index of axis n.
For example, if a is a 3 x N array, an operation along axis 0 behaves as if its argument were an array containing
slices of each row:

>>> np.array((a[0,:], a[1,:], a[2,:]))

To make it concrete, we can pick the operation to be the array-reversal function numpy.flip, which accepts an
axis argument. We construct a 3 x 4 array a:

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

280 12. Glossary

NumPy User Guide, Release 1.22.0

Reversing along axis 0 (the row axis) yields

>>> np.flip(a,axis=0)
array([[8, 9, 10, 11],

[4, 5, 6, 7],
[0, 1, 2, 3]])

Recalling the definition of along an axis, flip along axis 0 is treating its argument as if it were

>>> np.array((a[0,:], a[1,:], a[2,:]))
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

and the result of np.flip(a,axis=0) is to reverse the slices:

>>> np.array((a[2,:],a[1,:],a[0,:]))
array([[8, 9, 10, 11],

[4, 5, 6, 7],
[0, 1, 2, 3]])

array
Used synonymously in the NumPy docs with ndarray.

array_like
Any scalar or sequence that can be interpreted as an ndarray. In addition to ndarrays and scalars this category
includes lists (possibly nested and with different element types) and tuples. Any argument accepted by numpy.array
is array_like.

>>> a = np.array([[1, 2.0], [0, 0], (1+1j, 3.)])

>>> a
array([[1.+0.j, 2.+0.j],

[0.+0.j, 0.+0.j],
[1.+1.j, 3.+0.j]])

array scalar
An array scalar is an instance of the types/classes float32, float64, etc.. For uniformity in handling operands,
NumPy treats a scalar as an array of zero dimension. In contrast, a 0-dimensional array is an ndarray instance
containing precisely one value.

axis
Another term for an array dimension. Axes are numbered left to right; axis 0 is the first element in the shape tuple.
In a two-dimensional vector, the elements of axis 0 are rows and the elements of axis 1 are columns.
In higher dimensions, the picture changes. NumPy prints higher-dimensional vectors as replications of row-by-
column building blocks, as in this three-dimensional vector:

>>> a = np.arange(12).reshape(2,2,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5]],
[[6, 7, 8],
[9, 10, 11]]])

281

https://docs.python.org/dev/glossary.html#term-sequence

NumPy User Guide, Release 1.22.0

a is depicted as a two-element array whose elements are 2x3 vectors. From this point of view, rows and columns
are the final two axes, respectively, in any shape.
This rule helps you anticipate how a vector will be printed, and conversely how to find the index of any of the
printed elements. For instance, in the example, the last two values of 8’s index must be 0 and 2. Since 8 appears in
the second of the two 2x3’s, the first index must be 1:

>>> a[1,0,2]
8

A convenient way to count dimensions in a printed vector is to count [symbols after the open-parenthesis. This is
useful in distinguishing, say, a (1,2,3) shape from a (2,3) shape:

>>> a = np.arange(6).reshape(2,3)
>>> a.ndim
2
>>> a
array([[0, 1, 2],

[3, 4, 5]])

>>> a = np.arange(6).reshape(1,2,3)
>>> a.ndim
3
>>> a
array([[[0, 1, 2],

[3, 4, 5]]])

.base
If an array does not own its memory, then its base attribute returns the object whosememory the array is referencing.
That object may be referencing the memory from still another object, so the owning object may be a.base.
base.base.... Some writers erroneously claim that testing base determines if arrays are views. For the
correct way, see numpy.shares_memory.

big-endian
See Endianness.

BLAS
Basic Linear Algebra Subprograms

broadcast
broadcasting is NumPy’s ability to process ndarrays of different sizes as if all were the same size.
It permits an elegant do-what-I-mean behavior where, for instance, adding a scalar to a vector adds the scalar value
to every element.

>>> a = np.arange(3)
>>> a
array([0, 1, 2])

>>> a + [3, 3, 3]
array([3, 4, 5])

>>> a + 3
array([3, 4, 5])

282 12. Glossary

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

NumPy User Guide, Release 1.22.0

Ordinarly, vector operands must all be the same size, because NumPy works element by element – for instance, c
= a * b is

c[0,0,0] = a[0,0,0] * b[0,0,0]
c[0,0,1] = a[0,0,1] * b[0,0,1]
...

But in certain useful cases, NumPy can duplicate data along “missing” axes or “too-short” dimensions so shapes
will match. The duplication costs no memory or time. For details, see Broadcasting.

C order
Same as row-major.

column-major
See Row- and column-major order.

contiguous
An array is contiguous if

• it occupies an unbroken block of memory, and
• array elements with higher indexes occupy higher addresses (that is, no stride is negative).

copy
See view.

dimension
See axis.

dtype
The datatype describing the (identically typed) elements in an ndarray. It can be changed to reinterpret the array
contents. For details, see Data type objects (dtype).

fancy indexing
Another term for advanced indexing.

field
In a structured data type, each subtype is called a field. The field has a name (a string), a type (any valid dtype),
and an optional title. See arrays.dtypes.

Fortran order
Same as column-major.

flattened
See ravel.

homogeneous
All elements of a homogeneous array have the same type. ndarrays, in contrast to Python lists, are homogeneous.
The type can be complicated, as in a structured array, but all elements have that type.
NumPy object arrays, which contain references to Python objects, fill the role of heterogeneous arrays.

itemsize
The size of the dtype element in bytes.

283

https://en.wikipedia.org/wiki/Row-_and_column-major_order

NumPy User Guide, Release 1.22.0

little-endian
See Endianness.

mask
A boolean array used to select only certain elements for an operation:

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> mask = (x > 2)
>>> mask
array([False, False, False, True, True])

>>> x[mask] = -1
>>> x
array([0, 1, 2, -1, -1])

masked array
Bad or missing data can be cleanly ignored by putting it in a masked array, which has an internal boolean array
indicating invalid entries. Operations with masked arrays ignore these entries.

>>> a = np.ma.masked_array([np.nan, 2, np.nan], [True, False, True])
>>> a
masked_array(data=[--, 2.0, --],

mask=[True, False, True],
fill_value=1e+20)

>>> a + [1, 2, 3]
masked_array(data=[--, 4.0, --],

mask=[True, False, True],
fill_value=1e+20)

For details, see Masked arrays.
matrix

NumPy’s two-dimensional matrix class should no longer be used; use regular ndarrays.
ndarray

NumPy’s basic structure.
object array

An array whose dtype is object; that is, it contains references to Python objects. Indexing the array dereferences
the Python objects, so unlike other ndarrays, an object array has the ability to hold heterogeneous objects.

ravel
numpy.ravel and numpy.flatten both flatten an ndarray. ravel will return a view if possible; flatten always
returns a copy.
Flattening collapses a multimdimensional array to a single dimension; details of how this is done (for instance,
whether a[n+1] should be the next row or next column) are parameters.

record array
A structured array with allowing access in an attribute style (a.field) in addition to a['field']. For details,
see numpy.recarray.

284 12. Glossary

https://en.wikipedia.org/wiki/Endianness

NumPy User Guide, Release 1.22.0

row-major
See Row- and column-major order. NumPy creates arrays in row-major order by default.

scalar
In NumPy, usually a synonym for array scalar.

shape
A tuple showing the length of each dimension of an ndarray. The length of the tuple itself is the number of
dimensions (numpy.ndim). The product of the tuple elements is the number of elements in the array. For details,
see numpy.ndarray.shape.

stride
Physical memory is one-dimensional; strides provide a mechanism to map a given index to an address in memory.
For an N-dimensional array, its strides attribute is an N-element tuple; advancing from index i to index i+1
on axis n means adding a.strides[n] bytes to the address.
Strides are computed automatically from an array’s dtype and shape, but can be directly specified using as_strided.
For details, see numpy.ndarray.strides.
To see how striding underlies the power of NumPy views, see The NumPy array: a structure for efficient numerical
computation.

structured array
Array whose dtype is a structured data type.

structured data type
Users can create arbitrarily complex dtypes that can include other arrays and dtypes. These composite dtypes are
called structured data types.

subarray
An array nested in a structured data type, as b is here:

>>> dt = np.dtype([('a', np.int32), ('b', np.float32, (3,))])
>>> np.zeros(3, dtype=dt)
array([(0, [0., 0., 0.]), (0, [0., 0., 0.]), (0, [0., 0., 0.])],

dtype=[('a', '<i4'), ('b', '<f4', (3,))])

subarray data type
An element of a structured datatype that behaves like an ndarray.

title
An alias for a field name in a structured datatype.

type
In NumPy, usually a synonym for dtype. For the more general Python meaning, see here.

ufunc
NumPy’s fast element-by-element computation (vectorization) gives a choice which function gets applied. The
general term for the function isufunc, short foruniversal function. NumPy routines have built-in ufuncs,
but users can also write their own.

vectorization

285

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://arxiv.org/pdf/1102.1523.pdf
https://arxiv.org/pdf/1102.1523.pdf
https://docs.python.org/dev/glossary.html#term-type

NumPy User Guide, Release 1.22.0

NumPy hands off array processing to C, where looping and computation are much faster than in Python. To
exploit this, programmers using NumPy eliminate Python loops in favor of array-to-array operations. vectorization
can refer both to the C offloading and to structuring NumPy code to leverage it.

view
Without touching underlying data, NumPy can make one array appear to change its datatype and shape.
An array created this way is a view, and NumPy often exploits the performance gain of using a view versus making
a new array.
A potential drawback is that writing to a view can alter the original as well. If this is a problem, NumPy instead
needs to create a physically distinct array – a copy.
Some NumPy routines always return views, some always return copies, some may return one or the other, and
for some the choice can be specified. Responsibility for managing views and copies falls to the programmer.
numpy.shares_memory will check whether b is a view of a, but an exact answer isn’t always feasible, as the
documentation page explains.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> y = x[::2]
>>> y
array([0, 2, 4])

>>> x[0] = 3 # changing x changes y as well, since y is a view on x
>>> y
array([3, 2, 4])

286 12. Glossary

https://docs.python.org/dev/library/copy.html#module-copy

CHAPTER

THIRTEEN

UNDER-THE-HOOD DOCUMENTATION FOR DEVELOPERS

These documents are intended as a low-level look into NumPy; focused towards developers.

13.1 Internal organization of NumPy arrays

It helps to understand a bit about how NumPy arrays are handled under the covers to help understand NumPy better. This
section will not go into great detail. Those wishing to understand the full details are requested to refer to Travis Oliphant’s
book Guide to NumPy.
NumPy arrays consist of two major components: the raw array data (from now on, referred to as the data buffer), and
the information about the raw array data. The data buffer is typically what people think of as arrays in C or Fortran, a
contiguous (and fixed) block of memory containing fixed-sized data items. NumPy also contains a significant set of data
that describes how to interpret the data in the data buffer. This extra information contains (among other things):

1) The basic data element’s size in bytes.
2) The start of the data within the data buffer (an offset relative to the beginning of the data buffer).
3) The number of dimensions and the size of each dimension.
4) The separation between elements for each dimension (the stride). This does not have to be a multiple of the element

size.
5) The byte order of the data (which may not be the native byte order).
6) Whether the buffer is read-only.
7) Information (via the dtype object) about the interpretation of the basic data element. The basic data element may

be as simple as an int or a float, or it may be a compound object (e.g., struct-like), a fixed character field, or Python
object pointers.

8) Whether the array is to be interpreted as C-order or Fortran-order.
This arrangement allows for the very flexible use of arrays. One thing that it allows is simple changes to the metadata
to change the interpretation of the array buffer. Changing the byteorder of the array is a simple change involving no
rearrangement of the data. The shape of the array can be changed very easily without changing anything in the data
buffer or any data copying at all.
Among other things that are made possible is one can create a new array metadata object that uses the same data buffer to
create a new view of that data buffer that has a different interpretation of the buffer (e.g., different shape, offset, byte order,
strides, etc) but shares the same data bytes. Many operations in NumPy do just this such as slicing. Other operations,
such as transpose, don’t move data elements around in the array, but rather change the information about the shape and
strides so that the indexing of the array changes, but the data in the doesn’t move.

287

http://web.mit.edu/dvp/Public/numpybook.pdf
https://docs.python.org/dev/glossary.html#term-slice

NumPy User Guide, Release 1.22.0

Typically these new versions of the array metadata but the same data buffer are new views into the data buffer. There is
a different ndarray object, but it uses the same data buffer. This is why it is necessary to force copies through the use
of the copy method if one really wants to make a new and independent copy of the data buffer.
New views into arrays mean the object reference counts for the data buffer increase. Simply doing away with the original
array object will not remove the data buffer if other views of it still exist.

13.1.1 Multidimensional array indexing order issues

See also:
Indexing on ndarrays

What is the right way to index multi-dimensional arrays? Before you jump to conclusions about the one and true way
to index multi-dimensional arrays, it pays to understand why this is a confusing issue. This section will try to explain in
detail how NumPy indexing works and why we adopt the convention we do for images, and when it may be appropriate
to adopt other conventions.
The first thing to understand is that there are two conflicting conventions for indexing 2-dimensional arrays. Matrix
notation uses the first index to indicate which row is being selected and the second index to indicate which column is
selected. This is opposite the geometrically oriented-convention for images where people generally think the first index
represents x position (i.e., column) and the second represents y position (i.e., row). This alone is the source of much
confusion; matrix-oriented users and image-oriented users expect two different things with regard to indexing.
The second issue to understand is how indices correspond to the order in which the array is stored in memory. In Fortran,
the first index is the most rapidly varying index when moving through the elements of a two-dimensional array as it is
stored in memory. If you adopt the matrix convention for indexing, then this means the matrix is stored one column at
a time (since the first index moves to the next row as it changes). Thus Fortran is considered a Column-major language.
C has just the opposite convention. In C, the last index changes most rapidly as one moves through the array as stored in
memory. Thus C is a Row-major language. The matrix is stored by rows. Note that in both cases it presumes that the
matrix convention for indexing is being used, i.e., for both Fortran and C, the first index is the row. Note this convention
implies that the indexing convention is invariant and that the data order changes to keep that so.
But that’s not the only way to look at it. Suppose one has large two-dimensional arrays (images or matrices) stored in data
files. Suppose the data are stored by rows rather than by columns. If we are to preserve our index convention (whether
matrix or image) that means that depending on the language we use, we may be forced to reorder the data if it is read into
memory to preserve our indexing convention. For example, if we read row-ordered data into memory without reordering,
it will match the matrix indexing convention for C, but not for Fortran. Conversely, it will match the image indexing
convention for Fortran, but not for C. For C, if one is using data stored in row order, and one wants to preserve the image
index convention, the data must be reordered when reading into memory.
In the end, what you do for Fortran or C depends on which is more important, not reordering data or preserving the
indexing convention. For large images, reordering data is potentially expensive, and often the indexing convention is
inverted to avoid that.
The situation with NumPy makes this issue yet more complicated. The internal machinery of NumPy arrays is flexible
enough to accept any ordering of indices. One can simply reorder indices by manipulating the internal stride information
for arrays without reordering the data at all. NumPy will know how to map the new index order to the data without
moving the data.
So if this is true, why not choose the index order that matches what you most expect? In particular, why not define
row-ordered images to use the image convention? (This is sometimes referred to as the Fortran convention vs the C
convention, thus the ‘C’ and ‘FORTRAN’ order options for array ordering in NumPy.) The drawback of doing this
is potential performance penalties. It’s common to access the data sequentially, either implicitly in array operations or
explicitly by looping over rows of an image. When that is done, then the data will be accessed in non-optimal order. As the
first index is incremented, what is actually happening is that elements spaced far apart in memory are being sequentially
accessed, with usually poor memory access speeds. For example, for a two-dimensional image im defined so that im[0,

288 13. Under-the-hood Documentation for developers

NumPy User Guide, Release 1.22.0

10] represents the value at x = 0, y = 10. To be consistent with usual Python behavior then im[0] would represent
a column at x = 0. Yet that data would be spread over the whole array since the data are stored in row order. Despite
the flexibility of NumPy’s indexing, it can’t really paper over the fact basic operations are rendered inefficient because of
data order or that getting contiguous subarrays is still awkward (e.g., im[:, 0] for the first row, vs im[0]). Thus one
can’t use an idiom such as for row in im; for col in im does work, but doesn’t yield contiguous column data.
As it turns out, NumPy is smart enough when dealing with ufuncs to determine which index is the most rapidly varying one
in memory and uses that for the innermost loop. Thus for ufuncs, there is no large intrinsic advantage to either approach
in most cases. On the other hand, use of ndarray.flat with a FORTRAN ordered array will lead to non-optimal
memory access as adjacent elements in the flattened array (iterator, actually) are not contiguous in memory.
Indeed, the fact is that Python indexing on lists and other sequences naturally leads to an outside-to-inside ordering (the
first index gets the largest grouping, the next largest, and the last gets the smallest element). Since image data are normally
stored in rows, this corresponds to the position within rows being the last item indexed.
If you do want to use Fortran ordering realize that there are two approaches to consider: 1) accept that the first index is just
not themost rapidly changing in memory and have all your I/O routines reorder your data when going frommemory to disk
or visa versa, or use NumPy’s mechanism for mapping the first index to the most rapidly varying data. We recommend
the former if possible. The disadvantage of the latter is that many of NumPy’s functions will yield arrays without Fortran
ordering unless you are careful to use the order keyword. Doing this would be highly inconvenient.
Otherwise, we recommend simply learning to reverse the usual order of indices when accessing elements of an array.
Granted, it goes against the grain, but it is more in line with Python semantics and the natural order of the data.

13.2 NumPy C code explanations

Fanaticism consists of redoubling your efforts when you have forgotten your aim. — George Santayana

An authority is a person who can tell you more about something than you really care to know. — Unknown

This page attempts to explain the logic behind some of the new pieces of code. The purpose behind these explanations is
to enable somebody to be able to understand the ideas behind the implementation somewhat more easily than just staring
at the code. Perhaps in this way, the algorithms can be improved on, borrowed from, and/or optimized by more people.

13.2.1 Memory model

One fundamental aspect of the ndarray is that an array is seen as a “chunk” of memory starting at some location.
The interpretation of this memory depends on the stride information. For each dimension in an N -dimensional array, an
integer (stride) dictates how many bytes must be skipped to get to the next element in that dimension. Unless you have
a single-segment array, this stride information must be consulted when traversing through an array. It is not difficult to
write code that accepts strides, you just have to use char* pointers because strides are in units of bytes. Keep in mind
also that strides do not have to be unit-multiples of the element size. Also, remember that if the number of dimensions
of the array is 0 (sometimes called a rank-0 array), then the strides and dimensions variables are NULL.
Besides the structural information contained in the strides and dimensions members of the PyArrayObject, the flags
contain important information about how the data may be accessed. In particular, the NPY_ARRAY_ALIGNED flag is
set when the memory is on a suitable boundary according to the datatype array. Even if you have a contiguous chunk
of memory, you cannot just assume it is safe to dereference a datatype-specific pointer to an element. Only if the
NPY_ARRAY_ALIGNED flag is set, this is a safe operation. On some platforms it will work but on others, like Solaris,
it will cause a bus error. The NPY_ARRAY_WRITEABLE should also be ensured if you plan on writing to the memory
area of the array. It is also possible to obtain a pointer to an unwritable memory area. Sometimes, writing to the memory
area when the NPY_ARRAY_WRITEABLE flag is not set will just be rude. Other times it can cause program crashes
(e.g. a data-area that is a read-only memory-mapped file).

13.2. NumPy C code explanations 289

NumPy User Guide, Release 1.22.0

13.2.2 Data-type encapsulation

See also:
arrays.dtypes
The datatype is an important abstraction of the ndarray. Operations will look to the datatype to provide the key
functionality that is needed to operate on the array. This functionality is provided in the list of function pointers pointed
to by the f member of the PyArray_Descr structure. In this way, the number of datatypes can be extended simply
by providing a PyArray_Descr structure with suitable function pointers in the f member. For built-in types, there
are some optimizations that bypass this mechanism, but the point of the datatype abstraction is to allow new datatypes to
be added.
One of the built-in datatypes, the void datatype allows for arbitrary structured types containing 1 or more fields as
elements of the array. A field is simply another datatype object along with an offset into the current structured type. In
order to support arbitrarily nested fields, several recursive implementations of datatype access are implemented for the
void type. A common idiom is to cycle through the elements of the dictionary and perform a specific operation based
on the datatype object stored at the given offset. These offsets can be arbitrary numbers. Therefore, the possibility of
encountering misaligned data must be recognized and taken into account if necessary.

13.2.3 N-D Iterators

See also:
arrays.nditer
A very common operation in much of NumPy code is the need to iterate over all the elements of a general, strided,
N-dimensional array. This operation of a general-purpose N-dimensional loop is abstracted in the notion of an iterator
object. To write an N-dimensional loop, you only have to create an iterator object from an ndarray, work with the
dataptr member of the iterator object structure and call the macro PyArray_ITER_NEXT on the iterator object to
move to the next element. The next element is always in C-contiguous order. The macro works by first special-casing
the C-contiguous, 1-D, and 2-D cases which work very simply.
For the general case, the iteration works by keeping track of a list of coordinate counters in the iterator object. At each
iteration, the last coordinate counter is increased (starting from 0). If this counter is smaller than one less than the size of
the array in that dimension (a pre-computed and stored value), then the counter is increased and the dataptr member
is increased by the strides in that dimension and the macro ends. If the end of a dimension is reached, the counter for
the last dimension is reset to zero and the dataptr is moved back to the beginning of that dimension by subtracting
the strides value times one less than the number of elements in that dimension (this is also pre-computed and stored in
the backstrides member of the iterator object). In this case, the macro does not end, but a local dimension counter
is decremented so that the next-to-last dimension replaces the role that the last dimension played and the previously-
described tests are executed again on the next-to-last dimension. In this way, the dataptr is adjusted appropriately for
arbitrary striding.
The coordinates member of the PyArrayIterObject structure maintains the current N-d counter un-
less the underlying array is C-contiguous in which case the coordinate counting is bypassed. The index mem-
ber of the PyArrayIterObject keeps track of the current flat index of the iterator. It is updated by the
PyArray_ITER_NEXT macro.

290 13. Under-the-hood Documentation for developers

NumPy User Guide, Release 1.22.0

13.2.4 Broadcasting

See also:
Broadcasting

In Numeric, the ancestor of NumPy, broadcasting was implemented in several lines of code buried deep
in ufuncobject.c. In NumPy, the notion of broadcasting has been abstracted so that it can be per-
formed in multiple places. Broadcasting is handled by the function PyArray_Broadcast. This function
requires a PyArrayMultiIterObject (or something that is a binary equivalent) to be passed in. The
PyArrayMultiIterObject keeps track of the broadcast number of dimensions and size in each dimension along
with the total size of the broadcast result. It also keeps track of the number of arrays being broadcast and a pointer to an
iterator for each of the arrays being broadcast.
The PyArray_Broadcast function takes the iterators that have already been defined and uses them to determine
the broadcast shape in each dimension (to create the iterators at the same time that broadcasting occurs then use the
PyArray_MultiIterNew function). Then, the iterators are adjusted so that each iterator thinks it is iterating over
an array with the broadcast size. This is done by adjusting the iterators number of dimensions, and the shape in each
dimension. This works because the iterator strides are also adjusted. Broadcasting only adjusts (or adds) length-1 dimen-
sions. For these dimensions, the strides variable is simply set to 0 so that the data-pointer for the iterator over that array
doesn’t move as the broadcasting operation operates over the extended dimension.
Broadcasting was always implemented in Numeric using 0-valued strides for the extended dimensions. It is done in exactly
the same way in NumPy. The big difference is that now the array of strides is kept track of in a PyArrayIterObject,
the iterators involved in a broadcast result are kept track of in a PyArrayMultiIterObject, and the
PyArray_Broadcast call implements the General Broadcasting Rules.

13.2.5 Array Scalars

See also:
arrays.scalars
The array scalars offer a hierarchy of Python types that allow a one-to-one correspondence between the datatype stored
in an array and the Python-type that is returned when an element is extracted from the array. An exception to this rule
was made with object arrays. Object arrays are heterogeneous collections of arbitrary Python objects. When you select
an item from an object array, you get back the original Python object (and not an object array scalar which does exist but
is rarely used for practical purposes).
The array scalars also offer the same methods and attributes as arrays with the intent that the same code can be used to
support arbitrary dimensions (including 0-dimensions). The array scalars are read-only (immutable) with the exception
of the void scalar which can also be written to so that structured array field setting works more naturally (a[0]['f1']
= value).

13.2.6 Indexing

See also:
Indexing on ndarrays, arrays.indexing
All Python indexing operations arr[index] are organized by first preparing the index and finding the index type. The
supported index types are:

• integer
• newaxis

• slice

13.2. NumPy C code explanations 291

https://docs.python.org/dev/glossary.html#term-slice

NumPy User Guide, Release 1.22.0

• Ellipsis

• integer arrays/array-likes (advanced)
• boolean (single boolean array); if there is more than one boolean array as the index or the shape does not match
exactly, the boolean array will be converted to an integer array instead.

• 0-d boolean (and also integer); 0-d boolean arrays are a special case that has to be handled in the advanced indexing
code. They signal that a 0-d boolean array had to be interpreted as an integer array.

As well as the scalar array special case signaling that an integer array was interpreted as an integer index, which is important
because an integer array index forces a copy but is ignored if a scalar is returned (full integer index). The prepared index
is guaranteed to be valid with the exception of out of bound values and broadcasting errors for advanced indexing. This
includes that an Ellipsis is added for incomplete indices for example when a two-dimensional array is indexed with
a single integer.
The next step depends on the type of index which was found. If all dimensions are indexed with an integer a scalar is
returned or set. A single boolean indexing array will call specialized boolean functions. Indices containing an Ellipsis
or slice but no advanced indexing will always create a view into the old array by calculating the new strides and memory
offset. This view can then either be returned or, for assignments, filled using PyArray_CopyObject. Note that
PyArray_CopyObjectmay also be called on temporary arrays in other branches to support complicated assignments
when the array is of object dtype.

Advanced indexing

By far the most complex case is advanced indexing, which may or may not be combined with typical view-based indexing.
Here integer indices are interpreted as view-based. Before trying to understand this, you may want to make yourself
familiar with its subtleties. The advanced indexing code has three different branches and one special case:

• There is one indexing array and it, as well as the assignment array, can be iterated trivially. For example, they may
be contiguous. Also, the indexing array must be of intp type and the value array in assignments should be of the
correct type. This is purely a fast path.

• There are only integer array indices so that no subarray exists.
• View-based and advanced indexing is mixed. In this case, the view-based indexing defines a collection of subarrays
that are combined by the advanced indexing. For example, arr[[1, 2, 3], :] is created by vertically
stacking the subarrays arr[1, :], arr[2, :], and arr[3, :].

• There is a subarray but it has exactly one element. This case can be handled as if there is no subarray but needs
some care during setup.

Deciding what case applies, checking broadcasting, and determining the kind of transposition needed are all done in
PyArray_MapIterNew. After setting up, there are two cases. If there is no subarray or it only has one element, no
subarray iteration is necessary and an iterator is prepared which iterates all indexing arrays as well as the result or value
array. If there is a subarray, there are three iterators prepared. One for the indexing arrays, one for the result or value
array (minus its subarray), and one for the subarrays of the original and the result/assignment array. The first two iterators
give (or allow calculation) of the pointers into the start of the subarray, which then allows restarting the subarray iteration.
When advanced indices are next to each other transposing may be necessary. All necessary transposing is handled by
PyArray_MapIterSwapAxes and has to be handled by the caller unless PyArray_MapIterNew is asked to
allocate the result.
After preparation, getting and setting are relatively straightforward, although the different modes of iteration need to
be considered. Unless there is only a single indexing array during item getting, the validity of the indices is checked
beforehand. Otherwise, it is handled in the inner loop itself for optimization.

292 13. Under-the-hood Documentation for developers

https://docs.python.org/dev/library/constants.html#Ellipsis
https://docs.python.org/dev/library/constants.html#Ellipsis
https://docs.python.org/dev/library/constants.html#Ellipsis
https://docs.python.org/dev/glossary.html#term-slice

NumPy User Guide, Release 1.22.0

13.2.7 Universal functions

See also:
ufuncs, Universal functions (ufunc) basics

Universal functions are callable objects that take N inputs and produce M outputs by wrapping basic 1-D loops that
work element-by-element into full easy-to-use functions that seamlessly implement broadcasting, type-checking, buffered
coercion, and output-argument handling. New universal functions are normally created in C, although there is a mechanism
for creating ufuncs from Python functions (frompyfunc). The user must supply a 1-D loop that implements the basic
function taking the input scalar values and placing the resulting scalars into the appropriate output slots as explained in
implementation.

Setup

Every ufunc calculation involves some overhead related to setting up the calculation. The practical significance of this
overhead is that even though the actual calculation of the ufunc is very fast, you will be able to write array and type-specific
code that will work faster for small arrays than the ufunc. In particular, using ufuncs to perform many calculations on 0-D
arrays will be slower than other Python-based solutions (the silently-imported scalarmath module exists precisely to
give array scalars the look-and-feel of ufunc based calculations with significantly reduced overhead).
When a ufunc is called, many things must be done. The information collected from these setup operations is stored in
a loop object. This loop object is a C-structure (that could become a Python object but is not initialized as such because
it is only used internally). This loop object has the layout needed to be used with PyArray_Broadcast so that the
broadcasting can be handled in the same way as it is handled in other sections of code.
The first thing done is to look up in the thread-specific global dictionary the current values for the buffer-size, the error
mask, and the associated error object. The state of the error mask controls what happens when an error condition is found.
It should be noted that checking of the hardware error flags is only performed after each 1-D loop is executed. This means
that if the input and output arrays are contiguous and of the correct type so that a single 1-D loop is performed, then the
flags may not be checked until all elements of the array have been calculated. Looking up these values in a thread-specific
dictionary takes time which is easily ignored for all but very small arrays.
After checking, the thread-specific global variables, the inputs are evaluated to determine how the ufunc should proceed
and the input and output arrays are constructed if necessary. Any inputs which are not arrays are converted to arrays
(using context if necessary). Which of the inputs are scalars (and therefore converted to 0-D arrays) is noted.
Next, an appropriate 1-D loop is selected from the 1-D loops available to the ufunc based on the input array types.
This 1-D loop is selected by trying to match the signature of the datatypes of the inputs against the available signatures.
The signatures corresponding to built-in types are stored in the ufunc.types member of the ufunc structure. The
signatures corresponding to user-defined types are stored in a linked list of function information with the head element
stored as a CObject in the userloops dictionary keyed by the datatype number (the first user-defined type in the
argument list is used as the key). The signatures are searched until a signature is found to which the input arrays can all
be cast safely (ignoring any scalar arguments which are not allowed to determine the type of the result). The implication
of this search procedure is that “lesser types” should be placed below “larger types” when the signatures are stored. If no
1-D loop is found, then an error is reported. Otherwise, the argument_list is updated with the stored signature —
in case casting is necessary and to fix the output types assumed by the 1-D loop.
If the ufunc has 2 inputs and 1 output and the second input is an Object array then a special-case check is performed so
that NotImplemented is returned if the second input is not an ndarray, has the __array_priority__ attribute,
and has an __r{op}__ special method. In this way, Python is signaled to give the other object a chance to complete
the operation instead of using generic object-array calculations. This allows (for example) sparse matrices to override the
multiplication operator 1-D loop.
For input arrays that are smaller than the specified buffer size, copies are made of all non-contiguous, misaligned, or
out-of-byteorder arrays to ensure that for small arrays, a single loop is used. Then, array iterators are created for all the
input arrays and the resulting collection of iterators is broadcast to a single shape.

13.2. NumPy C code explanations 293

NumPy User Guide, Release 1.22.0

The output arguments (if any) are then processed and any missing return arrays are constructed. If any provided
output array doesn’t have the correct type (or is misaligned) and is smaller than the buffer size, then a new out-
put array is constructed with the special NPY_ARRAY_WRITEBACKIFCOPY flag set. At the end of the function,
PyArray_ResolveWritebackIfCopy is called so that its contents will be copied back into the output array.
Iterators for the output arguments are then processed.
Finally, the decision is made about how to execute the looping mechanism to ensure that all elements of the input ar-
rays are combined to produce the output arrays of the correct type. The options for loop execution are one-loop (for
:term‘contiguous‘, aligned, and correct data type), strided-loop (for non-contiguous but still aligned and correct data type),
and a buffered loop (for misaligned or incorrect data type situations). Depending on which execution method is called
for, the loop is then set up and computed.

Function call

This section describes how the basic universal function computation loop is set up and executed for each of the three
different kinds of execution. If NPY_ALLOW_THREADS is defined during compilation, then as long as no object arrays
are involved, the Python Global Interpreter Lock (GIL) is released prior to calling the loops. It is re-acquired if necessary
to handle error conditions. The hardware error flags are checked only after the 1-D loop is completed.

One loop
This is the simplest case of all. The ufunc is executed by calling the underlying 1-D loop exactly once. This is possible
only when we have aligned data of the correct type (including byteorder) for both input and output and all arrays have
uniform strides (either contiguous, 0-D, or 1-D). In this case, the 1-D computational loop is called once to compute the
calculation for the entire array. Note that the hardware error flags are only checked after the entire calculation is complete.

Strided loop
When the input and output arrays are aligned and of the correct type, but the striding is not uniform (non-contiguous and
2-D or larger), then a second looping structure is employed for the calculation. This approach converts all of the iterators
for the input and output arguments to iterate over all but the largest dimension. The inner loop is then handled by the
underlying 1-D computational loop. The outer loop is a standard iterator loop on the converted iterators. The hardware
error flags are checked after each 1-D loop is completed.

Buffered loop
This is the code that handles the situation whenever the input and/or output arrays are either misaligned or of the wrong
datatype (including being byteswapped) from what the underlying 1-D loop expects. The arrays are also assumed to
be non-contiguous. The code works very much like the strided-loop except for the inner 1-D loop is modified so that
pre-processing is performed on the inputs and post-processing is performed on the outputs in bufsize chunks (where
bufsize is a user-settable parameter). The underlying 1-D computational loop is called on data that is copied over (if
it needs to be). The setup code and the loop code is considerably more complicated in this case because it has to handle:

• memory allocation of the temporary buffers
• deciding whether or not to use buffers on the input and output data (misaligned and/or wrong datatype)
• copying and possibly casting data for any inputs or outputs for which buffers are necessary.
• special-casing Object arrays so that reference counts are properly handled when copies and/or casts are necessary.
• breaking up the inner 1-D loop into bufsize chunks (with a possible remainder).

Again, the hardware error flags are checked at the end of each 1-D loop.

294 13. Under-the-hood Documentation for developers

NumPy User Guide, Release 1.22.0

Final output manipulation

Ufuncs allow other array-like classes to be passed seamlessly through the interface in that inputs of a particular class will
induce the outputs to be of that same class. Themechanism bywhich this works is the following. If any of the inputs are not
ndarrays and define the __array_wrap__method, then the class with the largest __array_priority__ attribute
determines the type of all the outputs (with the exception of any output arrays passed in). The __array_wrap__
method of the input array will be called with the ndarray being returned from the ufunc as its input. There are two calling
styles of the __array_wrap__ function supported. The first takes the ndarray as the first argument and a tuple of
“context” as the second argument. The context is (ufunc, arguments, output argument number). This is the first call tried.
If a TypeError occurs, then the function is called with just the ndarray as the first argument.

Methods

There are three methods of ufuncs that require calculation similar to the general-purpose ufuncs. These are ufunc.
reduce, ufunc.accumulate, and ufunc.reduceat. Each of these methods requires a setup command fol-
lowed by a loop. There are four loop styles possible for the methods corresponding to no-elements, one-element, strided-
loop, and buffered-loop. These are the same basic loop styles as implemented for the general-purpose function call except
for the no-element and one-element cases which are special-cases occurring when the input array objects have 0 and 1
elements respectively.

Setup
The setup function for all three methods is construct_reduce. This function creates a reducing loop object and fills
it with the parameters needed to complete the loop. All of the methods only work on ufuncs that take 2-inputs and return
1 output. Therefore, the underlying 1-D loop is selected assuming a signature of [otype, otype, otype] where
otype is the requested reduction datatype. The buffer size and error handling are then retrieved from (per-thread) global
storage. For small arrays that are misaligned or have incorrect datatype, a copy is made so that the un-buffered section of
code is used. Then, the looping strategy is selected. If there is 1 element or 0 elements in the array, then a simple looping
method is selected. If the array is not misaligned and has the correct datatype, then strided looping is selected. Otherwise,
buffered looping must be performed. Looping parameters are then established, and the return array is constructed. The
output array is of a different shape depending on whether the method is reduce, accumulate, or reduceat. If an
output array is already provided, then its shape is checked. If the output array is not C-contiguous, aligned, and of the
correct data type, then a temporary copy is made with the NPY_ARRAY_WRITEBACKIFCOPY flag set. In this way, the
methods will be able to work with a well-behaved output array but the result will be copied back into the true output array
when PyArray_ResolveWritebackIfCopy is called at function completion. Finally, iterators are set up to loop
over the correct axis (depending on the value of axis provided to the method) and the setup routine returns to the actual
computation routine.

Reduce

All of the ufunc methods use the same underlying 1-D computational loops with input and output arguments adjusted so
that the appropriate reduction takes place. For example, the key to the functioning of reduce is that the 1-D loop is
called with the output and the second input pointing to the same position in memory and both having a step-size of 0.
The first input is pointing to the input array with a step-size given by the appropriate stride for the selected axis. In this
way, the operation performed is

o = i[0]
o = i[k]<op>o k = 1 . . . N

where N + 1 is the number of elements in the input, i, o is the output, and i[k] is the kth element of i along the selected
axis. This basic operation is repeated for arrays with greater than 1 dimension so that the reduction takes place for every
1-D sub-array along the selected axis. An iterator with the selected dimension removed handles this looping.
For buffered loops, care must be taken to copy and cast data before the loop function is called because the underlying
loop expects aligned data of the correct datatype (including byteorder). The buffered loop must handle this copying and
casting prior to calling the loop function on chunks no greater than the user-specified bufsize.

13.2. NumPy C code explanations 295

NumPy User Guide, Release 1.22.0

Accumulate

The accumulate method is very similar to the reduce method in that the output and the second input both point to
the output. The difference is that the second input points to memory one stride behind the current output pointer. Thus,
the operation performed is

o[0] = i[0]
o[k] = i[k]<op>o[k − 1] k = 1 . . . N.

The output has the same shape as the input and each 1-D loop operates over N elements when the shape in the selected
axis is N + 1. Again, buffered loops take care to copy and cast the data before calling the underlying 1-D computational
loop.

Reduceat

Thereduceat function is a generalization of both thereduce andaccumulate functions. It implements areduce
over ranges of the input array specified by indices. The extra indices argument is checked to be sure that every input is not
too large for the input array along the selected dimension before the loop calculations take place. The loop implementation
is handled using code that is very similar to the reduce code repeated as many times as there are elements in the indices
input. In particular: the first input pointer passed to the underlying 1-D computational loop points to the input array at
the correct location indicated by the index array. In addition, the output pointer and the second input pointer passed to
the underlying 1-D loop point to the same position in memory. The size of the 1-D computational loop is fixed to be the
difference between the current index and the next index (when the current index is the last index, then the next index is
assumed to be the length of the array along the selected dimension). In this way, the 1-D loop will implement a reduce
over the specified indices.
Misaligned or a loop datatype that does not match the input and/or output datatype is handled using buffered code wherein
data is copied to a temporary buffer and cast to the correct datatype if necessary prior to calling the underlying 1-D
function. The temporary buffers are created in (element) sizes no bigger than the user settable buffer-size value. Thus, the
loop must be flexible enough to call the underlying 1-D computational loop enough times to complete the total calculation
in chunks no bigger than the buffer-size.

13.3 Memory Alignment

13.3.1 NumPy alignment goals

There are three use-cases related to memory alignment in NumPy (as of 1.14):
1. Creating structured datatypes with fields aligned like in a C-struct.
2. Speeding up copy operations by using uint assignment in instead of memcpy.
3. Guaranteeing safe aligned access for ufuncs/setitem/casting code.

NumPy uses two different forms of alignment to achieve these goals: “True alignment” and “Uint alignment”.
“True” alignment refers to the architecture-dependent alignment of an equivalent C-type in C. For example, in x64 systems
float64 is equivalent to double in C. On most systems, this has either an alignment of 4 or 8 bytes (and this can be
controlled in GCC by the option malign-double). A variable is aligned in memory if its memory offset is a multiple
of its alignment. On some systems (eg. sparc) memory alignment is required; on others, it gives a speedup.
“Uint” alignment depends on the size of a datatype. It is defined to be the “True alignment” of the uint used by NumPy’s
copy-code to copy the datatype, or undefined/unaligned if there is no equivalent uint. Currently, NumPy uses uint8,
uint16, uint32, uint64, and uint64 to copy data of size 1, 2, 4, 8, 16 bytes respectively, and all other sized
datatypes cannot be uint-aligned.

296 13. Under-the-hood Documentation for developers

NumPy User Guide, Release 1.22.0

For example, on a (typical Linux x64 GCC) system, the NumPy complex64 datatype is implemented as struct {
float real, imag; }. This has “true” alignment of 4 and “uint” alignment of 8 (equal to the true alignment of
uint64).
Some cases where uint and true alignment are different (default GCC Linux):

arch type true-aln uint-aln
x86_64 complex64 4 8
x86_64 float128 16 8
x86 float96 4 -

13.3.2 Variables in NumPy which control and describe alignment

There are 4 relevant uses of the word align used in NumPy:
• The dtype.alignment attribute (descr->alignment in C). This is meant to reflect the “true alignment”
of the type. It has arch-dependent default values for all datatypes, except for the structured types created with
align=True as described below.

• The ALIGNED flag of an ndarray, computed in IsAligned and checked by PyArray_ISALIGNED. This is
computed fromdtype.alignment. It is set toTrue if every item in the array is at amemory location consistent
with dtype.alignment, which is the case if the data ptr and all strides of the array are multiples of that
alignment.

• The align keyword of the dtype constructor, which only affects Structured arrays. If the structure’s field off-
sets are not manually provided, NumPy determines offsets automatically. In that case, align=True pads the
structure so that each field is “true” aligned in memory and sets dtype.alignment to be the largest of the field
“true” alignments. This is like what C-structs usually do. Otherwise if offsets or itemsize were manually provided
align=True simply checks that all the fields are “true” aligned and that the total itemsize is a multiple of the
largest field alignment. In either case dtype.isalignedstruct is also set to True.

• IsUintAligned is used to determine if an ndarray is “uint aligned” in an analogous way to how IsAligned
checks for true alignment.

13.3.3 Consequences of alignment

Here is how the variables above are used:
1. Creating aligned structs: To know how to offset a field when align=True, NumPy looks up field.dtype.

alignment. This includes fields that are nested structured arrays.
2. Ufuncs: If the ALIGNED flag of an array is False, ufuncs will buffer/cast the array before evaluation. This is

needed since ufunc inner loops access raw elements directly, which might fail on some archs if the elements are
not true-aligned.

3. Getitem/setitem/copyswap function: Similar to ufuncs, these functions generally have two code paths. If ALIGNED
is False they will use a code path that buffers the arguments so they are true-aligned.

4. Strided copy code: Here, “uint alignment” is used instead. If the itemsize of an array is equal to 1, 2, 4, 8 or
16 bytes and the array is uint aligned then instead NumPy will do *(uintN*)dst) = *(uintN*)src) for
appropriate N. Otherwise, NumPy copies by doing memcpy(dst, src, N).

5. Nditer code: Since this often calls the strided copy code, it must check for “uint alignment”.
6. Cast code: This checks for “true” alignment, as it does *dst = CASTFUNC(*src) if aligned. Otherwise,

it does memmove(srcval, src); dstval = CASTFUNC(srcval); memmove(dst, dstval)
where dstval/srcval are aligned.

13.3. Memory Alignment 297

NumPy User Guide, Release 1.22.0

Note that the strided-copy and strided-cast code are deeply intertwined and so any arrays being processed by them must
be both uint and true aligned, even though the copy-code only needs uint alignment and the cast code only true alignment.
If there is ever a big rewrite of this code it would be good to allow them to use different alignments.

298 13. Under-the-hood Documentation for developers

CHAPTER

FOURTEEN

REPORTING BUGS

File bug reports or feature requests, and make contributions (e.g. code patches), by opening a “new issue” on GitHub:
• NumPy Issues: https://github.com/numpy/numpy/issues

Please give as much information as you can in the ticket. It is extremely useful if you can supply a small self-contained
code snippet that reproduces the problem. Also specify the component, the version you are referring to and the milestone.
Report bugs to the appropriate GitHub project (there is one for NumPy and a different one for SciPy).
More information can be found on the https://www.scipy.org/scipylib/dev-zone.html website.

299

https://github.com/numpy/numpy/issues
https://www.scipy.org/scipylib/dev-zone.html

NumPy User Guide, Release 1.22.0

300 14. Reporting bugs

CHAPTER

FIFTEEN

RELEASE NOTES

15.1 NumPy 1.22.1 Release Notes

The NumPy 1.22.1 is maintenance release that fixes bugs discovered after the 1.22.0 release. Notable fixes are:
• Fix f2PY docstring problems (SciPy)
• Fix reduction type problems (AstroPy)
• Fix various typing bugs.

The Python versions supported for this release are 3.8-3.10.

15.1.1 Contributors

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Arryan Singh
• Bas van Beek
• Charles Harris
• Denis Laxalde
• Isuru Fernando
• Kevin Sheppard
• Matthew Barber
• Matti Picus
• Melissa Weber Mendonça
• Mukulika Pahari
• Omid Rajaei +
• Pearu Peterson
• Ralf Gommers
• Sebastian Berg

301

NumPy User Guide, Release 1.22.0

15.1.2 Pull requests merged

A total of 20 pull requests were merged for this release.
• #20702: MAINT, DOC: Post 1.22.0 release fixes.
• #20703: DOC, BUG: Use pngs instead of svgs.
• #20704: DOC: Fixed the link on user-guide landing page
• #20714: BUG: Restore vc141 support
• #20724: BUG: Fix array dimensions solver for multidimensional arguments…
• #20725: TYP: change type annotation for __array_namespace__ to ModuleType
• #20726: TYP, MAINT: Allow ndindex to accept integer tuples
• #20757: BUG: Relax dtype identity check in reductions
• #20763: TYP: Allow time manipulation functions to accept date and timedelta…
• #20768: TYP: Relax the type of ndarray.__array_finalize__
• #20795: MAINT: Raise RuntimeError if setuptools version is too recent.
• #20796: BUG, DOC: Fixes SciPy docs build warnings
• #20797: DOC: fix OpenBLAS version in release note
• #20798: PERF: Optimize array check for bounded 0,1 values
• #20805: BUG: Fix that reduce-likes honor out always (and live in the…
• #20806: BUG: array_api.argsort(descending=True) respects relative…
• #20807: BUG: Allow integer inputs for pow-related functions in array_api
• #20814: DOC: Refer to NumPy, not pandas, in main page
• #20815: DOC: Update Copyright to 2022 [License]
• #20819: BUG: Return correctly shaped inverse indices in array_api set…

15.2 NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributers spread over 609 pull requests. There have been
many improvements, highlights are:

• Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely
be further improvements, but the major work is done. This is probably the most user visible enhancement in this
release.

• A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of
functions that can be used across applications such as CuPy and JAX.

• NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
• New methods for quantile, percentile, and related functions. The new methods provide a complete set of
the methods commonly found in the literature.

• A new configurable allocator for use by downstream projects.
• The universal functions have been refactored to implement most of NEP 43. This also unlocks the ability to
experiment with the future DType API.

302 15. Release notes

https://github.com/numpy/numpy/pull/20702
https://github.com/numpy/numpy/pull/20703
https://github.com/numpy/numpy/pull/20704
https://github.com/numpy/numpy/pull/20714
https://github.com/numpy/numpy/pull/20724
https://github.com/numpy/numpy/pull/20725
https://github.com/numpy/numpy/pull/20726
https://github.com/numpy/numpy/pull/20757
https://github.com/numpy/numpy/pull/20763
https://github.com/numpy/numpy/pull/20768
https://github.com/numpy/numpy/pull/20795
https://github.com/numpy/numpy/pull/20796
https://github.com/numpy/numpy/pull/20797
https://github.com/numpy/numpy/pull/20798
https://github.com/numpy/numpy/pull/20805
https://github.com/numpy/numpy/pull/20806
https://github.com/numpy/numpy/pull/20807
https://github.com/numpy/numpy/pull/20814
https://github.com/numpy/numpy/pull/20815
https://github.com/numpy/numpy/pull/20819
https://numpy.org/neps/nep-0043-extensible-ufuncs.html#nep43

NumPy User Guide, Release 1.22.0

These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY,
and better documentation.
The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only
provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux
distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix
the occasional problems encountered by folks using truly huge arrays.

15.2.1 Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a
TypeError.
(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead.
ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with
the appropriate value for the usemask parameter.
(gh-19615)

15.2.2 Deprecations

Use delimiter rather than delimitor as kwarg in mrecords

The misspelled keyword argument delimitor of numpy.ma.mrecords.fromtextfile() has been changed
to delimiter, using it will emit a deprecation warning.
(gh-19921)

Passing boolean kth values to (arg-)partition has been deprecated

numpy.partition and numpy.argpartition would previously accept boolean values for the kth parameter,
which would subsequently be converted into integers. This behavior has now been deprecated.
(gh-20000)

The np.MachAr class has been deprecated

The numpy.MachAr class and finfo.machar <numpy.finfo> attribute have been deprecated. Users are en-
couraged to access the property if interest directly from the corresponding numpy.finfo attribute.
(gh-20201)

15.2. NumPy 1.22.0 Release Notes 303

https://github.com/numpy/numpy/pull/19539
https://github.com/numpy/numpy/pull/19615
https://github.com/numpy/numpy/pull/19921
https://github.com/numpy/numpy/pull/20000
https://github.com/numpy/numpy/pull/20201

NumPy User Guide, Release 1.22.0

15.2.3 Compatibility notes

Distutils forces strict floating point model on clang

NumPy now sets the -ftrapping-math option on clang to enforce correct floating point error handling for universal
functions. Clang defaults to non-IEEE and C99 conform behaviour otherwise. This change (using the equivalent but
newer -ffp-exception-behavior=strict) was attempted in NumPy 1.21, but was effectively never used.
(gh-19479)

Removed floor division support for complex types

Floor division of complex types will now result in a TypeError

>>> a = np.arange(10) + 1j* np.arange(10)
>>> a // 1
TypeError: ufunc 'floor_divide' not supported for the input types...

(gh-19135)

numpy.vectorize functions now produce the same output class as the base function

When a function that respects numpy.ndarray subclasses is vectorized using numpy.vectorize, the vectorized
function will now be subclass-safe also for cases that a signature is given (i.e., when creating a gufunc): the output class
will be the same as that returned by the first call to the underlying function.
(gh-19356)

Python 3.7 is no longer supported

Python support has been dropped. This is rather strict, there are changes that require Python >= 3.8.
(gh-19665)

str/repr of complex dtypes now include space after punctuation

The repr of np.dtype({"names": ["a"], "formats": [int], "offsets": [2]}) is now
dtype({'names': ['a'], 'formats': ['<i8'], 'offsets': [2], 'itemsize': 10}),
whereas spaces where previously omitted after colons and between fields.
The old behavior can be restored via np.set_printoptions(legacy="1.21").
(gh-19687)

304 15. Release notes

https://github.com/numpy/numpy/pull/19479
https://github.com/numpy/numpy/pull/19135
https://github.com/numpy/numpy/pull/19356
https://github.com/numpy/numpy/pull/19665
https://github.com/numpy/numpy/pull/19687

NumPy User Guide, Release 1.22.0

Corrected advance in PCG64DSXM and PCG64

Fixed a bug in the advancemethod of PCG64DSXM and PCG64. The bug only affects results when the step was larger
than 264 on platforms that do not support 128-bit integers(e.g., Windows and 32-bit Linux).
(gh-20049)

Change in generation of random 32 bit floating point variates

There was bug in the generation of 32 bit floating point values from the uniform distribution that would result in the least
significant bit of the random variate always being 0. This has been fixed.
This change affects the variates produced by the random.Generator methods random, standard_normal,
standard_exponential, and standard_gamma, but only when the dtype is specified as numpy.float32.
(gh-20314)

15.2.4 C API changes

Masked inner-loops cannot be customized anymore

The masked inner-loop selector is now never used. A warning will be given in the unlikely event that it was customized.
We do not expect that any code uses this. If you do use it, you must unset the selector on newer NumPy version. Please
also contact the NumPy developers, we do anticipate providing a new, more specific, mechanism.
The customization was part of a never-implemented feature to allow for faster masked operations.
(gh-19259)

Experimental exposure of future DType and UFunc API

The new header experimental_public_dtype_api.h allows to experiment with future API for improved uni-
versal function and especially user DType support. At this time it is advisable to experiment using the development
version of NumPy since some changes are expected and new features will be unlocked.
(gh-19919)

15.2.5 New Features

NEP 49 configurable allocators

As detailed in NEP 49, the function used for allocation of the data segment of a ndarray can be changed. The policy
can be set globally or in a context. For more information see the NEP and the data_memory reference docs. Also
add a NUMPY_WARN_IF_NO_MEM_POLICY override to warn on dangerous use of transfering ownership by setting
NPY_ARRAY_OWNDATA.
(gh-17582)

15.2. NumPy 1.22.0 Release Notes 305

https://github.com/numpy/numpy/pull/20049
https://github.com/numpy/numpy/pull/20314
https://github.com/numpy/numpy/pull/19259
https://github.com/numpy/numpy/pull/19919
https://numpy.org/neps/nep-0049.html
https://github.com/numpy/numpy/pull/17582

NumPy User Guide, Release 1.22.0

Implementation of the NEP 47 (adopting the array API standard)

An initial implementation of NEP 47 (adoption the array API standard) has been added as numpy.array_api. The
implementation is experimental and will issue a UserWarning on import, as the array API standard is still in draft state.
numpy.array_api is a conforming implementation of the array API standard, which is also minimal, meaning that
only those functions and behaviors that are required by the standard are implemented (see the NEP for more info).
Libraries wishing to make use of the array API standard are encouraged to use numpy.array_api to check that they
are only using functionality that is guaranteed to be present in standard conforming implementations.
(gh-18585)

Generate C/C++ API reference documentation from comments blocks is now possible

This feature depends on Doxygen in the generation process and on Breathe to integrate it with Sphinx.
(gh-18884)

Assign the platform-specific c_intp precision via a mypy plugin

The mypy plugin, introduced in numpy/numpy#17843, has again been expanded: the plugin now is now responsible for
setting the platform-specific precision of numpy.ctypeslib.c_intp, the latter being used as data type for various
numpy.ndarray.ctypes attributes.
Without the plugin, aforementioned type will default to ctypes.c_int64.
To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-19062)

Add NEP 47-compatible dlpack support

Add a ndarray.__dlpack__() method which returns a dlpack C structure wrapped in a PyCapsule. Also
add a np._from_dlpack(obj) function, where obj supports __dlpack__(), and returns an ndarray.
(gh-19083)

keepdims optional argument added to numpy.argmin, numpy.argmax

keepdims argument is added to numpy.argmin, numpy.argmax. If set to True, the axes which are reduced are
left in the result as dimensions with size one. The resulting array has the same number of dimensions and will broadcast
with the input array.
(gh-19211)

306 15. Release notes

https://numpy.org/neps/nep-0047-array-api-standard.html
https://data-apis.org/array-api/latest/index.html
https://github.com/numpy/numpy/pull/18585
https://www.doxygen.nl/index.html
https://breathe.readthedocs.io/en/latest/
https://github.com/numpy/numpy/pull/18884
http://mypy-lang.org/
https://github.com/numpy/numpy/pull/17843
https://mypy.readthedocs.io/en/stable/config_file.html
https://github.com/numpy/numpy/pull/19062
https://github.com/numpy/numpy/pull/19083
https://github.com/numpy/numpy/pull/19211

NumPy User Guide, Release 1.22.0

bit_count to compute the number of 1-bits in an integer

Computes the number of 1-bits in the absolute value of the input. This works on all the numpy integer types. Analogous
to the builtin int.bit_count or popcount in C++.

>>> np.uint32(1023).bit_count()
10
>>> np.int32(-127).bit_count()
7

(gh-19355)

The ndim and axis attributes have been added to numpy.AxisError

The ndim and axis parameters are now also stored as attributes within each numpy.AxisError instance.
(gh-19459)

Preliminary support for windows/arm64 target

numpy added support for windows/arm64 target. Please note OpenBLAS support is not yet available for windows/arm64
target.
(gh-19513)

Added support for LoongArch

LoongArch is a new instruction set, numpy compilation failure on LoongArch architecture, so add the commit.
(gh-19527)

A .clang-format file has been added

Clang-format is a C/C++ code formatter, together with the added .clang-format file, it produces code close enough
to the NumPy C_STYLE_GUIDE for general use. Clang-format version 12+ is required due to the use of several new
features, it is available in Fedora 34 and Ubuntu Focal among other distributions.
(gh-19754)

is_integer is now available to numpy.floating and numpy.integer

Based on its counterpart in Python float and int, the numpy floating point and integer types now support float.
is_integer. Returns True if the number is finite with integral value, and False otherwise.

>>> np.float32(-2.0).is_integer()
True
>>> np.float64(3.2).is_integer()
False
>>> np.int32(-2).is_integer()
True

(gh-19803)

15.2. NumPy 1.22.0 Release Notes 307

https://github.com/numpy/numpy/pull/19355
https://github.com/numpy/numpy/pull/19459
https://github.com/numpy/numpy/pull/19513
https://github.com/numpy/numpy/pull/19527
https://github.com/numpy/numpy/pull/19754
https://github.com/numpy/numpy/pull/19803

NumPy User Guide, Release 1.22.0

Symbolic parser for Fortran dimension specifications

A new symbolic parser has been added to f2py in order to correctly parse dimension specifications. The parser is the
basis for future improvements and provides compatibility with Draft Fortran 202x.
(gh-19805)

ndarray, dtype and number are now runtime-subscriptable

Mimicking PEP 585, the numpy.ndarray, numpy.dtype and numpy.number classes are now subscriptable for
python 3.9 and later. Consequently, expressions that were previously only allowed in .pyi stub files or with the help of
from __future__ import annotations are now also legal during runtime.

>>> import numpy as np
>>> from typing import Any

>>> np.ndarray[Any, np.dtype[np.float64]]
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

(gh-19879)

15.2.6 Improvements

ctypeslib.load_library can now take any path-like object

All parameters in the can now take any path-like object. This includes the likes of strings, bytes and objects implementing
the __fspath__ protocol.
(gh-17530)

Add smallest_normal and smallest_subnormal attributes to finfo

The attributes smallest_normal and smallest_subnormal are available as an extension of finfo class for
any floating-point data type. To use these new attributes, write np.finfo(np.float64).smallest_normal
or np.finfo(np.float64).smallest_subnormal.
(gh-18536)

numpy.linalg.qr accepts stacked matrices as inputs

numpy.linalg.qr is able to produce results for stacked matrices as inputs. Moreover, the implementation of QR
decomposition has been shifted to C from Python.
(gh-19151)

308 15. Release notes

https://github.com/numpy/numpy/pull/19805
https://www.python.org/dev/peps/pep-0585
https://github.com/numpy/numpy/pull/19879
https://docs.python.org/dev/glossary.html#term-path-like-object
https://docs.python.org/dev/library/os.html#os.PathLike.__fspath__
https://github.com/numpy/numpy/pull/17530
https://github.com/numpy/numpy/pull/18536
https://github.com/numpy/numpy/pull/19151

NumPy User Guide, Release 1.22.0

numpy.fromregex now accepts os.PathLike implementations

numpy.fromregex now accepts objects implementing the __fspath__<os.PathLike> protocol, e.g.
pathlib.Path.
(gh-19680)

Add new methods for quantile and percentile

quantile and percentile now have have a method= keyword argument supporting 13 different methods. This
replaces the interpolation= keyword argument.
The methods are now aligned with nine methods which can be found in scientific literature and the R language. The
remaining methods are the previous discontinuous variations of the default “linear” one.
Please see the documentation of numpy.percentile for more information.
(gh-19857)

Missing parameters have been added to the nan<x> functions

A number of the nan<x> functions previously lacked parameters that were present in their <x>-based counterpart, e.g.
the where parameter was present in numpy.mean but absent from numpy.nanmean.
The following parameters have now been added to the nan<x> functions:

• nanmin: initial & where

• nanmax: initial & where

• nanargmin: keepdims & out

• nanargmax: keepdims & out

• nansum: initial & where

• nanprod: initial & where

• nanmean: where
• nanvar: where
• nanstd: where

(gh-20027)

Annotating the main Numpy namespace

Starting from the 1.20 release, PEP 484 type annotations have been included for parts of the NumPy library; annotating
the remaining functions being a work in progress. With the release of 1.22 this process has been completed for the main
NumPy namespace, which is now fully annotated.
Besides the main namespace, a limited number of sub-packages contain annotations as well. This includes, among others,
numpy.testing, numpy.linalg and numpy.random (available since 1.21).
(gh-20217)

15.2. NumPy 1.22.0 Release Notes 309

https://github.com/numpy/numpy/pull/19680
https://github.com/numpy/numpy/pull/19857
https://github.com/numpy/numpy/pull/20027
https://github.com/numpy/numpy/pull/20217

NumPy User Guide, Release 1.22.0

Vectorize umath module using AVX-512

By leveraging Intel Short Vector Math Library (SVML), 18 umath functions (exp2, log2, log10, expm1, log1p,
cbrt, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh) are
vectorized using AVX-512 instruction set for both single and double precision implementations. This change is currently
enabled only for Linux users and on processors with AVX-512 instruction set. It provides an average speed up of 32x and
14x for single and double precision functions respectively.
(gh-19478)

OpenBLAS v0.3.18

Update the OpenBLAS used in testing and in wheels to v0.3.18
(gh-20058)

15.3 NumPy 1.21.4 Release Notes

The NumPy 1.21.4 is a maintenance release that fixes a few bugs discovered after 1.21.3. The most important fix here is a
fix for the NumPy header files to make themwork for both x86_64 andM1 hardware when included in theMac universal2
wheels. Previously, the header files only worked for M1 and this caused problems for folks building x86_64 extensions.
This problem was not seen before Python 3.10 because there were thin wheels for x86_64 that had precedence. This
release also provides thin x86_64 Mac wheels for Python 3.10.
The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you
will need to use gcc-11.2+ to avoid problems.

15.3.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Bas van Beek
• Charles Harris
• Isuru Fernando
• Matthew Brett
• Sayed Adel
• Sebastian Berg
• 2/72/72/72/7Chris Fu2/7 +

310 15. Release notes

https://github.com/numpy/numpy/pull/19478
https://github.com/numpy/numpy/pull/20058

NumPy User Guide, Release 1.22.0

15.3.2 Pull requests merged

A total of 9 pull requests were merged for this release.
• #20278: BUG: Fix shadowed reference of dtype in type stub
• #20293: BUG: Fix headers for universal2 builds
• #20294: BUG: VOID_nonzero could sometimes mutate alignment flag
• #20295: BUG: Do not use nonzero fastpath on unaligned arrays
• #20296: BUG: Distutils patch to allow for 2 as a minor version (!)
• #20297: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
• #20298: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC…
• #20300: REL: Prepare for the NumPy 1.21.4 release.
• #20302: TST: Fix a Arrayterator typing test failure

15.4 NumPy 1.21.3 Release Notes

NumPy 1.21.3 is a maintenance release that fixes a few bugs discovered after 1.21.2. It also provides 64 bit Python 3.10.0
wheels. Note a few oddities about Python 3.10:

• There are no 32 bit wheels for Windows, Mac, or Linux.
• The Mac Intel builds are only available in universal2 wheels.

The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you
will need to use gcc-11.2+ to avoid problems.

15.4.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Aaron Meurer
• Bas van Beek
• Charles Harris
• Developer-Ecosystem-Engineering +
• Kevin Sheppard
• Sebastian Berg
• Warren Weckesser

15.4. NumPy 1.21.3 Release Notes 311

https://github.com/numpy/numpy/pull/20278
https://github.com/numpy/numpy/pull/20293
https://github.com/numpy/numpy/pull/20294
https://github.com/numpy/numpy/pull/20295
https://github.com/numpy/numpy/pull/20296
https://github.com/numpy/numpy/pull/20297
https://github.com/numpy/numpy/pull/20298
https://github.com/numpy/numpy/pull/20300
https://github.com/numpy/numpy/pull/20302

NumPy User Guide, Release 1.22.0

15.4.2 Pull requests merged

A total of 8 pull requests were merged for this release.
• #19745: ENH: Add dtype-support to 3 `generic/ndarray methods
• #19955: BUG: Resolve Divide by Zero on Apple silicon + test failures…
• #19958: MAINT: Mark type-check-only ufunc subclasses as ufunc aliases…
• #19994: BUG: np.tan(np.inf) test failure
• #20080: BUG: Correct incorrect advance in PCG with emulated int128
• #20081: BUG: Fix NaT handling in the PyArray_CompareFunc for datetime…
• #20082: DOC: Ensure that we add documentation also as to the dict for…
• #20106: BUG: core: result_type(0, np.timedelta64(4)) would seg. fault.

15.5 NumPy 1.21.2 Release Notes

The NumPy 1.21.2 is a maintenance release that fixes bugs discovered after 1.21.1. It also provides 64 bit manylinux
Python 3.10.0rc1 wheels for downstream testing. Note that Python 3.10 is not yet final. It also has preliminary support
for Windows on ARM64, but there is no OpenBLAS for that platform and no wheels are available.
The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with Python 3.10.0rc1 and
Python 3.10 will be officially supported after it is released. The previous problems with gcc-11.1 have been fixed by
gcc-11.2, check your version if you are using gcc-11.

15.5.1 Contributors

A total of 10 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Bas van Beek
• Carl Johnsen +
• Charles Harris
• Gwyn Ciesla +
• Matthieu Dartiailh
• Matti Picus
• Niyas Sait +
• Ralf Gommers
• Sayed Adel
• Sebastian Berg

312 15. Release notes

https://github.com/numpy/numpy/pull/19745
https://github.com/numpy/numpy/pull/19955
https://github.com/numpy/numpy/pull/19958
https://github.com/numpy/numpy/pull/19994
https://github.com/numpy/numpy/pull/20080
https://github.com/numpy/numpy/pull/20081
https://github.com/numpy/numpy/pull/20082
https://github.com/numpy/numpy/pull/20106

NumPy User Guide, Release 1.22.0

15.5.2 Pull requests merged

A total of 18 pull requests were merged for this release.
• #19497: MAINT: set Python version for 1.21.x to <3.11
• #19533: BUG: Fix an issue wherein importing numpy.typing could raise
• #19646: MAINT: Update Cython version for Python 3.10.
• #19648: TST: Bump the python 3.10 test version from beta4 to rc1
• #19651: TST: avoid distutils.sysconfig in runtests.py
• #19652: MAINT: add missing dunder method to nditer type hints
• #19656: BLD, SIMD: Fix testing extra checks when -Werror isn’t applicable…
• #19657: BUG: Remove logical object ufuncs with bool output
• #19658: MAINT: Include .coveragerc in source distributions to support…
• #19659: BUG: Fix bad write in masked iterator output copy paths
• #19660: ENH: Add support for windows on arm targets
• #19661: BUG: add base to templated arguments for platlib
• #19662: BUG,DEP: Non-default UFunc signature/dtype usage should be deprecated
• #19666: MAINT: Add Python 3.10 to supported versions.
• #19668: TST,BUG: Sanitize path-separators when running runtest.py
• #19671: BLD: load extra flags when checking for libflame
• #19676: BLD: update circleCI docker image
• #19677: REL: Prepare for 1.21.2 release.

15.6 NumPy 1.21.1 Release Notes

The NumPy 1.21.1 is maintenance release that fixes bugs discovered after the 1.21.0 release and updates OpenBLAS to
v0.3.17 to deal with problems on arm64.
The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with development Python
3.10. Python 3.10 will be officially supported after it is released.

Warning: There are unresolved problems compiling NumPy 1.20.0 with gcc-11.1.
• Optimization level -O3 results in many incorrect warnings when running the tests.
• On some hardware NumPY will hang in an infinite loop.

15.6. NumPy 1.21.1 Release Notes 313

https://github.com/numpy/numpy/pull/19497
https://github.com/numpy/numpy/pull/19533
https://github.com/numpy/numpy/pull/19646
https://github.com/numpy/numpy/pull/19648
https://github.com/numpy/numpy/pull/19651
https://github.com/numpy/numpy/pull/19652
https://github.com/numpy/numpy/pull/19656
https://github.com/numpy/numpy/pull/19657
https://github.com/numpy/numpy/pull/19658
https://github.com/numpy/numpy/pull/19659
https://github.com/numpy/numpy/pull/19660
https://github.com/numpy/numpy/pull/19661
https://github.com/numpy/numpy/pull/19662
https://github.com/numpy/numpy/pull/19666
https://github.com/numpy/numpy/pull/19668
https://github.com/numpy/numpy/pull/19671
https://github.com/numpy/numpy/pull/19676
https://github.com/numpy/numpy/pull/19677

NumPy User Guide, Release 1.22.0

15.6.1 Contributors

A total of 11 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Bas van Beek
• Charles Harris
• Ganesh Kathiresan
• Gregory R. Lee
• Hugo Defois +
• Kevin Sheppard
• Matti Picus
• Ralf Gommers
• Sayed Adel
• Sebastian Berg
• Thomas J. Fan

15.6.2 Pull requests merged

A total of 26 pull requests were merged for this release.
• #19311: REV,BUG: Replace NotImplemented with typing.Any
• #19324: MAINT: Fixed the return-dtype of ndarray.real and imag
• #19330: MAINT: Replace "dtype[Any]" with dtype in the definiton of…
• #19342: DOC: Fix some docstrings that crash pdf generation.
• #19343: MAINT: bump scipy-mathjax
• #19347: BUG: Fix arr.flat.index for large arrays and big-endian machines
• #19348: ENH: add numpy.f2py.get_include function
• #19349: BUG: Fix reference count leak in ufunc dtype handling
• #19350: MAINT: Annotate missing attributes of np.number subclasses
• #19351: BUG: Fix cast safety and comparisons for zero sized voids
• #19352: BUG: Correct Cython declaration in random
• #19353: BUG: protect against accessing base attribute of a NULL subarray
• #19365: BUG, SIMD: Fix detecting AVX512 features on Darwin
• #19366: MAINT: remove print()’s in distutils template handling
• #19390: ENH: SIMD architectures to show_config
• #19391: BUG: Do not raise deprecation warning for all nans in unique…
• #19392: BUG: Fix NULL special case in object-to-any cast code
• #19430: MAINT: Use arm64-graviton2 for testing on travis
• #19495: BUILD: update OpenBLAS to v0.3.17

314 15. Release notes

https://github.com/numpy/numpy/pull/19311
https://github.com/numpy/numpy/pull/19324
https://github.com/numpy/numpy/pull/19330
https://github.com/numpy/numpy/pull/19342
https://github.com/numpy/numpy/pull/19343
https://github.com/numpy/numpy/pull/19347
https://github.com/numpy/numpy/pull/19348
https://github.com/numpy/numpy/pull/19349
https://github.com/numpy/numpy/pull/19350
https://github.com/numpy/numpy/pull/19351
https://github.com/numpy/numpy/pull/19352
https://github.com/numpy/numpy/pull/19353
https://github.com/numpy/numpy/pull/19365
https://github.com/numpy/numpy/pull/19366
https://github.com/numpy/numpy/pull/19390
https://github.com/numpy/numpy/pull/19391
https://github.com/numpy/numpy/pull/19392
https://github.com/numpy/numpy/pull/19430
https://github.com/numpy/numpy/pull/19495

NumPy User Guide, Release 1.22.0

• #19496: MAINT: Avoid unicode characters in division SIMD code comments
• #19499: BUG, SIMD: Fix infinite loop during count non-zero on GCC-11
• #19500: BUG: fix a numpy.npiter leak in npyiter_multi_index_set
• #19501: TST: Fix a GenericAlias test failure for python 3.9.0
• #19502: MAINT: Start testing with Python 3.10.0b3.
• #19503: MAINT: Add missing dtype overloads for object- and ctypes-based…
• #19510: REL: Prepare for NumPy 1.21.1 release.

15.7 NumPy 1.21.0 Release Notes

The NumPy 1.21.0 release highlights are
• continued SIMD work covering more functions and platforms,
• initial work on the new dtype infrastructure and casting,
• universal2 wheels for Python 3.8 and Python 3.9 on Mac,
• improved documentation,
• improved annotations,
• new PCG64DXSM bitgenerator for random numbers.

In addition there are the usual large number of bug fixes and other improvements.
The Python versions supported for this release are 3.7-3.9. Official support for Python 3.10 will be added when it is
released.

Warning: There are unresolved problems compiling NumPy 1.20.0 with gcc-11.1.
• Optimization level -O3 results in many incorrect warnings when running the tests.
• On some hardware NumPY will hang in an infinite loop.

15.7.1 New functions

Add PCG64DXSM BitGenerator

Uses of the PCG64 BitGenerator in a massively-parallel context have been shown to have statistical weaknesses
that were not apparent at the first release in numpy 1.17. Most users will never observe this weakness and are safe to
continue to use PCG64. We have introduced a new PCG64DXSM BitGenerator that will eventually become the new
default BitGenerator implementation used by default_rng in future releases. PCG64DXSM solves the statistical
weakness while preserving the performance and the features of PCG64.
See upgrading-pcg64 for more details.
(gh-18906)

15.7. NumPy 1.21.0 Release Notes 315

https://github.com/numpy/numpy/pull/19496
https://github.com/numpy/numpy/pull/19499
https://github.com/numpy/numpy/pull/19500
https://github.com/numpy/numpy/pull/19501
https://github.com/numpy/numpy/pull/19502
https://github.com/numpy/numpy/pull/19503
https://github.com/numpy/numpy/pull/19510
https://github.com/numpy/numpy/pull/18906

NumPy User Guide, Release 1.22.0

15.7.2 Expired deprecations

• The shape argument unravel_index cannot be passed as dims keyword argument anymore. (Was depre-
cated in NumPy 1.16.)
(gh-17900)

• The function PyUFunc_GenericFunction has been disabled. It was deprecated in NumPy 1.19. Users
should call the ufunc directly using the Python API.
(gh-18697)

• The function PyUFunc_SetUsesArraysAsData has been disabled. It was deprecated in NumPy 1.19.
(gh-18697)

• The class PolyBase has been removed (deprecated in numpy 1.9.0). Please use the abstract ABCPolyBase
class instead.
(gh-18963)

• The unused PolyError and PolyDomainError exceptions are removed.
(gh-18963)

15.7.3 Deprecations

The .dtype attribute must return a dtype

A DeprecationWarning is now given if the .dtype attribute of an object passed into np.dtype or as a
dtype=obj argument is not a dtype. NumPy will stop attempting to recursively coerce the result of .dtype.
(gh-13578)

Inexact matches for numpy.convolve and numpy.correlate are deprecated

convolve and correlate now emit a warning when there are case insensitive and/or inexact matches found for
mode argument in the functions. Pass full "same", "valid", "full" strings instead of "s", "v", "f" for the
mode argument.
(gh-17492)

np.typeDict has been formally deprecated

np.typeDict is a deprecated alias for np.sctypeDict and has been so for over 14 years (6689502). A deprecation
warning will now be issued whenever getting np.typeDict.
(gh-17586)

316 15. Release notes

https://github.com/numpy/numpy/pull/17900
https://github.com/numpy/numpy/pull/18697
https://github.com/numpy/numpy/pull/18697
https://github.com/numpy/numpy/pull/18963
https://github.com/numpy/numpy/pull/18963
https://github.com/numpy/numpy/pull/13578
https://github.com/numpy/numpy/pull/17492
https://github.com/numpy/numpy/commit/668950285c407593a368336ff2e737c5da84af7d
https://github.com/numpy/numpy/pull/17586

NumPy User Guide, Release 1.22.0

Exceptions will be raised during array-like creation

When an object raised an exception during access of the special attributes __array__ or __array_interface__,
this exception was usually ignored. A warning is now given when the exception is anything but AttributeError. To silence
the warning, the type raising the exception has to be adapted to raise an AttributeError.
(gh-19001)

Four ndarray.ctypes methods have been deprecated

Four methods of the ndarray.ctypes object have been deprecated, as they are (undocumentated) implementation
artifacts of their respective properties.
The methods in question are:

• _ctypes.get_data (use _ctypes.data instead)
• _ctypes.get_shape (use _ctypes.shape instead)
• _ctypes.get_strides (use _ctypes.strides instead)
• _ctypes.get_as_parameter (use _ctypes._as_parameter_ instead)

(gh-19031)

15.7.4 Expired deprecations

• The shape argument numpy.unravel_index cannot be passed as dims keyword argument anymore. (Was
deprecated in NumPy 1.16.)
(gh-17900)

• The function PyUFunc_GenericFunction has been disabled. It was deprecated in NumPy 1.19. Users
should call the ufunc directly using the Python API.
(gh-18697)

• The function PyUFunc_SetUsesArraysAsData has been disabled. It was deprecated in NumPy 1.19.
(gh-18697)

Remove deprecated PolyBase and unused PolyError and PolyDomainError

The class PolyBase has been removed (deprecated in numpy 1.9.0). Please use the abstract ABCPolyBase class
instead.
Furthermore, the unused PolyError and PolyDomainError exceptions are removed from the numpy.
polynomial.
(gh-18963)

15.7. NumPy 1.21.0 Release Notes 317

https://github.com/numpy/numpy/pull/19001
https://github.com/numpy/numpy/pull/19031
https://github.com/numpy/numpy/pull/17900
https://github.com/numpy/numpy/pull/18697
https://github.com/numpy/numpy/pull/18697
https://github.com/numpy/numpy/pull/18963

NumPy User Guide, Release 1.22.0

15.7.5 Compatibility notes

Error type changes in universal functions

The universal functions may now raise different errors on invalid input in some cases. The main changes should be that a
RuntimeError was replaced with a more fitting TypeError. When multiple errors were present in the same call,
NumPy may now raise a different one.
(gh-15271)

__array_ufunc__ argument validation

NumPy will now partially validate arguments before calling __array_ufunc__. Previously, it was possible to pass
on invalid arguments (such as a non-existing keyword argument) when dispatch was known to occur.
(gh-15271)

__array_ufunc__ and additional positional arguments

Previously, all positionally passed arguments were checked for __array_ufunc__ support. In the case of reduce,
accumulate, and reduceat all arguments may be passed by position. This means that when they were passed by
position, they could previously have been asked to handle the ufunc call via __array_ufunc__. Since this depended
on the way the arguments were passed (by position or by keyword), NumPy will now only dispatch on the input and output
array. For example, NumPy will never dispatch on the where array in a reduction such as np.add.reduce.
(gh-15271)

Validate input values in Generator.uniform

Checked that high - low >= 0 in np.random.Generator.uniform. Raises ValueError if low >
high. Previously out-of-order inputs were accepted and silently swapped, so that if low > high, the value generated
was high + (low - high) * random().
(gh-17921)

/usr/include removed from default include paths

The default include paths when building a package with numpy.distutils no longer include /usr/include. This
path is normally added by the compiler, and hardcoding it can be problematic. In case this causes a problem, please open
an issue. A workaround is documented in PR 18658.
(gh-18658)

318 15. Release notes

https://github.com/numpy/numpy/pull/15271
https://github.com/numpy/numpy/pull/15271
https://github.com/numpy/numpy/pull/15271
https://github.com/numpy/numpy/pull/17921
https://github.com/numpy/numpy/pull/18658

NumPy User Guide, Release 1.22.0

Changes to comparisons with dtype=...

When the dtype= (or signature) arguments to comparison ufuncs (equal, less, etc.) is used, this will denote
the desired output dtype in the future. This means that:

np.equal(2, 3, dtype=object)
will give a FutureWarning that it will return an object array in the future, which currently happens for:

np.equal(None, None, dtype=object)
due to the fact that np.array(None) is already an object array. (This also happens for some other dtypes.)
Since comparisons normally only return boolean arrays, providing any other dtype will always raise an error in the future
and give a DeprecationWarning now.
(gh-18718)

Changes to dtype and signature arguments in ufuncs

The universal function argumentsdtype andsignaturewhich are also valid for reduction such asnp.add.reduce
(which is the implementation for np.sum) will now issue a warning when the dtype provided is not a “basic” dtype.
NumPy almost always ignored metadata, byteorder or time units on these inputs. NumPy will now always ignore it and
raise an error if byteorder or time unit changed. The following are the most important examples of changes which will
give the error. In some cases previously the information stored was not ignored, in all of these an error is now raised:

Previously ignored the byte-order (affect if non-native)
np.add(3, 5, dtype=">i32")

The biggest impact is for timedelta or datetimes:
arr = np.arange(10, dtype="m8[s]")
The examples always ignored the time unit "ns":
np.add(arr, arr, dtype="m8[ns]")
np.maximum.reduce(arr, dtype="m8[ns]")

The following previously did use "ns" (as opposed to `arr.dtype`)
np.add(3, 5, dtype="m8[ns]") # Now return generic time units
np.maximum(arr, arr, dtype="m8[ns]") # Now returns "s" (from `arr`)

The same applies for functions like np.sum which use these internally. This change is necessary to achieve consistent
handling within NumPy.
If you run into these, in most cases pass for example dtype=np.timedelta64 which clearly denotes a general
timedelta64 without any unit or byte-order defined. If you need to specify the output dtype precisely, you may do so
by either casting the inputs or providing an output array using out=.
NumPy may choose to allow providing an exact output dtype here in the future, which would be preceded by a
FutureWarning.
(gh-18718)

15.7. NumPy 1.21.0 Release Notes 319

https://github.com/numpy/numpy/pull/18718
https://github.com/numpy/numpy/pull/18718

NumPy User Guide, Release 1.22.0

Ufunc signature=... and dtype= generalization and casting

The behaviour fornp.ufunc(1.0, 1.0, signature=...) ornp.ufunc(1.0, 1.0, dtype=...) can
now yield different loops in 1.21 compared to 1.20 because of changes in promotion. When signature was previously
used, the casting check on inputs was relaxed, which could lead to downcasting inputs unsafely especially if combined
with casting="unsafe".
Casting is now guaranteed to be safe. If a signature is only partially provided, for example using
signature=("float64", None, None), this could lead to no loop being found (an error). In that case, it
is necessary to provide the complete signature to enforce casting the inputs. If dtype="float64" is used or only
outputs are set (e.g. signature=(None, None, "float64") the is unchanged. We expect that very few users
are affected by this change.
Further, the meaning of dtype="float64" has been slightly modified and now strictly enforces only the correct
output (and not input) DTypes. This means it is now always equivalent to:

signature=(None, None, "float64")

(If the ufunc has two inputs and one output). Since this could lead to no loop being found in some cases, NumPy will
normally also search for the loop:

signature=("float64", "float64", "float64")

if the first search failed. In the future, this behaviour may be customized to achieve the expected results for more complex
ufuncs. (For some universal functions such as np.ldexp inputs can have different DTypes.)
(gh-18880)

Distutils forces strict floating point model on clang

NumPy distutils will now always add the -ffp-exception-behavior=strict compiler flag when compiling
with clang. Clang defaults to a non-strict version, which allows the compiler to generate code that does not set floating
point warnings/errors correctly.
(gh-19049)

15.7.6 C API changes

Use of ufunc->type_resolver and “type tuple”

NumPy now normalizes the “type tuple” argument to the type resolver functions before calling it. Note that in the use of
this type resolver is legacy behaviour and NumPy will not do so when possible. Calling ufunc->type_resolver or
PyUFunc_DefaultTypeResolver is strongly discouraged and will now enforce a normalized type tuple if done.
Note that this does not affect providing a type resolver, which is expected to keep working in most circumstances. If you
have an unexpected use-case for calling the type resolver, please inform the NumPy developers so that a solution can be
found.
(gh-18718)

320 15. Release notes

https://github.com/numpy/numpy/pull/18880
https://github.com/numpy/numpy/pull/19049
https://github.com/numpy/numpy/pull/18718

NumPy User Guide, Release 1.22.0

15.7.7 New Features

Added a mypy plugin for handling platform-specific numpy.number precisions

A mypy plugin is now available for automatically assigning the (platform-dependent) precisions of certain number sub-
classes, including the likes of int_, intp and longlong. See the documentation on scalar types for a comprehensive
overview of the affected classes.
Note that while usage of the plugin is completely optional, without it the precision of above-mentioned classes will be
inferred as Any.
To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-17843)

Let the mypy plugin manage extended-precision numpy.number subclasses

The mypy plugin, introduced in numpy/numpy#17843, has been expanded: the plugin now removes annotations for
platform-specific extended-precision types that are not available to the platform in question. For example, it will remove
float128 when not available.
Without the plugin all extended-precision types will, as far as mypy is concerned, be available on all platforms.
To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-18322)

New min_digits argument for printing float values

A new min_digits argument has been added to the dragon4 float printing functions
format_float_positional and format_float_scientific . This kwd guarantees that at least the
given number of digits will be printed when printing in unique=True mode, even if the extra digits are unnecessary to
uniquely specify the value. It is the counterpart to the precision argument which sets the maximum number of digits to
be printed. When unique=False in fixed precision mode, it has no effect and the precision argument fixes the number of
digits.
(gh-18629)

f2py now recognizes Fortran abstract interface blocks

f2py can now parse abstract interface blocks.
(gh-18695)

15.7. NumPy 1.21.0 Release Notes 321

http://mypy-lang.org/
https://docs.python.org/dev/library/typing.html#typing.Any
https://mypy.readthedocs.io/en/stable/config_file.html
https://github.com/numpy/numpy/pull/17843
http://mypy-lang.org/
https://github.com/numpy/numpy/pull/17843
https://mypy.readthedocs.io/en/stable/config_file.html
https://github.com/numpy/numpy/pull/18322
https://github.com/numpy/numpy/pull/18629
https://github.com/numpy/numpy/pull/18695

NumPy User Guide, Release 1.22.0

BLAS and LAPACK configuration via environment variables

Autodetection of installed BLAS and LAPACK libraries can be bypassed by using the NPY_BLAS_LIBS and
NPY_LAPACK_LIBS environment variables. Instead, the link flags in these environment variables will be used directly,
and the language is assumed to be F77. This is especially useful in automated builds where the BLAS and LAPACK that
are installed are known exactly. A use case is replacing the actual implementation at runtime via stub library links.
If NPY_CBLAS_LIBS is set (optional in addition to NPY_BLAS_LIBS), this will be used as well, by defining
HAVE_CBLAS and appending the environment variable content to the link flags.
(gh-18737)

A runtime-subcriptable alias has been added for ndarray

numpy.typing.NDArray has been added, a runtime-subscriptable alias for np.ndarray[Any, np.
dtype[~Scalar]]. The new type alias can be used for annotating arrays with a given dtype and unspecified shape.
1

1 NumPy does not support the annotating of array shapes as of 1.21, this is expected to change in the future though (see
PEP 646).

Examples

>>> import numpy as np
>>> import numpy.typing as npt

>>> print(npt.NDArray)
numpy.ndarray[typing.Any, numpy.dtype[~ScalarType]]

>>> print(npt.NDArray[np.float64])
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)

>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
... return np.array(a)

(gh-18935)

15.7.8 Improvements

Arbitrary period option for numpy.unwrap

The size of the interval over which phases are unwrapped is no longer restricted to 2 * pi. This is especially useful for
unwrapping degrees, but can also be used for other intervals.

>>> phase_deg = np.mod(np.linspace(0,720,19), 360) - 180
>>> phase_deg
array([-180., -140., -100., -60., -20., 20., 60., 100., 140.,

-180., -140., -100., -60., -20., 20., 60., 100., 140.,
-180.])

>>> unwrap(phase_deg, period=360)
array([-180., -140., -100., -60., -20., 20., 60., 100., 140.,

(continues on next page)

322 15. Release notes

https://github.com/numpy/numpy/pull/18737
https://www.python.org/dev/peps/pep-0646
https://github.com/numpy/numpy/pull/18935

NumPy User Guide, Release 1.22.0

(continued from previous page)
180., 220., 260., 300., 340., 380., 420., 460., 500.,
540.])

(gh-16987)

np.unique now returns single NaN

When np.unique operated on an array with multiple NaN entries, its return included a NaN for each entry that was
NaN in the original array. This is now improved such that the returned array contains just one NaN as the last element.
Also for complex arrays all NaN values are considered equivalent (no matter whether the NaN is in the real or imaginary
part). As the representant for the returned array the smallest one in the lexicographical order is chosen - see np.sort
for how the lexicographical order is defined for complex arrays.
(gh-18070)

Generator.rayleigh and Generator.geometric performance improved

The performance of Rayleigh and geometric random variate generation in Generator has improved. These are both
transformation of exponential random variables and the slow log-based inverse cdf transformation has been replaced with
the Ziggurat-based exponential variate generator.
This change breaks the stream of variates generated when variates from either of these distributions are produced.
(gh-18666)

Placeholder annotations have been improved

All placeholder annotations, that were previously annotated as typing.Any, have been improved. Where appropriate
they have been replaced with explicit function definitions, classes or other miscellaneous objects.
(gh-18934)

15.7.9 Performance improvements

Improved performance in integer division of NumPy arrays

Integer division of NumPy arrays now uses libdivide when the divisor is a constant. With the usage of libdivide and
other minor optimizations, there is a large speedup. The // operator and np.floor_divide makes use of the new
changes.
(gh-17727)

15.7. NumPy 1.21.0 Release Notes 323

https://github.com/numpy/numpy/pull/16987
https://github.com/numpy/numpy/pull/18070
https://github.com/numpy/numpy/pull/18666
https://github.com/numpy/numpy/pull/18934
https://libdivide.com/
https://github.com/numpy/numpy/pull/17727

NumPy User Guide, Release 1.22.0

Improve performance of np.save and np.load for small arrays

np.save is now a lot faster for small arrays.
np.load is also faster for small arrays, but only when serializing with a version >= (3, 0).
Both are done by removing checks that are only relevant for Python 2, while still maintaining compatibility with arrays
which might have been created by Python 2.
(gh-18657)

15.7.10 Changes

numpy.piecewise output class now matches the input class

When ndarray subclasses are used on input to piecewise, they are passed on to the functions. The output will now
be of the same subclass as well.
(gh-18110)

Enable Accelerate Framework

With the release of macOS 11.3, several different issues that numpy was encountering when using Accelerate Framework’s
implementation of BLAS and LAPACK should be resolved. This change enables the Accelerate Framework as an option
on macOS. If additional issues are found, please file a bug report against Accelerate using the developer feedback assistant
tool (https://developer.apple.com/bug-reporting/). We intend to address issues promptly and plan to continue supporting
and updating our BLAS and LAPACK libraries.
(gh-18874)

15.8 NumPy 1.20.3 Release Notes

NumPy 1.20.3 is a bugfix release containing several fixes merged to the main branch after the NumPy 1.20.2 release.

15.8.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Anne Archibald
• Bas van Beek
• Charles Harris
• Dong Keun Oh +
• Kamil Choudhury +
• Sayed Adel
• Sebastian Berg

324 15. Release notes

https://github.com/numpy/numpy/pull/18657
https://github.com/numpy/numpy/pull/18110
https://developer.apple.com/bug-reporting/
https://github.com/numpy/numpy/pull/18874

NumPy User Guide, Release 1.22.0

15.8.2 Pull requests merged

A total of 15 pull requests were merged for this release.
• #18763: BUG: Correct datetime64 missing type overload for datetime.date…
• #18764: MAINT: Remove __all__ in favor of explicit re-exports
• #18768: BLD: Strip extra newline when dumping gfortran version on MacOS
• #18769: BUG: fix segfault in object/longdouble operations
• #18794: MAINT: Use towncrier build explicitly
• #18887: MAINT: Relax certain integer-type constraints
• #18915: MAINT: Remove unsafe unions and ABCs from return-annotations
• #18921: MAINT: Allow more recursion depth for scalar tests.
• #18922: BUG: Initialize the full nditer buffer in case of error
• #18923: BLD: remove unnecessary flag -faltivec on macOS
• #18924: MAINT, CI: treats _SIMD module build warnings as errors through…
• #18925: BUG: for MINGW, threads.h existence test requires GLIBC > 2.12
• #18941: BUG: Make changelog recognize gh- as a PR number prefix.
• #18948: REL, DOC: Prepare for the NumPy 1.20.3 release.
• #18953: BUG: Fix failing mypy test in 1.20.x.

15.9 NumPy 1.20.2 Release Notes

NumPy 1.20.2 is a bugfix release containing several fixes merged to the main branch after the NumPy 1.20.1 release.

15.9.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Bas van Beek
• Charles Harris
• Christoph Gohlke
• Mateusz Sokół +
• Michael Lamparski
• Sebastian Berg

15.9. NumPy 1.20.2 Release Notes 325

https://github.com/numpy/numpy/pull/18763
https://github.com/numpy/numpy/pull/18764
https://github.com/numpy/numpy/pull/18768
https://github.com/numpy/numpy/pull/18769
https://github.com/numpy/numpy/pull/18794
https://github.com/numpy/numpy/pull/18887
https://github.com/numpy/numpy/pull/18915
https://github.com/numpy/numpy/pull/18921
https://github.com/numpy/numpy/pull/18922
https://github.com/numpy/numpy/pull/18923
https://github.com/numpy/numpy/pull/18924
https://github.com/numpy/numpy/pull/18925
https://github.com/numpy/numpy/pull/18941
https://github.com/numpy/numpy/pull/18948
https://github.com/numpy/numpy/pull/18953

NumPy User Guide, Release 1.22.0

15.9.2 Pull requests merged

A total of 20 pull requests were merged for this release.
• #18382: MAINT: Update f2py from master.
• #18459: BUG: diagflat could overflow on windows or 32-bit platforms
• #18460: BUG: Fix refcount leak in f2py complex_double_from_pyobj.
• #18461: BUG: Fix tiny memory leaks when like= overrides are used
• #18462: BUG: Remove temporary change of descr/flags in VOID functions
• #18469: BUG: Segfault in nditer buffer dealloc for Object arrays
• #18485: BUG: Remove suspicious type casting
• #18486: BUG: remove nonsensical comparison of pointer < 0
• #18487: BUG: verify pointer against NULL before using it
• #18488: BUG: check if PyArray_malloc succeeded
• #18546: BUG: incorrect error fallthrough in nditer
• #18559: CI: Backport CI fixes from main.
• #18599: MAINT: Add annotations for dtype.__getitem__, __mul__ and…
• #18611: BUG: NameError in numpy.distutils.fcompiler.compaq
• #18612: BUG: Fixed where keyword for np.mean & np.var methods
• #18617: CI: Update apt package list before Python install
• #18636: MAINT: Ensure that re-exported sub-modules are properly annotated
• #18638: BUG: Fix ma coercion list-of-ma-arrays if they do not cast to…
• #18661: BUG: Fix small valgrind-found issues
• #18671: BUG: Fix small issues found with pytest-leaks

15.10 NumPy 1.20.1 Release Notes

NumPy 1,20.1 is a rapid bugfix release fixing several bugs and regressions reported after the 1.20.0 release.

15.10.1 Highlights

• The distutils bug that caused problems with downstream projects is fixed.
• The random.shuffle regression is fixed.

326 15. Release notes

https://github.com/numpy/numpy/pull/18382
https://github.com/numpy/numpy/pull/18459
https://github.com/numpy/numpy/pull/18460
https://github.com/numpy/numpy/pull/18461
https://github.com/numpy/numpy/pull/18462
https://github.com/numpy/numpy/pull/18469
https://github.com/numpy/numpy/pull/18485
https://github.com/numpy/numpy/pull/18486
https://github.com/numpy/numpy/pull/18487
https://github.com/numpy/numpy/pull/18488
https://github.com/numpy/numpy/pull/18546
https://github.com/numpy/numpy/pull/18559
https://github.com/numpy/numpy/pull/18599
https://github.com/numpy/numpy/pull/18611
https://github.com/numpy/numpy/pull/18612
https://github.com/numpy/numpy/pull/18617
https://github.com/numpy/numpy/pull/18636
https://github.com/numpy/numpy/pull/18638
https://github.com/numpy/numpy/pull/18661
https://github.com/numpy/numpy/pull/18671

NumPy User Guide, Release 1.22.0

15.10.2 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Bas van Beek
• Charles Harris
• Nicholas McKibben +
• Pearu Peterson
• Ralf Gommers
• Sebastian Berg
• Tyler Reddy
• @Aerysv +

15.10.3 Pull requests merged

A total of 15 pull requests were merged for this release.
• #18306: MAINT: Add missing placeholder annotations
• #18310: BUG: Fix typo in numpy.__init__.py
• #18326: BUG: don’t mutate list of fake libraries while iterating over…
• #18327: MAINT: gracefully shuffle memoryviews
• #18328: BUG: Use C linkage for random distributions
• #18336: CI: fix when GitHub Actions builds trigger, and allow ci skips
• #18337: BUG: Allow unmodified use of isclose, allclose, etc. with timedelta
• #18345: BUG: Allow pickling all relevant DType types/classes
• #18351: BUG: Fix missing signed_char dependency. Closes #18335.
• #18352: DOC: Change license date 2020 -> 2021
• #18353: CI: CircleCI seems to occasionally time out, increase the limit
• #18354: BUG: Fix f2py bugs when wrapping F90 subroutines.
• #18356: MAINT: crackfortran regex simplify
• #18357: BUG: threads.h existence test requires GLIBC > 2.12.
• #18359: REL: Prepare for the NumPy 1.20.1 release.

15.10. NumPy 1.20.1 Release Notes 327

https://github.com/numpy/numpy/pull/18306
https://github.com/numpy/numpy/pull/18310
https://github.com/numpy/numpy/pull/18326
https://github.com/numpy/numpy/pull/18327
https://github.com/numpy/numpy/pull/18328
https://github.com/numpy/numpy/pull/18336
https://github.com/numpy/numpy/pull/18337
https://github.com/numpy/numpy/pull/18345
https://github.com/numpy/numpy/pull/18351
https://github.com/numpy/numpy/pull/18352
https://github.com/numpy/numpy/pull/18353
https://github.com/numpy/numpy/pull/18354
https://github.com/numpy/numpy/pull/18356
https://github.com/numpy/numpy/pull/18357
https://github.com/numpy/numpy/pull/18359

NumPy User Guide, Release 1.22.0

15.11 NumPy 1.20.0 Release Notes

This NumPy release is the largest so made to date, some 684 PRs contributed by 184 people have been merged. See the
list of highlights below for more details. The Python versions supported for this release are 3.7-3.9, support for Python
3.6 has been dropped. Highlights are

• Annotations for NumPy functions. This work is ongoing and improvements can be expected pending feedback
from users.

• Wider use of SIMD to increase execution speed of ufuncs. Much work has been done in introducing universal
functions that will ease use of modern features across different hardware platforms. This work is ongoing.

• Preliminary work in changing the dtype and casting implementations in order to provide an easier path to extending
dtypes. This work is ongoing but enough has been done to allow experimentation and feedback.

• Extensive documentation improvements comprising some 185 PR merges. This work is ongoing and part of the
larger project to improve NumPy’s online presence and usefulness to new users.

• Further cleanups related to removing Python 2.7. This improves code readability and removes technical debt.
• Preliminary support for the upcoming Cython 3.0.

15.11.1 New functions

The random.Generator class has a new permuted function.

The new function differs from shuffle and permutation in that the subarrays indexed by an axis are permuted
rather than the axis being treated as a separate 1-D array for every combination of the other indexes. For example, it is
now possible to permute the rows or columns of a 2-D array.
(gh-15121)

sliding_window_view provides a sliding window view for numpy arrays

numpy.lib.stride_tricks.sliding_window_view constructs views on numpy arrays that offer a sliding
or moving window access to the array. This allows for the simple implementation of certain algorithms, such as running
means.
(gh-17394)

numpy.broadcast_shapes is a new user-facing function

broadcast_shapes gets the resulting shape from broadcasting the given shape tuples against each other.

>>> np.broadcast_shapes((1, 2), (3, 1))
(3, 2)

>>> np.broadcast_shapes(2, (3, 1))
(3, 2)

>>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7))
(5, 6, 7)

(gh-17535)

328 15. Release notes

https://github.com/numpy/numpy/pull/15121
https://github.com/numpy/numpy/pull/17394
https://github.com/numpy/numpy/pull/17535

NumPy User Guide, Release 1.22.0

15.11.2 Deprecations

Using the aliases of builtin types like np.int is deprecated

For a long time, np.int has been an alias of the builtin int. This is repeatedly a cause of confusion for newcomers,
and existed mainly for historic reasons.
These aliases have been deprecated. The table below shows the full list of deprecated aliases, along with their exact
meaning. Replacing uses of items in the first column with the contents of the second column will work identically and
silence the deprecation warning.
The third column lists alternative NumPy names whichmay occasionally be preferential. See alsoData types for additional
details.

Deprecated
name

Identical
to

NumPy scalar type names

numpy.bool bool numpy.bool_
numpy.int int numpy.int_ (default), numpy.int64, or numpy.int32
numpy.float float numpy.float64, numpy.float_, numpy.double (equivalent)
numpy.
complex

complex numpy.complex128, numpy.complex_, numpy.cdouble (equiva-
lent)

numpy.object object numpy.object_
numpy.str str numpy.str_
numpy.long int numpy.int_ (C long), numpy.longlong (largest integer type)
numpy.
unicode

str numpy.unicode_

To give a clear guideline for the vast majority of cases, for the types bool, object, str (and unicode) using the
plain version is shorter and clear, and generally a good replacement. For float and complex you can use float64
and complex128 if you wish to be more explicit about the precision.
For np.int a direct replacement with np.int_ or int is also good and will not change behavior, but the precision
will continue to depend on the computer and operating system. If you want to be more explicit and review the current
use, you have the following alternatives:

• np.int64 or np.int32 to specify the precision exactly. This ensures that results cannot depend on the com-
puter or operating system.

• np.int_ or int (the default), but be aware that it depends on the computer and operating system.
• The C types: np.cint (int), np.int_ (long), np.longlong.
• np.intp which is 32bit on 32bit machines 64bit on 64bit machines. This can be the best type to use for indexing.

When used with np.dtype(...) or dtype=... changing it to the NumPy name as mentioned above will have no
effect on the output. If used as a scalar with:

np.float(123)

changing it can subtly change the result. In this case, the Python version float(123) or int(12.) is normally
preferable, although the NumPy version may be useful for consistency with NumPy arrays (for example, NumPy behaves
differently for things like division by zero).
(gh-14882)

15.11. NumPy 1.20.0 Release Notes 329

https://github.com/numpy/numpy/pull/14882

NumPy User Guide, Release 1.22.0

Passing shape=None to functions with a non-optional shape argument is deprecated

Previously, this was an alias for passing shape=(). This deprecation is emitted by PyArray_IntpConverter in the C API.
If your API is intended to support passing None, then you should check for None prior to invoking the converter, so as
to be able to distinguish None and ().
(gh-15886)

Indexing errors will be reported even when index result is empty

In the future, NumPy will raise an IndexError when an integer array index contains out of bound values even if a non-
indexed dimension is of length 0. This will now emit a DeprecationWarning. This can happen when the array is previously
empty, or an empty slice is involved:

arr1 = np.zeros((5, 0))
arr1[[20]]
arr2 = np.zeros((5, 5))
arr2[[20], :0]

Previously the non-empty index [20] was not checked for correctness. It will now be checked causing a deprecation
warning which will be turned into an error. This also applies to assignments.
(gh-15900)

Inexact matches for mode and searchside are deprecated

Inexact and case insensitive matches for mode and searchside were valid inputs earlier and will give a Deprecation-
Warning now. For example, below are some example usages which are now deprecated and will give a DeprecationWarn-
ing:

import numpy as np
arr = np.array([[3, 6, 6], [4, 5, 1]])
mode: inexact match
np.ravel_multi_index(arr, (7, 6), mode="clap") # should be "clip"
searchside: inexact match
np.searchsorted(arr[0], 4, side='random') # should be "right"

(gh-16056)

Deprecation of numpy.dual

The module numpy.dual is deprecated. Instead of importing functions from numpy.dual, the functions should be
imported directly from NumPy or SciPy.
(gh-16156)

330 15. Release notes

https://github.com/numpy/numpy/pull/15886
https://github.com/numpy/numpy/pull/15900
https://github.com/numpy/numpy/pull/16056
https://github.com/numpy/numpy/pull/16156

NumPy User Guide, Release 1.22.0

outer and ufunc.outer deprecated for matrix

np.matrix use with outer or generic ufunc outer calls such as numpy.add.outer. Previously, matrix was con-
verted to an array here. This will not be done in the future requiring a manual conversion to arrays.
(gh-16232)

Further Numeric Style types Deprecated

The remaining numeric-style type codes Bytes0, Str0, Uint32, Uint64, and Datetime64 have been deprecated.
The lower-case variants should be used instead. For bytes and string "S" and "U" are further alternatives.
(gh-16554)

The ndincr method of ndindex is deprecated

The documentation has warned against using this function sinceNumPy 1.8. Usenext(it) instead ofit.ndincr().
(gh-17233)

ArrayLike objects which do not define __len__ and __getitem__

Objects which define one of the protocols __array__, __array_interface__, or __array_struct__ but
are not sequences (usually defined by having a __len__ and __getitem__) will behave differently during array-
coercion in the future.
When nested inside sequences, such as np.array([array_like]), these were handled as a single Python object
rather than an array. In the future they will behave identically to:

np.array([np.array(array_like)])

This change should only have an effect if np.array(array_like) is not 0-D. The solution to this warning may
depend on the object:

• Some array-likes may expect the new behaviour, and users can ignore the warning. The object can choose to expose
the sequence protocol to opt-in to the new behaviour.

• For example, shapely will allow conversion to an array-like using line.coords rather than np.
asarray(line). Users may work around the warning, or use the new convention when it becomes available.

Unfortunately, using the new behaviour can only be achieved by calling np.array(array_like).
If you wish to ensure that the old behaviour remains unchanged, please create an object array and then fill it explicitly,
for example:

arr = np.empty(3, dtype=object)
arr[:] = [array_like1, array_like2, array_like3]

This will ensure NumPy knows to not enter the array-like and use it as a object instead.
(gh-17973)

15.11. NumPy 1.20.0 Release Notes 331

https://github.com/numpy/numpy/pull/16232
https://github.com/numpy/numpy/pull/16554
https://github.com/numpy/numpy/pull/17233
https://github.com/numpy/numpy/pull/17973

NumPy User Guide, Release 1.22.0

15.11.3 Future Changes

Arrays cannot be using subarray dtypes

Array creation and casting using np.array(arr, dtype) and arr.astype(dtype) will use different logic
when dtype is a subarray dtype such as np.dtype("(2)i,").
For such a dtype the following behaviour is true:

res = np.array(arr, dtype)

res.dtype is not dtype
res.dtype is dtype.base
res.shape == arr.shape + dtype.shape

But res is filled using the logic:

res = np.empty(arr.shape + dtype.shape, dtype=dtype.base)
res[...] = arr

which uses incorrect broadcasting (and often leads to an error). In the future, this will instead cast each element individ-
ually, leading to the same result as:

res = np.array(arr, dtype=np.dtype(["f", dtype]))["f"]

Which can normally be used to opt-in to the new behaviour.
This change does not affect np.array(list, dtype="(2)i,") unless the list itself includes at least one array.
In particular, the behaviour is unchanged for a list of tuples.
(gh-17596)

15.11.4 Expired deprecations

• The deprecation of numeric style type-codes np.dtype("Complex64") (with upper case spelling), is expired.
"Complex64" corresponded to "complex128" and "Complex32" corresponded to "complex64".

• The deprecation of np.sctypeNA and np.typeNA is expired. Both have been removed from the public API.
Use np.typeDict instead.
(gh-16554)

• The 14-year deprecation of np.ctypeslib.ctypes_load_library is expired. Use load_library
instead, which is identical.
(gh-17116)

Financial functions removed

In accordance with NEP 32, the financial functions are removed from NumPy 1.20. The functions that have been re-
moved are fv, ipmt, irr, mirr, nper, npv, pmt, ppmt, pv, and rate. These functions are available in the
numpy_financial library.
(gh-17067)

332 15. Release notes

https://github.com/numpy/numpy/pull/17596
https://github.com/numpy/numpy/pull/16554
https://github.com/numpy/numpy/pull/17116
https://pypi.org/project/numpy-financial
https://github.com/numpy/numpy/pull/17067

NumPy User Guide, Release 1.22.0

15.11.5 Compatibility notes

isinstance(dtype, np.dtype) and not type(dtype) is not np.dtype

NumPy dtypes are not direct instances of np.dtype anymore. Code that may have used type(dtype) is np.
dtype will always return False and must be updated to use the correct version isinstance(dtype, np.
dtype).
This change also affects the C-side macro PyArray_DescrCheck if compiled against a NumPy older than 1.16.6. If
code uses this macro and wishes to compile against an older version of NumPy, it must replace the macro (see also C API
changes section).

Same kind casting in concatenate with axis=None

When concatenate is called with axis=None, the flattened arrays were cast with unsafe. Any other axis choice
uses “same kind”. That different default has been deprecated and “same kind” casting will be used instead. The new
casting keyword argument can be used to retain the old behaviour.
(gh-16134)

NumPy Scalars are cast when assigned to arrays

When creating or assigning to arrays, in all relevant cases NumPy scalars will now be cast identically to NumPy arrays.
In particular this changes the behaviour in some cases which previously raised an error:

np.array([np.float64(np.nan)], dtype=np.int64)

will succeed and return an undefined result (usually the smallest possible integer). This also affects assignments:

arr[0] = np.float64(np.nan)

At this time, NumPy retains the behaviour for:

np.array(np.float64(np.nan), dtype=np.int64)

The above changes do not affect Python scalars:

np.array([float("NaN")], dtype=np.int64)

remains unaffected (np.nan is a Python float, not a NumPy one). Unlike signed integers, unsigned integers do not
retain this special case, since they always behaved more like casting. The following code stops raising an error:

np.array([np.float64(np.nan)], dtype=np.uint64)

To avoid backward compatibility issues, at this time assignment from datetime64 scalar to strings of too short length
remains supported. This means that np.asarray(np.datetime64("2020-10-10"), dtype="S5") suc-
ceeds now, when it failed before. In the long term this may be deprecated or the unsafe cast may be allowed generally to
make assignment of arrays and scalars behave consistently.

15.11. NumPy 1.20.0 Release Notes 333

https://github.com/numpy/numpy/pull/16134

NumPy User Guide, Release 1.22.0

Array coercion changes when Strings and other types are mixed

When strings and other types are mixed, such as:

np.array(["string", np.float64(3.)], dtype="S")

The results will change, which may lead to string dtypes with longer strings in some cases. In particularly, if dtype="S"
is not provided any numerical value will lead to a string results long enough to hold all possible numerical values. (e.g.
“S32” for floats). Note that you should always provide dtype="S" when converting non-strings to strings.
If dtype="S" is provided the results will be largely identical to before, but NumPy scalars (not a Python float like 1.0),
will still enforce a uniform string length:

np.array([np.float64(3.)], dtype="S") # gives "S32"
np.array([3.0], dtype="S") # gives "S3"

Previously the first version gave the same result as the second.

Array coercion restructure

Array coercion has been restructured. In general, this should not affect users. In extremely rare corner cases where
array-likes are nested:

np.array([array_like1])

Things will now be more consistent with:

np.array([np.array(array_like1)])

This can subtly change output for some badly defined array-likes. One example for this are array-like objects which are not
also sequences of matching shape. In NumPy 1.20, a warning will be given when an array-like is not also a sequence (but
behaviour remains identical, see deprecations). If an array like is also a sequence (defines__getitem__ and__len__)
NumPy will now only use the result given by __array__, __array_interface__, or __array_struct__.
This will result in differences when the (nested) sequence describes a different shape.
(gh-16200)

Writing to the result of numpy.broadcast_arrays will export readonly buffers

In NumPy 1.17 numpy.broadcast_arrays started warning when the resulting array was written to. This warning
was skipped when the array was used through the buffer interface (e.g. memoryview(arr)). The same thing will
now occur for the two protocols __array_interface__, and __array_struct__ returning read-only buffers
instead of giving a warning.
(gh-16350)

334 15. Release notes

https://github.com/numpy/numpy/pull/16200
https://github.com/numpy/numpy/pull/16350

NumPy User Guide, Release 1.22.0

Numeric-style type names have been removed from type dictionaries

To stay in sync with the deprecation for np.dtype("Complex64") and other numeric-style (capital case) types.
These were removed from np.sctypeDict and np.typeDict. You should use the lower case versions instead.
Note that "Complex64" corresponds to "complex128" and "Complex32" corresponds to "complex64". The
numpy style (new) versions, denote the full size and not the size of the real/imaginary part.
(gh-16554)

The operator.concat function now raises TypeError for array arguments

The previous behavior was to fall back to addition and add the two arrays, which was thought to be unexpected behavior
for a concatenation function.
(gh-16570)

nickname attribute removed from ABCPolyBase

An abstract property nickname has been removed from ABCPolyBase as it was no longer used in the derived con-
venience classes. This may affect users who have derived classes from ABCPolyBase and overridden the methods for
representation and display, e.g. __str__, __repr__, _repr_latex, etc.
(gh-16589)

float->timedelta and uint64->timedelta promotion will raise a TypeError

Float and timedelta promotion consistently raises a TypeError. np.promote_types("float32", "m8")
aligns with np.promote_types("m8", "float32") now and both raise a TypeError. Previously, np.
promote_types("float32", "m8") returned "m8" which was considered a bug.
Uint64 and timedelta promotion consistently raises a TypeError. np.promote_types("uint64", "m8")
aligns with np.promote_types("m8", "uint64") now and both raise a TypeError. Previously, np.
promote_types("uint64", "m8") returned "m8" which was considered a bug.
(gh-16592)

numpy.genfromtxt now correctly unpacks structured arrays

Previously, numpy.genfromtxt failed to unpack if it was called with unpack=True and a structured datatype was
passed to the dtype argument (or dtype=None was passed and a structured datatype was inferred). For example:

>>> data = StringIO("21 58.0\n35 72.0")
>>> np.genfromtxt(data, dtype=None, unpack=True)
array([(21, 58.), (35, 72.)], dtype=[('f0', '<i8'), ('f1', '<f8')])

Structured arrays will now correctly unpack into a list of arrays, one for each column:

>>> np.genfromtxt(data, dtype=None, unpack=True)
[array([21, 35]), array([58., 72.])]

(gh-16650)

15.11. NumPy 1.20.0 Release Notes 335

https://github.com/numpy/numpy/pull/16554
https://github.com/numpy/numpy/pull/16570
https://github.com/numpy/numpy/pull/16589
https://github.com/numpy/numpy/pull/16592
https://github.com/numpy/numpy/pull/16650

NumPy User Guide, Release 1.22.0

mgrid, r_, etc. consistently return correct outputs for non-default precision input

Previously, np.mgrid[np.float32(0.1):np.float32(0.35):np.float32(0.1),] and np.
r_[0:10:np.complex64(3j)] failed to return meaningful output. This bug potentially affects mgrid, ogrid,
r_, and c_ when an input with dtype other than the default float64 and complex128 and equivalent Python types
were used. The methods have been fixed to handle varying precision correctly.
(gh-16815)

Boolean array indices with mismatching shapes now properly give IndexError

Previously, if a boolean array index matched the size of the indexed array but not the shape, it was incorrectly allowed
in some cases. In other cases, it gave an error, but the error was incorrectly a ValueError with a message about
broadcasting instead of the correct IndexError.
For example, the following used to incorrectly give ValueError: operands could not be broadcast
together with shapes (2,2) (1,4):

np.empty((2, 2))[np.array([[True, False, False, False]])]

And the following used to incorrectly return array([], dtype=float64):

np.empty((2, 2))[np.array([[False, False, False, False]])]

Both now correctly give IndexError: boolean index did not match indexed array along
dimension 0; dimension is 2 but corresponding boolean dimension is 1.
(gh-17010)

Casting errors interrupt Iteration

When iterating while casting values, an error may stop the iteration earlier than before. In any case, a failed casting
operation always returned undefined, partial results. Those may now be even more undefined and partial. For users
of the NpyIter C-API such cast errors will now cause the iternext() function to return 0 and thus abort iteration.
Currently, there is no API to detect such an error directly. It is necessary to check PyErr_Occurred(), which may
be problematic in combination with NpyIter_Reset. These issues always existed, but new API could be added if
required by users.
(gh-17029)

f2py generated code may return unicode instead of byte strings

Some byte strings previously returned by f2py generated code may now be unicode strings. This results from the ongoing
Python2 -> Python3 cleanup.
(gh-17068)

336 15. Release notes

https://github.com/numpy/numpy/pull/16815
https://github.com/numpy/numpy/pull/17010
https://github.com/numpy/numpy/pull/17029
https://github.com/numpy/numpy/pull/17068

NumPy User Guide, Release 1.22.0

The first element of the __array_interface__["data"] tuple must be an integer

This has been the documented interface for many years, but there was still code that would accept a byte string repre-
sentation of the pointer address. That code has been removed, passing the address as a byte string will now raise an
error.
(gh-17241)

poly1d respects the dtype of all-zero argument

Previously, constructing an instance of poly1d with all-zero coefficients would cast the coefficients to np.float64.
This affected the output dtype of methods which construct poly1d instances internally, such as np.polymul.
(gh-17577)

The numpy.i file for swig is Python 3 only.

Uses of Python 2.7 C-API functions have been updated to Python 3 only. Users who need the old version should take it
from an older version of NumPy.
(gh-17580)

Void dtype discovery in np.array

In calls using np.array(..., dtype="V"), arr.astype("V"), and similar a TypeError will now be correctly
raised unless all elements have the identical void length. An example for this is:

np.array([b"1", b"12"], dtype="V")

Which previously returned an array with dtype "V2" which cannot represent b"1" faithfully.
(gh-17706)

15.11.6 C API changes

The PyArray_DescrCheck macro is modified

The PyArray_DescrCheck macro has been updated since NumPy 1.16.6 to be:

#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)

Starting with NumPy 1.20 code that is compiled against an earlier version will be API incompatible with NumPy 1.20.
The fix is to either compile against 1.16.6 (if the NumPy 1.16 release is the oldest release you wish to support), or manually
inline the macro by replacing it with the new definition:

PyObject_TypeCheck(op, &PyArrayDescr_Type)

which is compatible with all NumPy versions.

15.11. NumPy 1.20.0 Release Notes 337

https://github.com/numpy/numpy/pull/17241
https://github.com/numpy/numpy/pull/17577
https://github.com/numpy/numpy/pull/17580
https://github.com/numpy/numpy/pull/17706

NumPy User Guide, Release 1.22.0

Size of np.ndarray and np.void_ changed

The size of the PyArrayObject and PyVoidScalarObject structures have changed. The following header def-
inition has been removed:

#define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))

since the size must not be considered a compile time constant: it will change for different runtime versions of NumPy.
The most likely relevant use are potential subclasses written in C which will have to be recompiled and should be updated.
Please see the documentation for PyArrayObject for more details and contact the NumPy developers if you are
affected by this change.
NumPy will attempt to give a graceful error but a program expecting a fixed structure size may have undefined behaviour
and likely crash.
(gh-16938)

15.11.7 New Features

where keyword argument for numpy.all and numpy.any functions

The keyword argument where is added and allows to only consider specified elements or subaxes from an array in the
Boolean evaluation of all and any. This new keyword is available to the functions all and any both via numpy
directly or in the methods of numpy.ndarray.
Any broadcastable Boolean array or a scalar can be set as where. It defaults to True to evaluate the functions for all
elements in an array if where is not set by the user. Examples are given in the documentation of the functions.

where keyword argument for numpy functions mean, std, var

The keyword argument where is added and allows to limit the scope in the calculation of mean, std and var to only
a subset of elements. It is available both via numpy directly or in the methods of numpy.ndarray.
Any broadcastable Boolean array or a scalar can be set as where. It defaults to True to evaluate the functions for all
elements in an array if where is not set by the user. Examples are given in the documentation of the functions.
(gh-15852)

norm=backward, forward keyword options for numpy.fft functions

The keyword argument option norm=backward is added as an alias for None and acts as the default option; using it
has the direct transforms unscaled and the inverse transforms scaled by 1/n.
Using the new keyword argument option norm=forward has the direct transforms scaled by 1/n and the inverse
transforms unscaled (i.e. exactly opposite to the default option norm=backward).
(gh-16476)

338 15. Release notes

https://github.com/numpy/numpy/pull/16938
https://github.com/numpy/numpy/pull/15852
https://github.com/numpy/numpy/pull/16476

NumPy User Guide, Release 1.22.0

NumPy is now typed

Type annotations have been added for large parts of NumPy. There is also a new numpy.typingmodule that contains
useful types for end-users. The currently available types are

• ArrayLike: for objects that can be coerced to an array
• DtypeLike: for objects that can be coerced to a dtype

(gh-16515)

numpy.typing is accessible at runtime

The types in numpy.typing can now be imported at runtime. Code like the following will now work:

from numpy.typing import ArrayLike
x: ArrayLike = [1, 2, 3, 4]

(gh-16558)

New __f2py_numpy_version__ attribute for f2py generated modules.

Because f2py is released together with NumPy, __f2py_numpy_version__ provides a way to track the version
f2py used to generate the module.
(gh-16594)

mypy tests can be run via runtests.py

Currently running mypy with the NumPy stubs configured requires either:
• Installing NumPy
• Adding the source directory to MYPYPATH and linking to the mypy.ini

Both options are somewhat inconvenient, so add a --mypy option to runtests that handles setting things up for you. This
will also be useful in the future for any typing codegen since it will ensure the project is built before type checking.
(gh-17123)

Negation of user defined BLAS/LAPACK detection order

distutils allows negation of libraries when determining BLAS/LAPACK libraries. This may be used to remove an
item from the library resolution phase, i.e. to disallow NetLIB libraries one could do:

NPY_BLAS_ORDER='^blas' NPY_LAPACK_ORDER='^lapack' python setup.py build

That will use any of the accelerated libraries instead.
(gh-17219)

15.11. NumPy 1.20.0 Release Notes 339

https://github.com/numpy/numpy/pull/16515
https://github.com/numpy/numpy/pull/16558
https://github.com/numpy/numpy/pull/16594
https://github.com/numpy/numpy/pull/17123
https://github.com/numpy/numpy/pull/17219

NumPy User Guide, Release 1.22.0

Allow passing optimizations arguments to asv build

It is now possible to pass -j, --cpu-baseline, --cpu-dispatch and --disable-optimization flags to
ASV build when the --bench-compare argument is used.
(gh-17284)

The NVIDIA HPC SDK nvfortran compiler is now supported

Support for the nvfortran compiler, a version of pgfortran, has been added.
(gh-17344)

dtype option for cov and corrcoef

The dtype option is now available for numpy.cov and numpy.corrcoef. It specifies which data-type the returned
result should have. By default the functions still return a numpy.float64 result.
(gh-17456)

15.11.8 Improvements

Improved string representation for polynomials (__str__)

The string representation (__str__) of all six polynomial types in numpy.polynomial has been updated to give the
polynomial as a mathematical expression instead of an array of coefficients. Two package-wide formats for the polynomial
expressions are available - one using Unicode characters for superscripts and subscripts, and another using only ASCII
characters.
(gh-15666)

Remove the Accelerate library as a candidate LAPACK library

Apple no longer supports Accelerate. Remove it.
(gh-15759)

Object arrays containing multi-line objects have a more readable repr

If elements of an object array have a repr containing new lines, then the wrapped lines will be aligned by column.
Notably, this improves the repr of nested arrays:

>>> np.array([np.eye(2), np.eye(3)], dtype=object)
array([array([[1., 0.],

[0., 1.]]),
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])], dtype=object)

(gh-15997)

340 15. Release notes

https://github.com/numpy/numpy/pull/17284
https://github.com/numpy/numpy/pull/17344
https://github.com/numpy/numpy/pull/17456
https://github.com/numpy/numpy/pull/15666
https://github.com/numpy/numpy/pull/15759
https://github.com/numpy/numpy/pull/15997

NumPy User Guide, Release 1.22.0

Concatenate supports providing an output dtype

Support was added to concatenate to provide an output dtype and casting using keyword arguments. The
dtype argument cannot be provided in conjunction with the out one.
(gh-16134)

Thread safe f2py callback functions

Callback functions in f2py are now thread safe.
(gh-16519)

numpy.core.records.fromfile now supports file-like objects

numpy.rec.fromfile can now use file-like objects, for instance io.BytesIO
(gh-16675)

RPATH support on AIX added to distutils

This allows SciPy to be built on AIX.
(gh-16710)

Use f90 compiler specified by the command line args

The compiler command selection for Fortran Portland Group Compiler is changed in numpy.distutils.
fcompiler. This only affects the linking command. This forces the use of the executable provided by the command
line option (if provided) instead of the pgfortran executable. If no executable is provided to the command line option it
defaults to the pgf90 executable, which is an alias for pgfortran according to the PGI documentation.
(gh-16730)

Add NumPy declarations for Cython 3.0 and later

The pxd declarations for Cython 3.0 were improved to avoid using deprecated NumPy C-API fea-
tures. Extension modules built with Cython 3.0+ that use NumPy can now set the C macro
NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION to avoid C compiler warnings about deprecated
API usage.
(gh-16986)

15.11. NumPy 1.20.0 Release Notes 341

https://github.com/numpy/numpy/pull/16134
https://github.com/numpy/numpy/pull/16519
https://docs.python.org/dev/library/io.html#io.BytesIO
https://github.com/numpy/numpy/pull/16675
https://github.com/numpy/numpy/pull/16710
https://github.com/numpy/numpy/pull/16730
https://github.com/numpy/numpy/pull/16986

NumPy User Guide, Release 1.22.0

Make the window functions exactly symmetric

Make sure the window functions provided by NumPy are symmetric. There were previously small deviations from sym-
metry due to numerical precision that are now avoided by better arrangement of the computation.
(gh-17195)

15.11.9 Performance improvements and changes

Enable multi-platform SIMD compiler optimizations

A series of improvements for NumPy infrastructure to pave the way to NEP-38, that can be summarized as follow:
• New Build Arguments

– --cpu-baseline to specify the minimal set of required optimizations, default value is min which pro-
vides the minimum CPU features that can safely run on a wide range of users platforms.

– --cpu-dispatch to specify the dispatched set of additional optimizations, default value is max -xop
-fma4 which enables all CPU features, except for AMD legacy features.

– --disable-optimization to explicitly disable the whole new improvements, It also adds a new C
compiler #definition called NPY_DISABLE_OPTIMIZATION which it can be used as guard for any SIMD
code.

• Advanced CPU dispatcher
A flexible cross-architecture CPU dispatcher built on the top of Python/Numpy distutils, support all common
compilers with a wide range of CPU features.
The new dispatcher requires a special file extension *.dispatch.c to mark the dispatch-able C sources. These
sources have the ability to be compiled multiple times so that each compilation process represents certain CPU
features and provides different #definitions and flags that affect the code paths.

• New auto-generated C header “core/src/common/_cpu_dispatch.h“
This header is generated by the distutils module ccompiler_opt, and contains all the #definitions and headers
of instruction sets, that had been configured through command arguments ‘–cpu-baseline’ and ‘–cpu-dispatch’.

• New C header “core/src/common/npy_cpu_dispatch.h“
This header contains all utilities that required for the whole CPU dispatching process, it also can be considered as
a bridge linking the new infrastructure work with NumPy CPU runtime detection.

• Add new attributes to NumPy umath module(Python level)
– __cpu_baseline__ a list contains the minimal set of required optimizations that supported by the com-
piler and platform according to the specified values to command argument ‘–cpu-baseline’.

– __cpu_dispatch__ a list contains the dispatched set of additional optimizations that supported by the
compiler and platform according to the specified values to command argument ‘–cpu-dispatch’.

• Print the supported CPU features during the run of PytestTester
(gh-13516)

342 15. Release notes

https://github.com/numpy/numpy/pull/17195
https://github.com/numpy/numpy/pull/13516

NumPy User Guide, Release 1.22.0

15.11.10 Changes

Changed behavior of divmod(1., 0.) and related functions

The changes also assure that different compiler versions have the same behavior for nan or inf usages in these operations.
This was previously compiler dependent, we now force the invalid and divide by zero flags, making the results the same
across compilers. For example, gcc-5, gcc-8, or gcc-9 now result in the same behavior. The changes are tabulated below:

Table 1: Summary of New Behavior
Operator Old Warn-

ing
New Warning Old Re-

sult
New Re-
sult

Works on Ma-
cOS

np.divmod(1.0, 0.0) Invalid Invalid and Divide-
byzero

nan, nan inf, nan Yes

np.fmod(1.0, 0.0) Invalid Invalid nan nan No? Yes
np.floor_divide(1.0,
0.0)

Invalid Dividebyzero nan inf Yes

np.remainder(1.0, 0.0) Invalid Invalid nan nan Yes

(gh-16161)

np.linspace on integers now uses floor

When using a int dtype in numpy.linspace, previously float values would be rounded towards zero. Now numpy.
floor is used instead, which rounds toward -inf. This changes the results for negative values. For example, the
following would previously give:

>>> np.linspace(-3, 1, 8, dtype=int)
array([-3, -2, -1, -1, 0, 0, 0, 1])

and now results in:

>>> np.linspace(-3, 1, 8, dtype=int)
array([-3, -3, -2, -2, -1, -1, 0, 1])

The former result can still be obtained with:

>>> np.linspace(-3, 1, 8).astype(int)
array([-3, -2, -1, -1, 0, 0, 0, 1])

(gh-16841)

15.12 NumPy 1.19.5 Release Notes

NumPy 1.19.5 is a short bugfix release. Apart from fixing several bugs, the main improvement is the update to OpenBLAS
0.3.13 that works around the windows 2004 bug while not breaking execution on other platforms. This release supports
Python 3.6-3.9 and is planned to be the last release in the 1.19.x cycle.

15.12. NumPy 1.19.5 Release Notes 343

https://github.com/numpy/numpy/pull/16161
https://github.com/numpy/numpy/pull/16841

NumPy User Guide, Release 1.22.0

15.12.1 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Christoph Gohlke
• Matti Picus
• Raghuveer Devulapalli
• Sebastian Berg
• Simon Graham +
• Veniamin Petrenko +
• Bernie Gray +

15.12.2 Pull requests merged

A total of 11 pull requests were merged for this release.
• #17756: BUG: Fix segfault due to out of bound pointer in floatstatus…
• #17774: BUG: fix np.timedelta64(‘nat’).__format__ throwing an exception
• #17775: BUG: Fixed file handle leak in array_tofile.
• #17786: BUG: Raise recursion error during dimension discovery
• #17917: BUG: Fix subarray dtype used with too large count in fromfile
• #17918: BUG: ‘bool’ object has no attribute ‘ndim’
• #17919: BUG: ensure _UFuncNoLoopError can be pickled
• #17924: BLD: use BUFFERSIZE=20 in OpenBLAS
• #18026: BLD: update to OpenBLAS 0.3.13
• #18036: BUG: make a variable volatile to work around clang compiler bug
• #18114: REL: Prepare for the NumPy 1.19.5 release.

15.13 NumPy 1.19.4 Release Notes

NumPy 1.19.4 is a quick release to revert the OpenBLAS library version. It was hoped that the 0.3.12 OpenBLAS version
used in 1.19.3 would work around theMicrosoft fmod bug, but problems in some docker environments turned up. Instead,
1.19.4 will use the older library and run a sanity check on import, raising an error if the problem is detected. Microsoft
is aware of the problem and has promised a fix, users should upgrade when it becomes available.
This release supports Python 3.6-3.9

344 15. Release notes

https://github.com/numpy/numpy/pull/17756
https://github.com/numpy/numpy/pull/17774
https://github.com/numpy/numpy/pull/17775
https://github.com/numpy/numpy/pull/17786
https://github.com/numpy/numpy/pull/17917
https://github.com/numpy/numpy/pull/17918
https://github.com/numpy/numpy/pull/17919
https://github.com/numpy/numpy/pull/17924
https://github.com/numpy/numpy/pull/18026
https://github.com/numpy/numpy/pull/18036
https://github.com/numpy/numpy/pull/18114

NumPy User Guide, Release 1.22.0

15.13.1 Contributors

A total of 1 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris

15.13.2 Pull requests merged

A total of 2 pull requests were merged for this release.
• #17679: MAINT: Add check for Windows 10 version 2004 bug.
• #17680: REV: Revert OpenBLAS to 1.19.2 version for 1.19.4

15.14 NumPy 1.19.3 Release Notes

NumPy 1.19.3 is a small maintenance release with two major improvements:
• Python 3.9 binary wheels on all supported platforms.
• OpenBLAS fixes for Windows 10 version 2004 fmod bug.

This release supports Python 3.6-3.9 and is linked with OpenBLAS 0.3.12 to avoid some of the fmod problems on
Windows 10 version 2004. Microsoft is aware of the problem and users should upgrade when the fix becomes available,
the fix here is limited in scope.

15.14.1 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Chris Brown +
• Daniel Vanzo +
• E. Madison Bray +
• Hugo van Kemenade +
• Ralf Gommers
• Sebastian Berg
• @danbeibei +

15.14.2 Pull requests merged

A total of 10 pull requests were merged for this release.
• #17298: BLD: set upper versions for build dependencies
• #17336: BUG: Set deprecated fields to null in PyArray_InitArrFuncs
• #17446: ENH: Warn on unsupported Python 3.10+
• #17450: MAINT: Update test_requirements.txt.
• #17522: ENH: Support for the NVIDIA HPC SDK nvfortran compiler

15.14. NumPy 1.19.3 Release Notes 345

https://github.com/numpy/numpy/pull/17679
https://github.com/numpy/numpy/pull/17680
https://github.com/numpy/numpy/pull/17298
https://github.com/numpy/numpy/pull/17336
https://github.com/numpy/numpy/pull/17446
https://github.com/numpy/numpy/pull/17450
https://github.com/numpy/numpy/pull/17522

NumPy User Guide, Release 1.22.0

• #17568: BUG: Cygwin Workaround for #14787 on affected platforms
• #17647: BUG: Fix memory leak of buffer-info cache due to relaxed strides
• #17652: MAINT: Backport openblas_support from master.
• #17653: TST: Add Python 3.9 to the CI testing on Windows, Mac.
• #17660: TST: Simplify source path names in test_extending.

15.15 NumPy 1.19.2 Release Notes

NumPy 1.19.2 fixes several bugs, prepares for the upcoming Cython 3.x release. and pins setuptools to keep distutils
working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release
that fixes the problem of differing page sizes used by different linux distros.
This release supports Python 3.6-3.8. Cython >= 0.29.21 needs to be used when building with Python 3.9 for testing
purposes.
There is a known problem with Windows 10 version=2004 and OpenBLAS svd that we are trying to debug. If you are
running that Windows version you should use a NumPy version that links to the MKL library, earlier Windows versions
are fine.

15.15.1 Improvements

Add NumPy declarations for Cython 3.0 and later

The pxd declarations for Cython 3.0 were improved to avoid using deprecated NumPy C-API fea-
tures. Extension modules built with Cython 3.0+ that use NumPy can now set the C macro
NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION to avoid C compiler warnings about deprecated
API usage.

15.15.2 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Matti Picus
• Pauli Virtanen
• Philippe Ombredanne +
• Sebastian Berg
• Stefan Behnel +
• Stephan Loyd +
• Zac Hatfield-Dodds

346 15. Release notes

https://github.com/numpy/numpy/pull/17568
https://github.com/numpy/numpy/pull/17647
https://github.com/numpy/numpy/pull/17652
https://github.com/numpy/numpy/pull/17653
https://github.com/numpy/numpy/pull/17660

NumPy User Guide, Release 1.22.0

15.15.3 Pull requests merged

A total of 9 pull requests were merged for this release.
• #16959: TST: Change aarch64 to arm64 in travis.yml.
• #16998: MAINT: Configure hypothesis in np.test() for determinism,…
• #17000: BLD: pin setuptools < 49.2.0
• #17015: ENH: Add NumPy declarations to be used by Cython 3.0+
• #17125: BUG: Remove non-threadsafe sigint handling from fft calculation
• #17243: BUG: core: fix ilp64 blas dot/vdot/… for strides > int32 max
• #17244: DOC: Use SPDX license expressions with correct license
• #17245: DOC: Fix the link to the quick-start in the old API functions
• #17272: BUG: fix pickling of arrays larger than 2GiB

15.16 NumPy 1.19.1 Release Notes

NumPy 1.19.1 fixes several bugs found in the 1.19.0 release, replaces several functions deprecated in the upcoming
Python-3.9 release, has improved support for AIX, and has a number of development related updates to keep CI working
with recent upstream changes.
This release supports Python 3.6-3.8. Cython >= 0.29.21 needs to be used when building with Python 3.9 for testing
purposes.

15.16.1 Contributors

A total of 15 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Abhinav Reddy +
• Anirudh Subramanian
• Antonio Larrosa +
• Charles Harris
• Chunlin Fang
• Eric Wieser
• Etienne Guesnet +
• Kevin Sheppard
• Matti Picus
• Raghuveer Devulapalli
• Roman Yurchak
• Ross Barnowski
• Sayed Adel
• Sebastian Berg
• Tyler Reddy

15.16. NumPy 1.19.1 Release Notes 347

https://github.com/numpy/numpy/pull/16959
https://github.com/numpy/numpy/pull/16998
https://github.com/numpy/numpy/pull/17000
https://github.com/numpy/numpy/pull/17015
https://github.com/numpy/numpy/pull/17125
https://github.com/numpy/numpy/pull/17243
https://github.com/numpy/numpy/pull/17244
https://github.com/numpy/numpy/pull/17245
https://github.com/numpy/numpy/pull/17272

NumPy User Guide, Release 1.22.0

15.16.2 Pull requests merged

A total of 25 pull requests were merged for this release.
• #16649: MAINT, CI: disable Shippable cache
• #16652: MAINT: Replace PyUString_GET_SIZE with PyUnicode_GetLength.
• #16654: REL: Fix outdated docs link
• #16656: BUG: raise IEEE exception on AIX
• #16672: BUG: Fix bug in AVX complex absolute while processing array of…
• #16693: TST: Add extra debugging information to CPU features detection
• #16703: BLD: Add CPU entry for Emscripten / WebAssembly
• #16705: TST: Disable Python 3.9-dev testing.
• #16714: MAINT: Disable use_hugepages in case of ValueError
• #16724: BUG: Fix PyArray_SearchSorted signature.
• #16768: MAINT: Fixes for deprecated functions in scalartypes.c.src
• #16772: MAINT: Remove unneeded call to PyUnicode_READY
• #16776: MAINT: Fix deprecated functions in scalarapi.c
• #16779: BLD, ENH: Add RPATH support for AIX
• #16780: BUG: Fix default fallback in genfromtxt
• #16784: BUG: Added missing return after raising error in methods.c
• #16795: BLD: update cython to 0.29.21
• #16832: MAINT: setuptools 49.2.0 emits a warning, avoid it
• #16872: BUG: Validate output size in bin- and multinomial
• #16875: BLD, MAINT: Pin setuptools
• #16904: DOC: Reconstruct Testing Guideline.
• #16905: TST, BUG: Re-raise MemoryError exception in test_large_zip’s…
• #16906: BUG,DOC: Fix bad MPL kwarg.
• #16916: BUG: Fix string/bytes to complex assignment
• #16922: REL: Prepare for NumPy 1.19.1 release

15.17 NumPy 1.19.0 Release Notes

This NumPy release is marked by the removal of much technical debt: support for Python 2 has been removed, many
deprecations have been expired, and documentation has been improved. The polishing of the random module continues
apace with bug fixes and better usability from Cython.
The Python versions supported for this release are 3.6-3.8. Downstream developers should use Cython >= 0.29.16 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid problems on the Skylake architecture.

348 15. Release notes

https://github.com/numpy/numpy/pull/16649
https://github.com/numpy/numpy/pull/16652
https://github.com/numpy/numpy/pull/16654
https://github.com/numpy/numpy/pull/16656
https://github.com/numpy/numpy/pull/16672
https://github.com/numpy/numpy/pull/16693
https://github.com/numpy/numpy/pull/16703
https://github.com/numpy/numpy/pull/16705
https://github.com/numpy/numpy/pull/16714
https://github.com/numpy/numpy/pull/16724
https://github.com/numpy/numpy/pull/16768
https://github.com/numpy/numpy/pull/16772
https://github.com/numpy/numpy/pull/16776
https://github.com/numpy/numpy/pull/16779
https://github.com/numpy/numpy/pull/16780
https://github.com/numpy/numpy/pull/16784
https://github.com/numpy/numpy/pull/16795
https://github.com/numpy/numpy/pull/16832
https://github.com/numpy/numpy/pull/16872
https://github.com/numpy/numpy/pull/16875
https://github.com/numpy/numpy/pull/16904
https://github.com/numpy/numpy/pull/16905
https://github.com/numpy/numpy/pull/16906
https://github.com/numpy/numpy/pull/16916
https://github.com/numpy/numpy/pull/16922

NumPy User Guide, Release 1.22.0

15.17.1 Highlights

• Code compatibility with Python versions < 3.6 (including Python 2) was dropped from both the python and C code.
The shims in numpy.compatwill remain to support third-party packages, but they may be deprecated in a future
release. Note that 1.19.x will not compile with earlier versions of Python due to the use of f-strings.
(gh-15233)

15.17.2 Expired deprecations

numpy.insert and numpy.delete can no longer be passed an axis on 0d arrays

This concludes a deprecation from 1.9, where when an axis argument was passed to a call to ~numpy.insert and
~numpy.delete on a 0d array, the axis and obj argument and indices would be completely ignored. In these cases,
insert(arr, "nonsense", 42, axis=0) would actually overwrite the entire array, while delete(arr,
"nonsense", axis=0) would be arr.copy()
Now passing axis on a 0d array raises ~numpy.AxisError.
(gh-15802)

numpy.delete no longer ignores out-of-bounds indices

This concludes deprecations from 1.8 and 1.9, where np.delete would ignore both negative and out-of-bounds items
in a sequence of indices. This was at odds with its behavior when passed a single index.
Now out-of-bounds items throw IndexError, and negative items index from the end.
(gh-15804)

numpy.insert and numpy.delete no longer accept non-integral indices

This concludes a deprecation from 1.9, where sequences of non-integers indices were allowed and cast to integers. Now
passing sequences of non-integral indices raises IndexError, just like it does when passing a single non-integral scalar.
(gh-15805)

numpy.delete no longer casts boolean indices to integers

This concludes a deprecation from 1.8, where np.delete would cast boolean arrays and scalars passed as an index
argument into integer indices. The behavior now is to treat boolean arrays as a mask, and to raise an error on boolean
scalars.
(gh-15815)

15.17. NumPy 1.19.0 Release Notes 349

https://github.com/numpy/numpy/pull/15233
https://github.com/numpy/numpy/pull/15802
https://github.com/numpy/numpy/pull/15804
https://github.com/numpy/numpy/pull/15805
https://github.com/numpy/numpy/pull/15815

NumPy User Guide, Release 1.22.0

15.17.3 Compatibility notes

Changed random variate stream from numpy.random.Generator.dirichlet

A bug in the generation of random variates for the Dirichlet distribution with small ‘alpha’ values was fixed by using a dif-
ferent algorithm when max(alpha) < 0.1. Because of the change, the stream of variates generated by dirichlet
in this case will be different from previous releases.
(gh-14924)

Scalar promotion in PyArray_ConvertToCommonType

The promotion of mixed scalars and arrays in PyArray_ConvertToCommonType has been changed to adhere
to those used by np.result_type. This means that input such as (1000, np.array([1], dtype=np.
uint8))) will now return uint16 dtypes. In most cases the behaviour is unchanged. Note that the use of this C-API
function is generally discouraged. This also fixes np.choose to behave the same way as the rest of NumPy in this
respect.
(gh-14933)

Fasttake and fastputmask slots are deprecated and NULL’ed

The fasttake and fastputmask slots are now never used and must always be set to NULL. This will result in no change in
behaviour. However, if a user dtype should set one of these a DeprecationWarning will be given.
(gh-14942)

np.ediff1d casting behaviour with to_end and to_begin

np.ediff1d now uses the "same_kind" casting rule for its additional to_end and to_begin arguments. This
ensures type safety except when the input array has a smaller integer type than to_begin or to_end. In rare cases,
the behaviour will be more strict than it was previously in 1.16 and 1.17. This is necessary to solve issues with floating
point NaN.
(gh-14981)

Converting of empty array-like objects to NumPy arrays

Objects with len(obj) == 0 which implement an “array-like” interface, meaning an object implementing obj.
__array__(), obj.__array_interface__, obj.__array_struct__, or the python buffer interface and
which are also sequences (i.e. Pandas objects) will now always retain there shape correctly when converted to an array. If
such an object has a shape of (0, 1) previously, it could be converted into an array of shape (0,) (losing all dimensions
after the first 0).
(gh-14995)

350 15. Release notes

https://github.com/numpy/numpy/pull/14924
https://github.com/numpy/numpy/pull/14933
https://github.com/numpy/numpy/pull/14942
https://github.com/numpy/numpy/pull/14981
https://github.com/numpy/numpy/pull/14995

NumPy User Guide, Release 1.22.0

Removed multiarray.int_asbuffer

As part of the continued removal of Python 2 compatibility, multiarray.int_asbufferwas removed. On Python
3, it threw a NotImplementedError and was unused internally. It is expected that there are no downstream use cases
for this method with Python 3.
(gh-15229)

numpy.distutils.compat has been removed

This module contained only the function get_exception(), which was used as:

try:
...

except Exception:
e = get_exception()

Its purpose was to handle the change in syntax introduced in Python 2.6, from except Exception, e: to except
Exception as e:, meaning it was only necessary for codebases supporting Python 2.5 and older.
(gh-15255)

issubdtype no longer interprets float as np.floating

numpy.issubdtype had a FutureWarning since NumPy 1.14 which has expired now. This means that certain input
where the second argument was neither a datatype nor a NumPy scalar type (such as a string or a python type like int
or float) will now be consistent with passing in np.dtype(arg2).type. This makes the result consistent with
expectations and leads to a false result in some cases which previously returned true.
(gh-15773)

Change output of round on scalars to be consistent with Python

Output of the __round__ dunder method and consequently the Python built-in round has been changed to be a Python
int to be consistent with calling it on Python float objects when called with no arguments. Previously, it would return
a scalar of the np.dtype that was passed in.
(gh-15840)

The numpy.ndarray constructor no longer interprets strides=() as strides=None

The former has changed to have the expected meaning of setting numpy.ndarray.strides to (), while the latter
continues to result in strides being chosen automatically.
(gh-15882)

15.17. NumPy 1.19.0 Release Notes 351

https://github.com/numpy/numpy/pull/15229
https://github.com/numpy/numpy/pull/15255
https://github.com/numpy/numpy/pull/15773
https://github.com/numpy/numpy/pull/15840
https://github.com/numpy/numpy/pull/15882

NumPy User Guide, Release 1.22.0

C-Level string to datetime casts changed

The C-level casts from strings were simplified. This changed also fixes string to datetime and timedelta casts to behave
correctly (i.e. like Python casts using string_arr.astype("M8") while previously the cast would behave like
string_arr.astype(np.int_).astype("M8"). This only affects code using low-level C-API to do manual
casts (not full array casts) of single scalar values or using e.g. PyArray_GetCastFunc, and should thus not affect
the vast majority of users.
(gh-16068)

SeedSequence with small seeds no longer conflicts with spawning

Small seeds (less than 2**96) were previously implicitly 0-padded out to 128 bits, the size of the internal entropy pool.
When spawned, the spawn key was concatenated before the 0-padding. Since the first spawn key is (0,), small seeds
before the spawn created the same states as the first spawned SeedSequence. Now, the seed is explicitly 0-padded out
to the internal pool size before concatenating the spawn key. Spawned SeedSequences will produce different results
than in the previous release. Unspawned SeedSequences will still produce the same results.
(gh-16551)

15.17.4 Deprecations

Deprecate automatic dtype=object for ragged input

Calling np.array([[1, [1, 2, 3]]) will issue a DeprecationWarning as per NEP 34. Users should ex-
plicitly use dtype=object to avoid the warning.
(gh-15119)

Passing shape=0 to factory functions in numpy.rec is deprecated

0 is treated as a special case and is aliased to None in the functions:
• numpy.core.records.fromarrays

• numpy.core.records.fromrecords

• numpy.core.records.fromstring

• numpy.core.records.fromfile

In future, 0 will not be special cased, and will be treated as an array length like any other integer.
(gh-15217)

Deprecation of probably unused C-API functions

The following C-API functions are probably unused and have been deprecated:
• PyArray_GetArrayParamsFromObject

• PyUFunc_GenericFunction

• PyUFunc_SetUsesArraysAsData

352 15. Release notes

https://github.com/numpy/numpy/pull/16068
https://github.com/numpy/numpy/pull/16551
https://numpy.org/neps/nep-0034.html
https://github.com/numpy/numpy/pull/15119
https://github.com/numpy/numpy/pull/15217

NumPy User Guide, Release 1.22.0

In most cases PyArray_GetArrayParamsFromObject should be replaced by converting to an array, while
PyUFunc_GenericFunction can be replaced with PyObject_Call (see documentation for details).
(gh-15427)

Converting certain types to dtypes is Deprecated

The super classes of scalar types, such as np.integer, np.generic, or np.inexact will now give a deprecation
warning when converted to a dtype (or used in a dtype keyword argument). The reason for this is that np.integer is
converted to np.int_, while it would be expected to represent any integer (e.g. also int8, int16, etc. For example,
dtype=np.floating is currently identical to dtype=np.float64, even though also np.float32 is a subclass
of np.floating.
(gh-15534)

Deprecation of round for np.complexfloating scalars

Output of the __round__ dunder method and consequently the Python built-in round has been deprecated on complex
scalars. This does not affect np.round.
(gh-15840)

numpy.ndarray.tostring() is deprecated in favor of tobytes()

~numpy.ndarray.tobytes has existed since the 1.9 release, but until this release ~numpy.ndarray.
tostring emitted no warning. The change to emit a warning brings NumPy in line with the builtin array.array
methods of the same name.
(gh-15867)

15.17.5 C API changes

Better support for const dimensions in API functions

The following functions now accept a constant array of npy_intp:
• PyArray_BroadcastToShape

• PyArray_IntTupleFromIntp

• PyArray_OverflowMultiplyList

Previously the caller would have to cast away the const-ness to call these functions.
(gh-15251)

15.17. NumPy 1.19.0 Release Notes 353

https://github.com/numpy/numpy/pull/15427
https://github.com/numpy/numpy/pull/15534
https://github.com/numpy/numpy/pull/15840
https://github.com/numpy/numpy/pull/15867
https://github.com/numpy/numpy/pull/15251

NumPy User Guide, Release 1.22.0

Const qualify UFunc inner loops

UFuncGenericFunction now expects pointers to const dimension and strides as arguments. This
means inner loops may no longer modify either dimension or strides. This change leads to an
incompatible-pointer-types warning forcing users to either ignore the compiler warnings or to const qual-
ify their own loop signatures.
(gh-15355)

15.17.6 New Features

numpy.frompyfunc now accepts an identity argument

This allows the :attr:numpy.ufunc.identity attribute to be set on the resulting ufunc, meaning it can be used for
empty and multi-dimensional calls to :meth:numpy.ufunc.reduce.
(gh-8255)

np.str_ scalars now support the buffer protocol

np.str_ arrays are always stored as UCS4, so the corresponding scalars now expose this through the buffer interface,
meaning memoryview(np.str_('test')) now works.
(gh-15385)

subok option for numpy.copy

Anew kwarg, subok, was added to numpy.copy to allow users to toggle the behavior ofnumpy.copywith respect to
array subclasses. The default value is False which is consistent with the behavior of numpy.copy for previous numpy
versions. To create a copy that preserves an array subclass with numpy.copy, call np.copy(arr, subok=True).
This addition better documents that the default behavior of numpy.copy differs from the numpy.ndarray.copy
method which respects array subclasses by default.
(gh-15685)

numpy.linalg.multi_dot now accepts an out argument

out can be used to avoid creating unnecessary copies of the final product computed by numpy.linalg.multidot.
(gh-15715)

keepdims parameter for numpy.count_nonzero

The parameter keepdims was added to numpy.count_nonzero. The parameter has the same meaning as it does
in reduction functions such as numpy.sum or numpy.mean.
(gh-15870)

354 15. Release notes

https://github.com/numpy/numpy/pull/15355
https://github.com/numpy/numpy/pull/8255
https://github.com/numpy/numpy/pull/15385
https://github.com/numpy/numpy/pull/15685
https://github.com/numpy/numpy/pull/15715
https://github.com/numpy/numpy/pull/15870

NumPy User Guide, Release 1.22.0

equal_nan parameter for numpy.array_equal

The keyword argument equal_nan was added to numpy.array_equal. equal_nan is a boolean value that
toggles whether or not nan values are considered equal in comparison (default is False). This matches API used in
related functions such as numpy.isclose and numpy.allclose.
(gh-16128)

15.17.7 Improvements

15.17.8 Improve detection of CPU features

Replace npy_cpu_supportswhich was a gcc specific mechanism to test support of AVXwith more general functions
npy_cpu_init and npy_cpu_have, and expose the results via a NPY_CPU_HAVE c-macro as well as a python-
level __cpu_features__ dictionary.
(gh-13421)

Use 64-bit integer size on 64-bit platforms in fallback lapack_lite

Use 64-bit integer size on 64-bit platforms in the fallback LAPACK library, which is used when the system has no
LAPACK installed, allowing it to deal with linear algebra for large arrays.
(gh-15218)

Use AVX512 intrinsic to implement np.exp when input is np.float64

Use AVX512 intrinsic to implement np.exp when input is np.float64, which can improve the performance of
np.exp with np.float64 input 5-7x faster than before. The _multiarray_umath.somodule has grown about
63 KB on linux64.
(gh-15648)

Ability to disable madvise hugepages

On Linux NumPy has previously added support for madavise hugepages which can improve performance for very large
arrays. Unfortunately, on older Kernel versions this led to performance regressions, thus by default the support has been
disabled on kernels before version 4.6. To override the default, you can use the environment variable:

NUMPY_MADVISE_HUGEPAGE=0

or set it to 1 to force enabling support. Note that this only makes a difference if the operating system is set up to use
madvise transparent hugepage.
(gh-15769)

15.17. NumPy 1.19.0 Release Notes 355

https://github.com/numpy/numpy/pull/16128
https://github.com/numpy/numpy/pull/13421
https://github.com/numpy/numpy/pull/15218
https://github.com/numpy/numpy/pull/15648
https://github.com/numpy/numpy/pull/15769

NumPy User Guide, Release 1.22.0

numpy.einsum accepts NumPy int64 type in subscript list

There is no longer a type error thrown when numpy.einsum is passed a NumPy int64 array as its subscript list.
(gh-16080)

np.logaddexp2.identity changed to -inf

The ufunc ~numpy.logaddexp2 now has an identity of -inf, allowing it to be called on empty sequences. This
matches the identity of ~numpy.logaddexp.
(gh-16102)

15.17.9 Changes

Remove handling of extra argument to __array__

A code path and test have been in the code since NumPy 0.4 for a two-argument variant of
__array__(dtype=None, context=None). It was activated when calling ufunc(op) or ufunc.
reduce(op) if op.__array__ existed. However that variant is not documented, and it is not clear what the
intention was for its use. It has been removed.
(gh-15118)

numpy.random._bit_generator moved to numpy.random.bit_generator

In order to expose numpy.random.BitGenerator and numpy.random.SeedSequence to Cython, the
_bitgenerator module is now public as numpy.random.bit_generator

Cython access to the random distributions is provided via a pxd file

c_distributions.pxd provides access to the c functions behind many of the random distributions from Cython,
making it convenient to use and extend them.
(gh-15463)

Fixed eigh and cholesky methods in numpy.random.multivariate_normal

Previously, when passing method='eigh' or method='cholesky', numpy.random.
multivariate_normal produced samples from the wrong distribution. This is now fixed.
(gh-15872)

356 15. Release notes

https://github.com/numpy/numpy/pull/16080
https://github.com/numpy/numpy/pull/16102
https://github.com/numpy/numpy/pull/15118
https://github.com/numpy/numpy/pull/15463
https://github.com/numpy/numpy/pull/15872

NumPy User Guide, Release 1.22.0

Fixed the jumping implementation in MT19937.jumped

This fix changes the stream produced from jumped MT19937 generators. It does not affect the stream produced using
RandomState or MT19937 that are directly seeded.
The translation of the jumping code for the MT19937 contained a reversed loop ordering. MT19937.jumpedmatches
the Makoto Matsumoto’s original implementation of the Horner and Sliding Window jump methods.
(gh-16153)

15.18 NumPy 1.18.5 Release Notes

This is a short release to allow pickle protocol=5 to be used in Python3.5. It is motivated by the recent backport of
pickle5 to Python3.5.
The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

15.18.1 Contributors

A total of 3 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Matti Picus
• Siyuan Zhuang +

15.18.2 Pull requests merged

A total of 2 pull requests were merged for this release.
• #16439: ENH: enable pickle protocol 5 support for python3.5
• #16441: BUG: relpath fails for different drives on windows

15.19 NumPy 1.18.4 Release Notes

This is the last planned release in the 1.18.x series. It reverts the bool("0") behavior introduced in 1.18.3 and fixes a
bug in Generator.integers. There is also a link to a new troubleshooting section in the documentation included
in the error message emitted when numpy import fails.
The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

15.18. NumPy 1.18.5 Release Notes 357

https://github.com/numpy/numpy/pull/16153
https://github.com/numpy/numpy/pull/16439
https://github.com/numpy/numpy/pull/16441

NumPy User Guide, Release 1.22.0

15.19.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Matti Picus
• Sebastian Berg
• Warren Weckesser

15.19.2 Pull requests merged

A total of 6 pull requests were merged for this release.
• #16055: BLD: add i686 for 1.18 builds
• #16090: BUG: random: Generator.integers(2**32) always returned 0.
• #16091: BLD: fix path to libgfortran on macOS
• #16109: REV: Reverts side-effect changes to casting
• #16114: BLD: put openblas library in local directory on windows
• #16132: DOC: Change import error “howto” to link to new troubleshooting…

15.20 NumPy 1.18.3 Release Notes

This release contains various bug/regression fixes.
The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

15.20.1 Highlights

• Fix for the method=’eigh’ and method=’cholesky’ methods in numpy.random.multivariate_normal.
Those were producing samples from the wrong distribution.

15.20.2 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Max Balandat +
• @Mibu287 +
• Pan Jan +
• Sebastian Berg
• @panpiort8 +

358 15. Release notes

https://github.com/numpy/numpy/pull/16055
https://github.com/numpy/numpy/pull/16090
https://github.com/numpy/numpy/pull/16091
https://github.com/numpy/numpy/pull/16109
https://github.com/numpy/numpy/pull/16114
https://github.com/numpy/numpy/pull/16132

NumPy User Guide, Release 1.22.0

15.20.3 Pull requests merged

A total of 5 pull requests were merged for this release.
• #15916: BUG: Fix eigh and cholesky methods of numpy.random.multivariate_normal
• #15929: BUG,MAINT: Remove incorrect special case in string to number…
• #15930: BUG: Guarantee array is in valid state after memory error occurs…
• #15954: BUG: Check that pvals is 1D in _generator.multinomial.
• #16017: BUG: Alpha parameter must be 1D in generator.dirichlet

15.21 NumPy 1.18.2 Release Notes

This small release contains a fix for a performance regression in numpy/random and several bug/maintenance updates.
The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

15.21.1 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Ganesh Kathiresan +
• Matti Picus
• Sebastian Berg
• przemb +

15.21.2 Pull requests merged

A total of 7 pull requests were merged for this release.
• #15675: TST: move _no_tracing to testing._private
• #15676: MAINT: Large overhead in some random functions
• #15677: TST: Do not create gfortran link in azure Mac testing.
• #15679: BUG: Added missing error check in ndarray.__contains__
• #15722: MAINT: use list-based APIs to call subprocesses
• #15729: REL: Prepare for 1.18.2 release.
• #15734: BUG: fix logic error when nm fails on 32-bit

15.21. NumPy 1.18.2 Release Notes 359

https://github.com/numpy/numpy/pull/15916
https://github.com/numpy/numpy/pull/15929
https://github.com/numpy/numpy/pull/15930
https://github.com/numpy/numpy/pull/15954
https://github.com/numpy/numpy/pull/16017
https://github.com/numpy/numpy/pull/15675
https://github.com/numpy/numpy/pull/15676
https://github.com/numpy/numpy/pull/15677
https://github.com/numpy/numpy/pull/15679
https://github.com/numpy/numpy/pull/15722
https://github.com/numpy/numpy/pull/15729
https://github.com/numpy/numpy/pull/15734

NumPy User Guide, Release 1.22.0

15.22 NumPy 1.18.1 Release Notes

This release contains fixes for bugs reported against NumPy 1.18.0. Two bugs in particular that caused widespread
problems downstream were:

• The cython random extension test was not using a temporary directory for building, resulting in a permission
violation. Fixed.

• Numpy distutils was appending -std=c99 to all C compiler runs, leading to changed behavior and compile problems
downstream. That flag is now only applied when building numpy C code.

The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.14 for
Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

15.22.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Matti Picus
• Maxwell Aladago
• Pauli Virtanen
• Ralf Gommers
• Tyler Reddy
• Warren Weckesser

15.22.2 Pull requests merged

A total of 13 pull requests were merged for this release.
• #15158: MAINT: Update pavement.py for towncrier.
• #15159: DOC: add moved modules to 1.18 release note
• #15161: MAINT, DOC: Minor backports and updates for 1.18.x
• #15176: TST: Add assert_array_equal test for big integer arrays
• #15184: BUG: use tmp dir and check version for cython test (#15170)
• #15220: BUG: distutils: fix msvc+gfortran openblas handling corner case
• #15221: BUG: remove -std=c99 for c++ compilation (#15194)
• #15222: MAINT: unskip test on win32
• #15223: TST: add BLAS ILP64 run in Travis & Azure
• #15245: MAINT: only add –std=c99 where needed
• #15246: BUG: lib: Fix handling of integer arrays by gradient.
• #15247: MAINT: Do not use private Python function in testing
• #15250: REL: Prepare for the NumPy 1.18.1 release.

360 15. Release notes

https://github.com/numpy/numpy/pull/15158
https://github.com/numpy/numpy/pull/15159
https://github.com/numpy/numpy/pull/15161
https://github.com/numpy/numpy/pull/15176
https://github.com/numpy/numpy/pull/15184
https://github.com/numpy/numpy/pull/15220
https://github.com/numpy/numpy/pull/15221
https://github.com/numpy/numpy/pull/15222
https://github.com/numpy/numpy/pull/15223
https://github.com/numpy/numpy/pull/15245
https://github.com/numpy/numpy/pull/15246
https://github.com/numpy/numpy/pull/15247
https://github.com/numpy/numpy/pull/15250

NumPy User Guide, Release 1.22.0

15.23 NumPy 1.18.0 Release Notes

In addition to the usual bug fixes, this NumPy release cleans up and documents the new random C-API, expires a large
number of old deprecations, and improves the appearance of the documentation. The Python versions supported are
3.5-3.8. This is the last NumPy release series that will support Python 3.5.
Downstream developers should use Cython >= 0.29.14 for Python 3.8 support and OpenBLAS >= 3.7 to avoid problems
on the Skylake architecture.

15.23.1 Highlights

• The C-API for numpy.random has been defined and documented.
• Basic infrastructure for linking with 64 bit BLAS and LAPACK libraries.
• Many documentation improvements.

15.23.2 New functions

Multivariate hypergeometric distribution added to numpy.random

The method multivariate_hypergeometric has been added to the class numpy.random.Generator.
This method generates random variates from the multivariate hypergeometric probability distribution. (gh-13794)

15.23.3 Deprecations

np.fromfile and np.fromstring will error on bad data

In future numpy releases, the functions np.fromfile and np.fromstring will throw an error when parsing bad
data. This will now give a DeprecationWarning where previously partial or even invalid data was silently returned.
This deprecation also affects the C defined functions PyArray_FromString and PyArray_FromFile (gh-13605)

Deprecate non-scalar arrays as fill values in ma.fill_value

Setting a MaskedArray.fill_value to a non-scalar array is deprecated since the logic to broadcast the fill value
to the array is fragile, especially when slicing. (gh-13698)

Deprecate PyArray_As1D, PyArray_As2D

PyArray_As1D, PyArray_As2D are deprecated, use PyArray_AsCArray instead (gh-14036)

15.23. NumPy 1.18.0 Release Notes 361

https://github.com/numpy/numpy/pull/13794
https://github.com/numpy/numpy/pull/13605
https://github.com/numpy/numpy/pull/13698
https://github.com/numpy/numpy/pull/14036

NumPy User Guide, Release 1.22.0

Deprecate np.alen

np.alen was deprecated. Use len instead. (gh-14181)

Deprecate the financial functions

In accordance with NEP-32, the financial functions fv ipmt, irr, mirr, nper, npv, pmt, ppmt, pv and rate are
deprecated, and will be removed from NumPy 1.20.The replacement for these functions is the Python package numpy-
financial. (gh-14720)

The axis argument to numpy.ma.mask_cols and numpy.ma.mask_row is deprecated

This argument was always ignored. (gh-14996)

15.23.4 Expired deprecations

• PyArray_As1D and PyArray_As2D have been removed in favor of PyArray_AsCArray (gh-14036)
• np.rank has been removed. This was deprecated in NumPy 1.10 and has been replaced by np.ndim. (gh-
14039)

• The deprecation of expand_dims out-of-range axes in 1.13.0 has expired. (gh-14051)
• PyArray_FromDimsAndDataAndDescr and PyArray_FromDims have been removed (they will always
raise an error). Use PyArray_NewFromDescr and PyArray_SimpleNew instead. (gh-14100)

• numeric.loads, numeric.load, np.ma.dump, np.ma.dumps, np.ma.load, np.ma.loads are
removed, use pickle methods instead (gh-14256)

• arrayprint.FloatFormat, arrayprint.LongFloatFormat has been removed, use
FloatingFormat instead

• arrayprint.ComplexFormat, arrayprint.LongComplexFormat has been removed, use
ComplexFloatingFormat instead

• arrayprint.StructureFormat has been removed, use StructureVoidFormat instead (gh-14259)
• np.testing.rand has been removed. This was deprecated in NumPy 1.11 and has been replaced by np.
random.rand. (gh-14325)

• Class SafeEval in numpy/lib/utils.py has been removed. This was deprecated in NumPy 1.10. Use
np.safe_eval instead. (gh-14335)

• Remove deprecated support for boolean and empty condition lists in np.select (gh-14583)
• Array order only accepts ‘C’, ‘F’, ‘A’, and ‘K’. More permissive options were deprecated in NumPy 1.11. (gh-14596)
• np.linspace parameter num must be an integer. Deprecated in NumPy 1.12. (gh-14620)
• UFuncs with multiple outputs must use a tuple for the out kwarg. This finishes a deprecation started in NumPy
1.10. (gh-14682)

The files numpy/testing/decorators.py, numpy/testing/noseclasses.py and numpy/
testing/nosetester.py have been removed. They were never meant to be public (all relevant objects are
present in the numpy.testing namespace), and importing them has given a deprecation warning since NumPy
1.15.0 (gh-14567)

362 15. Release notes

https://github.com/numpy/numpy/pull/14181
https://numpy.org/neps/nep-0032-remove-financial-functions.html
https://pypi.org/project/numpy-financial
https://pypi.org/project/numpy-financial
https://github.com/numpy/numpy/pull/14720
https://github.com/numpy/numpy/pull/14996
https://github.com/numpy/numpy/pull/14036
https://github.com/numpy/numpy/pull/14039
https://github.com/numpy/numpy/pull/14039
https://github.com/numpy/numpy/pull/14051
https://github.com/numpy/numpy/pull/14100
https://github.com/numpy/numpy/pull/14256
https://github.com/numpy/numpy/pull/14259
https://github.com/numpy/numpy/pull/14325
https://github.com/numpy/numpy/pull/14335
https://github.com/numpy/numpy/pull/14583
https://github.com/numpy/numpy/pull/14596
https://github.com/numpy/numpy/pull/14620
https://github.com/numpy/numpy/pull/14682
https://github.com/numpy/numpy/pull/14567

NumPy User Guide, Release 1.22.0

15.23.5 Compatibility notes

numpy.lib.recfunctions.drop_fields can no longer return None

If drop_fields is used to drop all fields, previously the array would be completely discarded and None returned. Now
it returns an array of the same shape as the input, but with no fields. The old behavior can be retained with:

dropped_arr = drop_fields(arr, ['a', 'b'])
if dropped_arr.dtype.names == ():

dropped_arr = None

converting the empty recarray to None (gh-14510)

numpy.argmin/argmax/min/max returns NaT if it exists in array

numpy.argmin, numpy.argmax, numpy.min, and numpy.max will return NaT if it exists in the array. (gh-
14717)

np.can_cast(np.uint64, np.timedelta64, casting='safe') is now False

Previously this was True - however, this was inconsistent with uint64 not being safely castable to int64, and resulting
in strange type resolution.
If this impacts your code, cast uint64 to int64 first. (gh-14718)

Changed random variate stream from numpy.random.Generator.integers

There was a bug in numpy.random.Generator.integers that caused biased sampling of 8 and 16 bit integer
types. Fixing that bug has changed the output stream from what it was in previous releases. (gh-14777)

Add more ufunc loops for datetime64, timedelta64

np.datetime('NaT') should behave more like float('Nan'). Add needed infrastructure so np.isinf(a)
and np.isnan(a) will run on datetime64 and timedelta64 dtypes. Also added specific loops for numpy.
fmin and numpy.fmax that mask NaT. This may require adjustment to user- facing code. Specifically, code that either
disallowed the calls to numpy.isinf or numpy.isnan or checked that they raised an exception will require adap-
tation, and code that mistakenly called numpy.fmax and numpy.fmin instead of numpy.maximum or numpy.
minimum respectively will require adjustment. This also affects numpy.nanmax and numpy.nanmin. (gh-14841)

Moved modules in numpy.random

As part of the API cleanup, the submodules in numpy.random bit_generator, philox, pcg64, sfc64,
``common, generator, and bounded_integers were moved to _bit_generator, _philox, _pcg64,
_sfc64, ``_common, _generator, and _bounded_integers respectively to indicate that they are not part
of the public interface. (gh-14608)

15.23. NumPy 1.18.0 Release Notes 363

https://github.com/numpy/numpy/pull/14510
https://github.com/numpy/numpy/pull/14717
https://github.com/numpy/numpy/pull/14717
https://github.com/numpy/numpy/pull/14718
https://github.com/numpy/numpy/pull/14777
https://github.com/numpy/numpy/pull/14841
https://github.com/numpy/numpy/pull/14608

NumPy User Guide, Release 1.22.0

15.23.6 C API changes

PyDataType_ISUNSIZED(descr) now returns False for structured datatypes

Previously this returned True for any datatype of itemsize 0, but now this returns false for the non-flexible datatype with
itemsize 0, np.dtype([]). (gh-14393)

15.23.7 New Features

Add our own *.pxd cython import file

Added a numpy/__init__.pxd file. It will be used for cimport numpy (gh-12284)

A tuple of axes can now be input to expand_dims

The numpy.expand_dims axis keyword can now accept a tuple of axes. Previously, axis was required to be an
integer. (gh-14051)

Support for 64-bit OpenBLAS

Added support for 64-bit (ILP64) OpenBLAS. See site.cfg.example for details. (gh-15012)

Add --f2cmap option to F2PY

Allow specifying a file to load Fortran-to-C type map customizations from. (gh-15113)

15.23.8 Improvements

Different C numeric types of the same size have unique names

On any given platform, two of np.intc, np.int_, and np.longlong would previously appear indistinguishable
through their repr, despite their corresponding dtype having different properties. A similar problem existed for the
unsigned counterparts to these types, and on some platforms for np.double and np.longdouble
These types now always print with a unique __name__. (gh-10151)

argwhere now produces a consistent result on 0d arrays

On N-d arrays, numpy.argwhere now always produces an array of shape (n_non_zero, arr.ndim), even
when arr.ndim == 0. Previously, the last axis would have a dimension of 1 in this case. (gh-13610)

364 15. Release notes

https://github.com/numpy/numpy/pull/14393
https://github.com/numpy/numpy/pull/12284
https://github.com/numpy/numpy/pull/14051
https://github.com/numpy/numpy/pull/15012
https://github.com/numpy/numpy/pull/15113
https://github.com/numpy/numpy/pull/10151
https://github.com/numpy/numpy/pull/13610

NumPy User Guide, Release 1.22.0

Add axis argument for random.permutation and random.shuffle

Previously the random.permutation and random.shuffle functions can only shuffle an array along the first
axis; they now have a new argument axis which allows shuffle along a specified axis. (gh-13829)

method keyword argument for np.random.multivariate_normal

A method keyword argument is now available for np.random.multivariate_normal with possible val-
ues {'svd', 'eigh', 'cholesky'}. To use it, write np.random.multivariate_normal(...,
method=<method>). (gh-14197)

Add complex number support for numpy.fromstring

Now numpy.fromstring can read complex numbers. (gh-14227)

numpy.unique has consistent axes order when axis is not None

Using moveaxis instead of swapaxes in numpy.unique, so that the ordering of axes except the axis in arguments
will not be broken. (gh-14255)

numpy.matmul with boolean output now converts to boolean values

Calling numpy.matmul where the output is a boolean array would fill the array with uint8 equivalents of the result,
rather than 0/1. Now it forces the output to 0 or 1 (NPY_TRUE or NPY_FALSE). (gh-14464)

numpy.random.randint produced incorrect value when the range was 2**32

The implementation introduced in 1.17.0 had an incorrect check when determining whether to use the 32-bit path or the
full 64-bit path that incorrectly redirected random integer generation with a high - low range of 2**32 to the 64-bit
generator. (gh-14501)

Add complex number support for numpy.fromfile

Now numpy.fromfile can read complex numbers. (gh-14730)

std=c99 added if compiler is named gcc

GCC before version 5 requires the -std=c99 command line argument. Newer compilers automatically turn on C99
mode. The compiler setup code will automatically add the code if the compiler name has gcc in it. (gh-14771)

15.23. NumPy 1.18.0 Release Notes 365

https://github.com/numpy/numpy/pull/13829
https://github.com/numpy/numpy/pull/14197
https://github.com/numpy/numpy/pull/14227
https://github.com/numpy/numpy/pull/14255
https://github.com/numpy/numpy/pull/14464
https://github.com/numpy/numpy/pull/14501
https://github.com/numpy/numpy/pull/14730
https://github.com/numpy/numpy/pull/14771

NumPy User Guide, Release 1.22.0

15.23.9 Changes

NaT now sorts to the end of arrays

NaT is now effectively treated as the largest integer for sorting purposes, so that it sorts to the end of arrays. This change
is for consistency with NaN sorting behavior. (gh-12658) (gh-15068)

Incorrect threshold in np.set_printoptions raises TypeError or ValueError

Previously an incorrect threshold raised ValueError; it now raises TypeError for non-numeric types and
ValueError for nan values. (gh-13899)

Warn when saving a dtype with metadata

A UserWarning will be emitted when saving an array via numpy.save with metadata. Saving such an array may
not preserve metadata, and if metadata is preserved, loading it will cause a ValueError. This shortcoming in save and
load will be addressed in a future release. (gh-14142)

numpy.distutils append behavior changed for LDFLAGS and similar

numpy.distutils has always overridden rather than appended to LDFLAGS and other similar such environment
variables for compiling Fortran extensions. Now the default behavior has changed to appending - which is the expected
behavior in most situations. To preserve the old (overwriting) behavior, set the NPY_DISTUTILS_APPEND_FLAGS
environment variable to 0. This applies to: LDFLAGS, F77FLAGS, F90FLAGS, FREEFLAGS, FOPT, FDEBUG, and
FFLAGS. NumPy 1.16 and 1.17 gave build warnings in situations where this change in behavior would have affected the
compile flags used. (gh-14248)

Remove numpy.random.entropy without a deprecation

numpy.random.entropy was added to the numpy.random namespace in 1.17.0. It was meant to be a private
c-extension module, but was exposed as public. It has been replaced by numpy.random.SeedSequence so the
module was completely removed. (gh-14498)

Add options to quiet build configuration and build with -Werror

Added two new configuration options. During the build_src subcommand, as part of configuring NumPy, the files
_numpyconfig.h and config.h are created by probing support for various runtime functions and routines. Pre-
viously, the very verbose compiler output during this stage clouded more important information. By default the output
is silenced. Running runtests.py --debug-info will add --verbose-cfg to the build_src subcom-
mand,which will restore the previous behaviour.
Adding CFLAGS=-Werror to turn warnings into errors would trigger errors during the configuration. Now
runtests.py --warn-error will add --warn-error to the build subcommand, which will percolate to
the build_ext and build_lib subcommands. This will add the compiler flag to those stages and turn compiler
warnings into errors while actually building NumPy itself, avoiding the build_src subcommand compiler calls.
(gh-14527) (gh-14518)

366 15. Release notes

https://github.com/numpy/numpy/pull/12658
https://github.com/numpy/numpy/pull/15068
https://github.com/numpy/numpy/pull/13899
https://github.com/numpy/numpy/pull/14142
https://github.com/numpy/numpy/pull/14248
https://github.com/numpy/numpy/pull/14498
https://github.com/numpy/numpy/pull/14527
https://github.com/numpy/numpy/pull/14518

NumPy User Guide, Release 1.22.0

15.24 NumPy 1.17.5 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.4 along with some build improvements. The Python
versions supported in this release are 3.5-3.8.
Downstream developers should use Cython >= 0.29.14 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on
the Skylake architecture.
It is recommended that developers interested in the new random bit generators upgrade to the NumPy 1.18.x series, as it
has updated documentation and many small improvements.

15.24.1 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Eric Wieser
• Ilhan Polat
• Matti Picus
• Michael Hudson-Doyle
• Ralf Gommers

15.24.2 Pull requests merged

A total of 8 pull requests were merged for this release.
• #14593: MAINT: backport Cython API cleanup to 1.17.x, remove docs
• #14937: BUG: fix integer size confusion in handling array’s ndmin argument
• #14939: BUILD: remove SSE2 flag from numpy.random builds
• #14993: MAINT: Added Python3.8 branch to dll lib discovery
• #15038: BUG: Fix refcounting in ufunc object loops
• #15067: BUG: Exceptions tracebacks are dropped
• #15175: ENH: Backport improvements to testing functions.
• #15213: REL: Prepare for the NumPy 1.17.5 release.

15.25 NumPy 1.17.4 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.3 along with some build improvements. The Python
versions supported in this release are 3.5-3.8.
Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on
the Skylake architecture.

15.24. NumPy 1.17.5 Release Notes 367

https://github.com/numpy/numpy/pull/14593
https://github.com/numpy/numpy/pull/14937
https://github.com/numpy/numpy/pull/14939
https://github.com/numpy/numpy/pull/14993
https://github.com/numpy/numpy/pull/15038
https://github.com/numpy/numpy/pull/15067
https://github.com/numpy/numpy/pull/15175
https://github.com/numpy/numpy/pull/15213

NumPy User Guide, Release 1.22.0

15.25.1 Highlights

• Fixed random.random_integers biased generation of 8 and 16 bit integers.
• Fixed np.einsum regression on Power9 and z/Linux.
• Fixed histogram problem with signed integer arrays.

15.25.2 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Chris Burr +
• Matti Picus
• Qiming Sun +
• Warren Weckesser

15.25.3 Pull requests merged

A total of 8 pull requests were merged for this release.
• #14758: BLD: declare support for python 3.8
• #14781: BUG: random: biased samples from integers() with 8 or 16 bit…
• #14851: BUG: Fix _ctypes class circular reference. (#13808)
• #14852: BLD: add ‘apt update’ to shippable
• #14855: BUG: Fix np.einsum errors on Power9 Linux and z/Linux
• #14857: BUG: lib: Fix histogram problem with signed integer arrays.
• #14858: BLD: Prevent -flto from optimising long double representation…
• #14866: MAINT: move buffer.h -> npy_buffer.h to avoid conflicts

15.26 NumPy 1.17.3 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.2 along with a some documentation improvements. The
Python versions supported in this release are 3.5-3.8.
Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on
the Skylake architecture.

368 15. Release notes

https://github.com/numpy/numpy/pull/14758
https://github.com/numpy/numpy/pull/14781
https://github.com/numpy/numpy/pull/14851
https://github.com/numpy/numpy/pull/14852
https://github.com/numpy/numpy/pull/14855
https://github.com/numpy/numpy/pull/14857
https://github.com/numpy/numpy/pull/14858
https://github.com/numpy/numpy/pull/14866

NumPy User Guide, Release 1.22.0

15.26.1 Highlights

• Wheels for Python 3.8
• Boolean matmul fixed to use booleans instead of integers.

15.26.2 Compatibility notes

• The seldom used PyArray_DescrCheck macro has been changed/fixed.

15.26.3 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Kevin Sheppard
• Matti Picus
• Ralf Gommers
• Sebastian Berg
• Warren Weckesser

15.26.4 Pull requests merged

A total of 12 pull requests were merged for this release.
• #14456: MAINT: clean up pocketfft modules inside numpy.fft namespace.
• #14463: BUG: random.hypergeometic assumes npy_long is npy_int64, hung…
• #14502: BUG: random: Revert gh-14458 and refix gh-14557.
• #14504: BUG: add a specialized loop for boolean matmul.
• #14506: MAINT: Update pytest version for Python 3.8
• #14512: DOC: random: fix doc linking, was referencing private submodules.
• #14513: BUG,MAINT: Some fixes and minor cleanup based on clang analysis
• #14515: BUG: Fix randint when range is 2**32
• #14519: MAINT: remove the entropy c-extension module
• #14563: DOC: remove note about Pocketfft license file (non-existing here).
• #14578: BUG: random: Create a legacy implementation of random.binomial.
• #14687: BUG: properly define PyArray_DescrCheck

15.26. NumPy 1.17.3 Release Notes 369

https://github.com/numpy/numpy/pull/14456
https://github.com/numpy/numpy/pull/14463
https://github.com/numpy/numpy/pull/14502
https://github.com/numpy/numpy/pull/14504
https://github.com/numpy/numpy/pull/14506
https://github.com/numpy/numpy/pull/14512
https://github.com/numpy/numpy/pull/14513
https://github.com/numpy/numpy/pull/14515
https://github.com/numpy/numpy/pull/14519
https://github.com/numpy/numpy/pull/14563
https://github.com/numpy/numpy/pull/14578
https://github.com/numpy/numpy/pull/14687

NumPy User Guide, Release 1.22.0

15.27 NumPy 1.17.2 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.1 along with a some documentation improvements. The
most important fix is for lexsort when the keys are of type (u)int8 or (u)int16. If you are currently using 1.17 you should
upgrade.
The Python versions supported in this release are 3.5-3.7, Python 2.7 has been dropped. Python 3.8b4 should work with
the released source packages, but there are no future guarantees.
Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors
on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development branch in order to
avoid those errors.

15.27.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• CakeWithSteak +
• Charles Harris
• Dan Allan
• Hameer Abbasi
• Lars Grueter
• Matti Picus
• Sebastian Berg

15.27.2 Pull requests merged

A total of 8 pull requests were merged for this release.
• #14418: BUG: Fix aradixsort indirect indexing.
• #14420: DOC: Fix a minor typo in dispatch documentation.
• #14421: BUG: test, fix regression in converting to ctypes
• #14430: BUG: Do not show Override module in private error classes.
• #14432: BUG: Fixed maximum relative error reporting in assert_allclose.
• #14433: BUG: Fix uint-overflow if padding with linear_ramp and negative…
• #14436: BUG: Update 1.17.x with 1.18.0-dev pocketfft.py.
• #14446: REL: Prepare for NumPy 1.17.2 release.

370 15. Release notes

https://github.com/numpy/numpy/pull/14418
https://github.com/numpy/numpy/pull/14420
https://github.com/numpy/numpy/pull/14421
https://github.com/numpy/numpy/pull/14430
https://github.com/numpy/numpy/pull/14432
https://github.com/numpy/numpy/pull/14433
https://github.com/numpy/numpy/pull/14436
https://github.com/numpy/numpy/pull/14446

NumPy User Guide, Release 1.22.0

15.28 NumPy 1.17.1 Release Notes

This release contains a number of fixes for bugs reported against NumPy 1.17.0 along with a few documentation and build
improvements. The Python versions supported are 3.5-3.7, note that Python 2.7 has been dropped. Python 3.8b3 should
work with the released source packages, but there are no future guarantees.
Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid problems
on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development branch in order to
avoid those problems.

15.28.1 Contributors

A total of 17 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Alexander Jung +
• Allan Haldane
• Charles Harris
• Eric Wieser
• Giuseppe Cuccu +
• Hiroyuki V. Yamazaki
• Jérémie du Boisberranger
• Kmol Yuan +
• Matti Picus
• Max Bolingbroke +
• Maxwell Aladago +
• Oleksandr Pavlyk
• Peter Andreas Entschev
• Sergei Lebedev
• Seth Troisi +
• Vladimir Pershin +
• Warren Weckesser

15.28.2 Pull requests merged

A total of 24 pull requests were merged for this release.
• #14156: TST: Allow fuss in testing strided/non-strided exp/log loops
• #14157: BUG: avx2_scalef_ps must be static
• #14158: BUG: Remove stray print that causes a SystemError on python 3.7.
• #14159: BUG: Fix DeprecationWarning in python 3.8.
• #14160: BLD: Add missing gcd/lcm definitions to npy_math.h
• #14161: DOC, BUILD: cleanups and fix (again) ‘build dist’

15.28. NumPy 1.17.1 Release Notes 371

https://github.com/numpy/numpy/pull/14156
https://github.com/numpy/numpy/pull/14157
https://github.com/numpy/numpy/pull/14158
https://github.com/numpy/numpy/pull/14159
https://github.com/numpy/numpy/pull/14160
https://github.com/numpy/numpy/pull/14161

NumPy User Guide, Release 1.22.0

• #14166: TST: Add 3.8-dev to travisCI testing.
• #14194: BUG: Remove the broken clip wrapper (Backport)
• #14198: DOC: Fix hermitian argument docs in svd.
• #14199: MAINT: Workaround for Intel compiler bug leading to failing test
• #14200: TST: Clean up of test_pocketfft.py
• #14201: BUG: Make advanced indexing result on read-only subclass writeable…
• #14236: BUG: Fixed default BitGenerator name
• #14237: ENH: add c-imported modules for freeze analysis in np.random
• #14296: TST: Pin pytest version to 5.0.1
• #14301: BUG: Fix leak in the f2py-generated module init and PyMem_Del…
• #14302: BUG: Fix formatting error in exception message
• #14307: MAINT: random: Match type of SeedSequence.pool_size to DEFAULT_POOL_SIZE.
• #14308: BUG: Fix numpy.random bug in platform detection
• #14309: ENH: Enable huge pages in all Linux builds
• #14330: BUG: Fix segfault in random.permutation(x) when x is a string.
• #14338: BUG: don’t fail when lexsorting some empty arrays (#14228)
• #14339: BUG: Fix misuse of .names and .fields in various places (backport…
• #14345: BUG: fix behavior of structured_to_unstructured on non-trivial…
• #14350: REL: Prepare 1.17.1 release

15.29 NumPy 1.17.0 Release Notes

This NumPy release contains a number of new features that should substantially improve its performance and usefulness,
see Highlights below for a summary. The Python versions supported are 3.5-3.7, note that Python 2.7 has been dropped.
Python 3.8b2 should work with the released source packages, but there are no future guarantees.
Downstream developers should use Cython >= 0.29.11 for Python 3.8 support and OpenBLAS >= 3.7 (not currently out)
to avoid problems on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development
branch in order to avoid those problems.

15.29.1 Highlights

• A new extensible random module along with four selectable random number generators and improved seeding
designed for use in parallel processes has been added. The currently available bit generators areMT19937, PCG64,
Philox, and SFC64. See below under New Features.

• NumPy’s FFT implementation was changed from fftpack to pocketfft, resulting in faster, more accurate transforms
and better handling of datasets of prime length. See below under Improvements.

• New radix sort and timsort sorting methods. It is currently not possible to choose which will be used. They are
hardwired to the datatype and used when either stable or mergesort is passed as the method. See below
under Improvements.

• Overriding numpy functions is now possible by default, see __array_function__ below.

372 15. Release notes

https://github.com/numpy/numpy/pull/14166
https://github.com/numpy/numpy/pull/14194
https://github.com/numpy/numpy/pull/14198
https://github.com/numpy/numpy/pull/14199
https://github.com/numpy/numpy/pull/14200
https://github.com/numpy/numpy/pull/14201
https://github.com/numpy/numpy/pull/14236
https://github.com/numpy/numpy/pull/14237
https://github.com/numpy/numpy/pull/14296
https://github.com/numpy/numpy/pull/14301
https://github.com/numpy/numpy/pull/14302
https://github.com/numpy/numpy/pull/14307
https://github.com/numpy/numpy/pull/14308
https://github.com/numpy/numpy/pull/14309
https://github.com/numpy/numpy/pull/14330
https://github.com/numpy/numpy/pull/14338
https://github.com/numpy/numpy/pull/14339
https://github.com/numpy/numpy/pull/14345
https://github.com/numpy/numpy/pull/14350

NumPy User Guide, Release 1.22.0

15.29.2 New functions

• numpy.errstate is now also a function decorator

15.29.3 Deprecations

numpy.polynomial functions warn when passed float in place of int

Previously functions in this module would accept float values provided they were integral (1.0, 2.0, etc). For con-
sistency with the rest of numpy, doing so is now deprecated, and in future will raise a TypeError.
Similarly, passing a float like 0.5 in place of an integer will now raise a TypeError instead of the previous
ValueError.

Deprecate numpy.distutils.exec_command and temp_file_name

The internal use of these functions has been refactored and there are better alternatives. Replace exec_command with
subprocess.Popen and temp_file_name with tempfile.mkstemp.

Writeable flag of C-API wrapped arrays

When an array is created from the C-API to wrap a pointer to data, the only indication we have of the read-write nature
of the data is the writeable flag set during creation. It is dangerous to force the flag to writeable. In the future it will
not be possible to switch the writeable flag to True from python. This deprecation should not affect many users since
arrays created in such a manner are very rare in practice and only available through the NumPy C-API.

numpy.nonzero should no longer be called on 0d arrays

The behavior of numpy.nonzero on 0d arrays was surprising, making uses of it almost always incorrect. If the old
behavior was intended, it can be preserved without a warning by using nonzero(atleast_1d(arr)) instead of
nonzero(arr). In a future release, it is most likely this will raise a ValueError.

Writing to the result of numpy.broadcast_arrays will warn

Commonly numpy.broadcast_arrays returns a writeable array with internal overlap, making it unsafe to write to.
A future version will set the writeable flag to False, and require users to manually set it to True if they are sure
that is what they want to do. Now writing to it will emit a deprecation warning with instructions to set the writeable
flag True. Note that if one were to inspect the flag before setting it, one would find it would already be True. Explicitly
setting it, though, as one will need to do in future versions, clears an internal flag that is used to produce the deprecation
warning. To help alleviate confusion, an additional FutureWarning will be emitted when accessing the writeable flag
state to clarify the contradiction.
Note that for the C-side buffer protocol such an array will return a readonly buffer immediately unless a writable buffer
is requested. If a writeable buffer is requested a warning will be given. When using cython, the const qualifier should
be used with such arrays to avoid the warning (e.g. cdef const double[::1] view).

15.29. NumPy 1.17.0 Release Notes 373

https://docs.python.org/dev/library/subprocess.html#subprocess.Popen
https://docs.python.org/dev/library/tempfile.html#tempfile.mkstemp

NumPy User Guide, Release 1.22.0

15.29.4 Future Changes

Shape-1 fields in dtypes won’t be collapsed to scalars in a future version

Currently, a field specified as [(name, dtype, 1)] or "1type" is interpreted as a scalar field (i.e., the same as
[(name, dtype)] or [(name, dtype, ()]). This now raises a FutureWarning; in a future version, it will be
interpreted as a shape-(1,) field, i.e. the same as [(name, dtype, (1,))] or "(1,)type" (consistently with
[(name, dtype, n)] / "ntype" with n>1, which is already equivalent to [(name, dtype, (n,)] / "(n,
)type").

15.29.5 Compatibility notes

float16 subnormal rounding

Casting from a different floating point precision to float16 used incorrect rounding in some edge cases. This means
in rare cases, subnormal results will now be rounded up instead of down, changing the last bit (ULP) of the result.

Signed zero when using divmod

Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero when using the divmod and
floor_divide functions when the result was zero. For example:

>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])

With this release, the result is correctly returned as a positively signed zero:

>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

MaskedArray.mask now returns a view of the mask, not the mask itself

Returning the mask itself was unsafe, as it could be reshaped in place which would violate expectations of the masked
array code. The behavior of mask is now consistent with data, which also returns a view.
The underlying mask can still be accessed with ._mask if it is needed. Tests that contain assert x.mask is not
y.mask or similar will need to be updated.

Do not lookup __buffer__ attribute in numpy.frombuffer

Looking up __buffer__ attribute in numpy.frombuffer was undocumented and non-functional. This code was
removed. If needed, use frombuffer(memoryview(obj), ...) instead.

374 15. Release notes

NumPy User Guide, Release 1.22.0

out is buffered for memory overlaps in take, choose, put

If the out argument to these functions is provided and has memory overlap with the other arguments, it is now buffered
to avoid order-dependent behavior.

Unpickling while loading requires explicit opt-in

The functions load, and lib.format.read_array take an allow_pickle keyword which now defaults to
False in response to CVE-2019-6446.

Potential changes to the random stream in old random module

Due to bugs in the application of log to random floating point numbers, the stream may change when sampling from
beta, binomial, laplace, logistic, logseries or multinomial if a 0 is generated in the underlying
MT19937 random stream. There is a 1 in 1053 chance of this occurring, so the probability that the stream changes for
any given seed is extremely small. If a 0 is encountered in the underlying generator, then the incorrect value produced
(either numpy.inf or numpy.nan) is now dropped.

i0 now always returns a result with the same shape as the input

Previously, the output was squeezed, such that, e.g., input with just a single element would lead to an array scalar being
returned, and inputs with shapes such as (10, 1) would yield results that would not broadcast against the input.
Note that we generally recommend the SciPy implementation over the numpy one: it is a proper ufunc written in C, and
more than an order of magnitude faster.

can_cast no longer assumes all unsafe casting is allowed

Previously, can_cast returned True for almost all inputs for casting='unsafe', even for cases where casting was
not possible, such as from a structured dtype to a regular one. This has been fixed, making it more consistent with actual
casting using, e.g., the .astype method.

ndarray.flags.writeable can be switched to true slightly more often

In rare cases, it was not possible to switch an array from not writeable to writeable, although a base array is writeable.
This can happen if an intermediate ndarray.base object is writeable. Previously, only the deepest base object was
considered for this decision. However, in rare cases this object does not have the necessary information. In that case
switching to writeable was never allowed. This has now been fixed.

15.29.6 C API changes

dimension or stride input arguments are now passed by npy_intp const*

Previously these function arguments were declared as the more strict npy_intp*, which prevented the caller passing
constant data. This change is backwards compatible, but now allows code like:

npy_intp const fixed_dims[] = {1, 2, 3};
// no longer complains that the const-qualifier is discarded
npy_intp size = PyArray_MultiplyList(fixed_dims, 3);

15.29. NumPy 1.17.0 Release Notes 375

https://nvd.nist.gov/vuln/detail/CVE-2019-6446

NumPy User Guide, Release 1.22.0

15.29.7 New Features

New extensible numpy.random module with selectable random number generators

A new extensible numpy.randommodule along with four selectable random number generators and improved seeding
designed for use in parallel processes has been added. The currently available Bit Generators are MT19937, PCG64,
Philox, and SFC64. PCG64 is the new default while MT19937 is retained for backwards compatibility. Note that the
legacy randommodule is unchanged and is now frozen, your current results will not change. More information is available
in the API change description and in the top-level view documentation.

libFLAME

Support for buildingNumPywith the libFLAME linear algebra package as the LAPACK, implementation, see libFLAME
for details.

User-defined BLAS detection order

distutils now uses an environment variable, comma-separated and case insensitive, to determine the detection or-
der for BLAS libraries. By default NPY_BLAS_ORDER=mkl,blis,openblas,atlas,accelerate,blas.
However, to force the use of OpenBLAS simply do:

NPY_BLAS_ORDER=openblas python setup.py build

which forces the use of OpenBLAS. This may be helpful for users which have a MKL installation but wishes to try out
different implementations.

User-defined LAPACK detection order

numpy.distutils now uses an environment variable, comma-separated and case insensitive, to determine the
detection order for LAPACK libraries. By default NPY_LAPACK_ORDER=mkl,openblas,flame,atlas,
accelerate,lapack. However, to force the use of OpenBLAS simply do:

NPY_LAPACK_ORDER=openblas python setup.py build

which forces the use of OpenBLAS. This may be helpful for users which have a MKL installation but wishes to try out
different implementations.

ufunc.reduce and related functions now accept a where mask

ufunc.reduce, sum, prod, min, max all now accept a where keyword argument, which can be used to tell which
elements to include in the reduction. For reductions that do not have an identity, it is necessary to also pass in an initial value
(e.g., initial=np.inf for min). For instance, the equivalent of nansum would be np.sum(a, where=~np.
isnan(a)).

376 15. Release notes

https://www.cs.utexas.edu/~flame/web/libFLAME.html
https://docs.python.org/dev/library/functions.html#min
https://docs.python.org/dev/library/functions.html#max
https://docs.python.org/dev/library/functions.html#min

NumPy User Guide, Release 1.22.0

Timsort and radix sort have replaced mergesort for stable sorting

Both radix sort and timsort have been implemented and are now used in place of mergesort. Due to the need to maintain
backward compatibility, the sorting kind options "stable" and "mergesort" have been made aliases of each
other with the actual sort implementation depending on the array type. Radix sort is used for small integer types of 16
bits or less and timsort for the remaining types. Timsort features improved performance on data containing already or
nearly sorted data and performs like mergesort on random data and requiresO(n/2)working space. Details of the timsort
algorithm can be found at CPython listsort.txt.

packbits and unpackbits accept an order keyword

The order keyword defaults to big, and will order the bits accordingly. For 'order=big' 3 will become [0, 0,
0, 0, 0, 0, 1, 1], and [1, 1, 0, 0, 0, 0, 0, 0] for order=little

unpackbits now accepts a count parameter

count allows subsetting the number of bits that will be unpacked up-front, rather than reshaping and subsetting later,
making the packbits operation invertible, and the unpacking less wasteful. Counts larger than the number of available
bits add zero padding. Negative counts trim bits off the end instead of counting from the beginning. None counts
implement the existing behavior of unpacking everything.

linalg.svd and linalg.pinv can be faster on hermitian inputs

These functions now accept a hermitian argument, matching the one added to linalg.matrix_rank in 1.14.0.

divmod operation is now supported for two timedelta64 operands

The divmod operator now handles two timedelta64 operands, with type signature mm->qm.

fromfile now takes an offset argument

This function now takes an offset keyword argument for binary files, which specifics the offset (in bytes) from the file’s
current position. Defaults to 0.

New mode “empty” for pad

This mode pads an array to a desired shape without initializing the new entries.

empty_like and related functions now accept a shape argument

empty_like, full_like, ones_like and zeros_like now accept a shape keyword argument, which can be
used to create a new array as the prototype, overriding its shape as well. This is particularly useful when combined with
the __array_function__ protocol, allowing the creation of new arbitrary-shape arrays from NumPy-like libraries
when such an array is used as the prototype.

15.29. NumPy 1.17.0 Release Notes 377

https://github.com/python/cpython/blob/3.7/Objects/listsort.txt

NumPy User Guide, Release 1.22.0

Floating point scalars implement as_integer_ratio to match the builtin float

This returns a (numerator, denominator) pair, which can be used to construct a fractions.Fraction.

Structured dtype objects can be indexed with multiple fields names

arr.dtype[['a', 'b']] now returns a dtype that is equivalent to arr[['a', 'b']].dtype, for consistency
with arr.dtype['a'] == arr['a'].dtype.
Like the dtype of structured arrays indexed with a list of fields, this dtype has the same itemsize as the original, but
only keeps a subset of the fields.
This means that arr[['a', 'b']] and arr.view(arr.dtype[['a', 'b']]) are equivalent.

.npy files support unicode field names

A new format version of 3.0 has been introduced, which enables structured types with non-latin1 field names. This is
used automatically when needed.

15.29.8 Improvements

Array comparison assertions include maximum differences

Error messages from array comparison tests such as testing.assert_allclose now include “max absolute dif-
ference” and “max relative difference,” in addition to the previous “mismatch” percentage. This information makes it
easier to update absolute and relative error tolerances.

Replacement of the fftpack based fft module by the pocketfft library

Both implementations have the same ancestor (Fortran77 FFTPACK by Paul N. Swarztrauber), but pocketfft contains
additional modifications which improve both accuracy and performance in some circumstances. For FFT lengths contain-
ing large prime factors, pocketfft uses Bluestein’s algorithm, which maintains O(NlogN) run time complexity instead
of deteriorating towards O(N ∗N) for prime lengths. Also, accuracy for real valued FFTs with near prime lengths has
improved and is on par with complex valued FFTs.

Further improvements to ctypes support in numpy.ctypeslib

A new numpy.ctypeslib.as_ctypes_type function has been added, which can be used to converts a dtype
into a best-guess ctypes type. Thanks to this new function, numpy.ctypeslib.as_ctypes now supports a much
wider range of array types, including structures, booleans, and integers of non-native endianness.

378 15. Release notes

https://docs.python.org/dev/library/fractions.html#fractions.Fraction
https://docs.python.org/dev/library/ctypes.html#module-ctypes

NumPy User Guide, Release 1.22.0

numpy.errstate is now also a function decorator

Currently, if you have a function like:

def foo():
pass

and you want to wrap the whole thing in errstate, you have to rewrite it like so:

def foo():
with np.errstate(...):

pass

but with this change, you can do:

@np.errstate(...)
def foo():

pass

thereby saving a level of indentation

numpy.exp and numpy.log speed up for float32 implementation

float32 implementation of exp and log now benefit from AVX2/AVX512 instruction set which are detected during
runtime. exp has a max ulp error of 2.52 and log has a max ulp error or 3.83.

Improve performance of numpy.pad

The performance of the function has been improved for most cases by filling in a preallocated array with the desired
padded shape instead of using concatenation.

numpy.interp handles infinities more robustly

In some cases where interp would previously return nan, it now returns an appropriate infinity.

Pathlib support for fromfile, tofile and ndarray.dump

fromfile, ndarray.ndarray.tofile and ndarray.dump now support the pathlib.Path type for the file/fid
parameter.

Specialized isnan, isinf, and isfinite ufuncs for bool and int types

The boolean and integer types are incapable of storing nan and inf values, which allows us to provide specialized ufuncs
that are up to 250x faster than the previous approach.

15.29. NumPy 1.17.0 Release Notes 379

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy User Guide, Release 1.22.0

isfinite supports datetime64 and timedelta64 types

Previously, isfinite used to raise a TypeError on being used on these two types.

New keywords added to nan_to_num

nan_to_num now accepts keywords nan, posinf and neginf allowing the user to define the value to replace the
nan, positive and negative np.inf values respectively.

MemoryErrors caused by allocated overly large arrays are more descriptive

Often the cause of a MemoryError is incorrect broadcasting, which results in a very large and incorrect shape. The
message of the error now includes this shape to help diagnose the cause of failure.

floor, ceil, and trunc now respect builtin magic methods

These ufuncs now call the __floor__, __ceil__, and __trunc__ methods when called on object arrays, making
them compatible with decimal.Decimal and fractions.Fraction objects.

quantile now works on fraction.Fraction and decimal.Decimal objects

In general, this handles object arrays more gracefully, and avoids floating- point operations if exact arithmetic types are
used.

Support of object arrays in matmul

It is now possible to use matmul (or the @ operator) with object arrays. For instance, it is now possible to do:

from fractions import Fraction
a = np.array([[Fraction(1, 2), Fraction(1, 3)], [Fraction(1, 3), Fraction(1, 2)]])
b = a @ a

15.29.9 Changes

median and percentile family of functions no longer warn about nan

numpy.median, numpy.percentile, and numpy.quantile used to emit a RuntimeWarning when en-
countering an nan. Since they return the nan value, the warning is redundant and has been removed.

380 15. Release notes

https://docs.python.org/dev/library/decimal.html#decimal.Decimal
https://docs.python.org/dev/library/fractions.html#fractions.Fraction

NumPy User Guide, Release 1.22.0

timedelta64 % 0 behavior adjusted to return NaT

The modulus operation with two np.timedelta64 operands now returns NaT in the case of division by zero, rather
than returning zero

NumPy functions now always support overrides with __array_function__

NumPy now always checks the __array_function__ method to implement overrides of NumPy functions on non-
NumPy arrays, as described in NEP 18. The feature was available for testing with NumPy 1.16 if appropriate environment
variables are set, but is now always enabled.

lib.recfunctions.structured_to_unstructured does not squeeze single-field views

Previously structured_to_unstructured(arr[['a']]) would produce a squeezed result inconsistent with
structured_to_unstructured(arr[['a', b']]). This was accidental. The old behavior can be re-
tained with structured_to_unstructured(arr[['a']]).squeeze(axis=-1) or far more simply,
arr['a'].

clip now uses a ufunc under the hood

This means that registering clip functions for custom dtypes in C via descr->f->fastclip is deprecated - they
should use the ufunc registration mechanism instead, attaching to the np.core.umath.clip ufunc.
It also means that clip accepts where and casting arguments, and can be override with __array_ufunc__.
A consequence of this change is that some behaviors of the old clip have been deprecated:

• Passing nan to mean “do not clip” as one or both bounds. This didn’t work in all cases anyway, and can be better
handled by passing infinities of the appropriate sign.

• Using “unsafe” casting by default when an out argument is passed. Using casting="unsafe" explicitly will
silence this warning.

Additionally, there are some corner cases with behavior changes:
• Padding max < min has changed to be more consistent across dtypes, but should not be relied upon.
• Scalar min and max take part in promotion rules like they do in all other ufuncs.

__array_interface__ offset now works as documented

The interface may use an offset value that was mistakenly ignored.

Pickle protocol in savez set to 3 for force zip64 flag

savez was not using the force_zip64 flag, which limited the size of the archive to 2GB. But using the flag requires
us to use pickle protocol 3 to write object arrays. The protocol used was bumped to 3, meaning the archive will be
unreadable by Python2.

15.29. NumPy 1.17.0 Release Notes 381

http://www.numpy.org/neps/nep-0018-array-function-protocol.html

NumPy User Guide, Release 1.22.0

Structured arrays indexed with non-existent fields raise KeyError not ValueError

arr['bad_field'] on a structured type raises KeyError, for consistency with dict['bad_field'].

15.30 NumPy 1.16.6 Release Notes

The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release, and also backports several enhancements from
master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked
with OpenBLAS v0.3.7, which should fix errors on Skylake series cpus.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS >=
v0.3.7. The supported Python versions are 2.7 and 3.5-3.7.

15.30.1 Highlights

• The np.testing.utils functions have been updated from 1.19.0-dev0. This improves the function docu-
mentation and error messages as well extending the assert_array_compare function to additional types.

15.30.2 New functions

Allow matmul (@ operator) to work with object arrays.

This is an enhancement that was added in NumPy 1.17 and seems reasonable to include in the LTS 1.16 release series.

15.30.3 Compatibility notes

Fix regression in matmul (@ operator) for boolean types

Booleans were being treated as integers rather than booleans, which was a regression from previous behavior.

15.30.4 Improvements

Array comparison assertions include maximum differences

Error messages from array comparison tests such as testing.assert_allclose now include “max absolute dif-
ference” and “max relative difference,” in addition to the previous “mismatch” percentage. This information makes it
easier to update absolute and relative error tolerances.

382 15. Release notes

NumPy User Guide, Release 1.22.0

15.30.5 Contributors

A total of 10 people contributed to this release.
• CakeWithSteak
• Charles Harris
• Chris Burr
• Eric Wieser
• Fernando Saravia
• Lars Grueter
• Matti Picus
• Maxwell Aladago
• Qiming Sun
• Warren Weckesser

15.30.6 Pull requests merged

A total of 14 pull requests were merged for this release.
• #14211: BUG: Fix uint-overflow if padding with linear_ramp and negative…
• #14275: BUG: fixing to allow unpickling of PY3 pickles from PY2
• #14340: BUG: Fix misuse of .names and .fields in various places (backport…
• #14423: BUG: test, fix regression in converting to ctypes.
• #14434: BUG: Fixed maximum relative error reporting in assert_allclose
• #14509: BUG: Fix regression in boolean matmul.
• #14686: BUG: properly define PyArray_DescrCheck
• #14853: BLD: add ‘apt update’ to shippable
• #14854: BUG: Fix _ctypes class circular reference. (#13808)
• #14856: BUG: Fix np.einsum errors on Power9 Linux and z/Linux
• #14863: BLD: Prevent -flto from optimising long double representation…
• #14864: BUG: lib: Fix histogram problem with signed integer arrays.
• #15172: ENH: Backport improvements to testing functions.
• #15191: REL: Prepare for 1.16.6 release.

15.30. NumPy 1.16.6 Release Notes 383

https://github.com/numpy/numpy/pull/14211
https://github.com/numpy/numpy/pull/14275
https://github.com/numpy/numpy/pull/14340
https://github.com/numpy/numpy/pull/14423
https://github.com/numpy/numpy/pull/14434
https://github.com/numpy/numpy/pull/14509
https://github.com/numpy/numpy/pull/14686
https://github.com/numpy/numpy/pull/14853
https://github.com/numpy/numpy/pull/14854
https://github.com/numpy/numpy/pull/14856
https://github.com/numpy/numpy/pull/14863
https://github.com/numpy/numpy/pull/14864
https://github.com/numpy/numpy/pull/15172
https://github.com/numpy/numpy/pull/15191

NumPy User Guide, Release 1.22.0

15.31 NumPy 1.16.5 Release Notes

The NumPy 1.16.5 release fixes bugs reported against the 1.16.4 release, and also backports several enhancements from
master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked
with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series cpus.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS >=
v0.3.7. The supported Python versions are 2.7 and 3.5-3.7.

15.31.1 Contributors

A total of 18 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Alexander Shadchin
• Allan Haldane
• Bruce Merry +
• Charles Harris
• Colin Snyder +
• Dan Allan +
• Emile +
• Eric Wieser
• Grey Baker +
• Maksim Shabunin +
• Marten van Kerkwijk
• Matti Picus
• Peter Andreas Entschev +
• Ralf Gommers
• Richard Harris +
• Sebastian Berg
• Sergei Lebedev +
• Stephan Hoyer

15.31.2 Pull requests merged

A total of 23 pull requests were merged for this release.
• #13742: ENH: Add project URLs to setup.py
• #13823: TEST, ENH: fix tests and ctypes code for PyPy
• #13845: BUG: use npy_intp instead of int for indexing array
• #13867: TST: Ignore DeprecationWarning during nose imports
• #13905: BUG: Fix use-after-free in boolean indexing
• #13933: MAINT/BUG/DOC: Fix errors in _add_newdocs

384 15. Release notes

https://github.com/numpy/numpy/pull/13742
https://github.com/numpy/numpy/pull/13823
https://github.com/numpy/numpy/pull/13845
https://github.com/numpy/numpy/pull/13867
https://github.com/numpy/numpy/pull/13905
https://github.com/numpy/numpy/pull/13933

NumPy User Guide, Release 1.22.0

• #13984: BUG: fix byte order reversal for datetime64[ns]
• #13994: MAINT,BUG: Use nbytes to also catch empty descr during allocation
• #14042: BUG: np.array cleared errors occurred in PyMemoryView_FromObject
• #14043: BUG: Fixes for Undefined Behavior Sanitizer (UBSan) errors.
• #14044: BUG: ensure that casting to/from structured is properly checked.
• #14045: MAINT: fix histogram*d dispatchers
• #14046: BUG: further fixup to histogram2d dispatcher.
• #14052: BUG: Replace contextlib.suppress for Python 2.7
• #14056: BUG: fix compilation of 3rd party modules with Py_LIMITED_API…
• #14057: BUG: Fix memory leak in dtype from dict constructor
• #14058: DOC: Document array_function at a higher level.
• #14084: BUG, DOC: add new recfunctions to __all__

• #14162: BUG: Remove stray print that causes a SystemError on python 3.7
• #14297: TST: Pin pytest version to 5.0.1.
• #14322: ENH: Enable huge pages in all Linux builds
• #14346: BUG: fix behavior of structured_to_unstructured on non-trivial…
• #14382: REL: Prepare for the NumPy 1.16.5 release.

15.32 NumPy 1.16.4 Release Notes

The NumPy 1.16.4 release fixes bugs reported against the 1.16.3 release, and also backports several enhancements from
master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked
with OpenBLAS v0.3.7-dev, which should fix issues on Skylake series cpus.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.7.
The supported Python versions are 2.7 and 3.5-3.7.

15.32.1 New deprecations

Writeable flag of C-API wrapped arrays

When an array is created from the C-API to wrap a pointer to data, the only indication we have of the read-write nature
of the data is the writeable flag set during creation. It is dangerous to force the flag to writeable. In the future it will
not be possible to switch the writeable flag to True from python. This deprecation should not affect many users since
arrays created in such a manner are very rare in practice and only available through the NumPy C-API.

15.32. NumPy 1.16.4 Release Notes 385

https://github.com/numpy/numpy/pull/13984
https://github.com/numpy/numpy/pull/13994
https://github.com/numpy/numpy/pull/14042
https://github.com/numpy/numpy/pull/14043
https://github.com/numpy/numpy/pull/14044
https://github.com/numpy/numpy/pull/14045
https://github.com/numpy/numpy/pull/14046
https://github.com/numpy/numpy/pull/14052
https://github.com/numpy/numpy/pull/14056
https://github.com/numpy/numpy/pull/14057
https://github.com/numpy/numpy/pull/14058
https://github.com/numpy/numpy/pull/14084
https://github.com/numpy/numpy/pull/14162
https://github.com/numpy/numpy/pull/14297
https://github.com/numpy/numpy/pull/14322
https://github.com/numpy/numpy/pull/14346
https://github.com/numpy/numpy/pull/14382

NumPy User Guide, Release 1.22.0

15.32.2 Compatibility notes

Potential changes to the random stream

Due to bugs in the application of log to random floating point numbers, the stream may change when sampling from np.
random.beta, np.random.binomial, np.random.laplace, np.random.logistic, np.random.
logseries or np.random.multinomial if a 0 is generated in the underlying MT19937 random stream. There
is a 1 in 1053 chance of this occurring, and so the probability that the stream changes for any given seed is extremely
small. If a 0 is encountered in the underlying generator, then the incorrect value produced (either np.inf or np.nan)
is now dropped.

15.32.3 Changes

numpy.lib.recfunctions.structured_to_unstructured does not squeeze single-field views

Previously structured_to_unstructured(arr[['a']]) would produce a squeezed result inconsistent with
structured_to_unstructured(arr[['a', b']]). This was accidental. The old behavior can be re-
tained with structured_to_unstructured(arr[['a']]).squeeze(axis=-1) or far more simply,
arr['a'].

15.32.4 Contributors

A total of 10 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Eric Wieser
• Dennis Zollo +
• Hunter Damron +
• Jingbei Li +
• Kevin Sheppard
• Matti Picus
• Nicola Soranzo +
• Sebastian Berg
• Tyler Reddy

15.32.5 Pull requests merged

A total of 16 pull requests were merged for this release.
• #13392: BUG: Some PyPy versions lack PyStructSequence_InitType2.
• #13394: MAINT, DEP: Fix deprecated assertEquals()
• #13396: BUG: Fix structured_to_unstructured on single-field types (backport)
• #13549: BLD: Make CI pass again with pytest 4.5
• #13552: TST: Register markers in conftest.py.
• #13559: BUG: Removes ValueError for empty kwargs in arraymultiter_new

386 15. Release notes

https://github.com/numpy/numpy/pull/13392
https://github.com/numpy/numpy/pull/13394
https://github.com/numpy/numpy/pull/13396
https://github.com/numpy/numpy/pull/13549
https://github.com/numpy/numpy/pull/13552
https://github.com/numpy/numpy/pull/13559

NumPy User Guide, Release 1.22.0

• #13560: BUG: Add TypeError to accepted exceptions in crackfortran.
• #13561: BUG: Handle subarrays in descr_to_dtype
• #13562: BUG: Protect generators from log(0.0)
• #13563: BUG: Always return views from structured_to_unstructured when…
• #13564: BUG: Catch stderr when checking compiler version
• #13565: BUG: longdouble(int) does not work
• #13587: BUG: distutils/system_info.py fix missing subprocess import (#13523)
• #13620: BUG,DEP: Fix writeable flag setting for arrays without base
• #13641: MAINT: Prepare for the 1.16.4 release.
• #13644: BUG: special case object arrays when printing rel-, abs-error

15.33 NumPy 1.16.3 Release Notes

The NumPy 1.16.3 release fixes bugs reported against the 1.16.2 release, and also backports several enhancements from
master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked
with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.
The most noticeable change in this release is that unpickling object arrays when loading *.npy or *.npz files now
requires an explicit opt-in. This backwards incompatible change was made in response to CVE-2019-6446.

15.33.1 Compatibility notes

Unpickling while loading requires explicit opt-in

The functions np.load, and np.lib.format.read_array take an allow_pickle keyword which now defaults to
False in response to CVE-2019-6446.

15.33.2 Improvements

Covariance in random.mvnormal cast to double

This should make the tolerance used when checking the singular values of the covariance matrix more meaningful.

15.33.3 Changes

__array_interface__ offset now works as documented

The interface may use an offset value that was previously mistakenly ignored.

15.33. NumPy 1.16.3 Release Notes 387

https://github.com/numpy/numpy/pull/13560
https://github.com/numpy/numpy/pull/13561
https://github.com/numpy/numpy/pull/13562
https://github.com/numpy/numpy/pull/13563
https://github.com/numpy/numpy/pull/13564
https://github.com/numpy/numpy/pull/13565
https://github.com/numpy/numpy/pull/13587
https://github.com/numpy/numpy/pull/13620
https://github.com/numpy/numpy/pull/13641
https://github.com/numpy/numpy/pull/13644
https://nvd.nist.gov/vuln/detail/CVE-2019-6446
https://nvd.nist.gov/vuln/detail/CVE-2019-6446

NumPy User Guide, Release 1.22.0

15.34 NumPy 1.16.2 Release Notes

NumPy 1.16.2 is a quick release fixing several problems encountered on Windows. The Python versions supported are
2.7 and 3.5-3.7. The Windows problems addressed are:

• DLL load problems for NumPy wheels on Windows,
• distutils command line parsing on Windows.

There is also a regression fix correcting signed zeros produced by divmod, see below for details.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.
If you are installing using pip, you may encounter a problem with older installed versions of NumPy that pip did not
delete becoming mixed with the current version, resulting in an ImportError. That problem is particularly common
on Debian derived distributions due to a modified pip. The fix is to make sure all previous NumPy versions installed by
pip have been removed. See #12736 for discussion of the issue.

15.34.1 Compatibility notes

Signed zero when using divmod

Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero when using the divmod and
floor_divide functions when the result was zero. For example:

>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])

With this release, the result is correctly returned as a positively signed zero:

>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

15.34.2 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Eric Wieser
• Matti Picus
• Tyler Reddy
• Tony LaTorre +

388 15. Release notes

https://github.com/numpy/numpy/issues/12736

NumPy User Guide, Release 1.22.0

15.34.3 Pull requests merged

A total of 7 pull requests were merged for this release.
• #12909: TST: fix vmImage dispatch in Azure
• #12923: MAINT: remove complicated test of multiarray import failure mode
• #13020: BUG: fix signed zero behavior in npy_divmod
• #13026: MAINT: Add functions to parse shell-strings in the platform-native…
• #13028: BUG: Fix regression in parsing of F90 and F77 environment variables
• #13038: BUG: parse shell escaping in extra_compile_args and extra_link_args
• #13041: BLD: Windows absolute path DLL loading

15.35 NumPy 1.16.1 Release Notes

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and also backports several enhancements from
master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked
with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.
Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.
If you are installing using pip, you may encounter a problem with older installed versions of NumPy that pip did not
delete becoming mixed with the current version, resulting in an ImportError. That problem is particularly common
on Debian derived distributions due to a modified pip. The fix is to make sure all previous NumPy versions installed
by pip have been removed. See #12736 for discussion of the issue. Note that previously this problem resulted in an
AttributeError.

15.35.1 Contributors

A total of 16 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Antoine Pitrou
• Arcesio Castaneda Medina +
• Charles Harris
• Chris Markiewicz +
• Christoph Gohlke
• Christopher J. Markiewicz +
• Daniel Hrisca +
• EelcoPeacs +
• Eric Wieser
• Kevin Sheppard
• Matti Picus
• OBATA Akio +
• Ralf Gommers
• Sebastian Berg

15.35. NumPy 1.16.1 Release Notes 389

https://github.com/numpy/numpy/pull/12909
https://github.com/numpy/numpy/pull/12923
https://github.com/numpy/numpy/pull/13020
https://github.com/numpy/numpy/pull/13026
https://github.com/numpy/numpy/pull/13028
https://github.com/numpy/numpy/pull/13038
https://github.com/numpy/numpy/pull/13041
https://github.com/numpy/numpy/issues/12736

NumPy User Guide, Release 1.22.0

• Stephan Hoyer
• Tyler Reddy

15.35.2 Enhancements

• #12767: ENH: add mm->q floordiv
• #12768: ENH: port np.core.overrides to C for speed
• #12769: ENH: Add np.ctypeslib.as_ctypes_type(dtype), improve np.ctypeslib.as_ctypes
• #12773: ENH: add “max difference” messages to np.testing.assert_array_equal…
• #12820: ENH: Add mm->qm divmod
• #12890: ENH: add _dtype_ctype to namespace for freeze analysis

15.35.3 Compatibility notes

• The changed error message emitted by array comparison testing functions may affect doctests. See below for detail.
• Casting from double and single denormals to float16 has been corrected. In some rare cases, this may result in
results being rounded up instead of down, changing the last bit (ULP) of the result.

15.35.4 New Features

divmod operation is now supported for two timedelta64 operands

The divmod operator now handles two np.timedelta64 operands, with type signature mm->qm.

15.35.5 Improvements

Further improvements to ctypes support in np.ctypeslib

A new numpy.ctypeslib.as_ctypes_type function has been added, which can be used to converts a dtype into
a best-guess ctypes type. Thanks to this new function, numpy.ctypeslib.as_ctypes now supports a much
wider range of array types, including structures, booleans, and integers of non-native endianness.

Array comparison assertions include maximum differences

Error messages from array comparison tests such as np.testing.assert_allclose now include “max absolute difference” and
“max relative difference,” in addition to the previous “mismatch” percentage. This information makes it easier to update
absolute and relative error tolerances.

390 15. Release notes

https://github.com/numpy/numpy/pull/12767
https://github.com/numpy/numpy/pull/12768
https://github.com/numpy/numpy/pull/12769
https://github.com/numpy/numpy/pull/12773
https://github.com/numpy/numpy/pull/12820
https://github.com/numpy/numpy/pull/12890
https://docs.python.org/dev/library/ctypes.html#module-ctypes

NumPy User Guide, Release 1.22.0

15.35.6 Changes

timedelta64 % 0 behavior adjusted to return NaT

The modulus operation with two np.timedelta64 operands now returns NaT in the case of division by zero, rather
than returning zero

15.36 NumPy 1.16.0 Release Notes

This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with bug fixes until
2020. Support for Python 3.4 been dropped, the supported Python versions are 2.7 and 3.5-3.7. The wheels on PyPI are
linked with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.
Downstream developers building this release should use Cython >= 0.29 and, if using OpenBLAS, OpenBLAS > v0.3.4.
This release has seen a lot of refactoring and features many bug fixes, improved code organization, and better cross
platform compatibility. Not all of these improvements will be visible to users, but they should help make maintenance
easier going forward.

15.36.1 Highlights

• Experimental (opt-in only) support for overriding numpy functions, see __array_function__ below.
• The matmul function is now a ufunc. This provides better performance and allows overriding with
__array_ufunc__.

• Improved support for the ARM and POWER architectures.
• Improved support for AIX and PyPy.
• Improved interop with ctypes.
• Improved support for PEP 3118.

15.36.2 New functions

• New functions added to the numpy.lib.recfuntions module to ease the structured assignment changes:
– assign_fields_by_name

– structured_to_unstructured

– unstructured_to_structured

– apply_along_fields

– require_fields

See the user guide at <https://docs.scipy.org/doc/numpy/user/basics.rec.html> for more info.

15.36. NumPy 1.16.0 Release Notes 391

https://docs.scipy.org/doc/numpy/user/basics.rec.html

NumPy User Guide, Release 1.22.0

15.36.3 New deprecations

• The type dictionaries numpy.core.typeNA and numpy.core.sctypeNA are deprecated. They were buggy and not
documented and will be removed in the 1.18 release. Use‘numpy.sctypeDict‘ instead.

• The numpy.asscalar function is deprecated. It is an alias to the more powerful numpy.ndarray.item,
not tested, and fails for scalars.

• The numpy.set_array_ops and numpy.get_array_ops functions are deprecated. As part of NEP 15,
they have been deprecated along with the C-API functions PyArray_SetNumericOps and
PyArray_GetNumericOps. Users who wish to override the inner loop functions in built-in ufuncs
should use PyUFunc_ReplaceLoopBySignature.

• The numpy.unravel_index keyword argument dims is deprecated, use shape instead.
• The numpy.histogram normed argument is deprecated. It was deprecated previously, but no warning was
issued.

• The positive operator (+) applied to non-numerical arrays is deprecated. See below for details.
• Passing an iterator to the stack functions is deprecated

15.36.4 Expired deprecations

• NaT comparisons now return False without a warning, finishing a deprecation cycle begun in NumPy 1.11.
• np.lib.function_base.unique was removed, finishing a deprecation cycle begun in NumPy 1.4. Use
numpy.unique instead.

• multi-field indexing now returns views instead of copies, finishing a deprecation cycle begun in NumPy 1.7. The
change was previously attempted in NumPy 1.14 but reverted until now.

• np.PackageLoader and np.pkgload have been removed. These were deprecated in 1.10, had no tests, and
seem to no longer work in 1.15.

15.36.5 Future changes

• NumPy 1.17 will drop support for Python 2.7.

15.36.6 Compatibility notes

f2py script on Windows

On Windows, the installed script for running f2py is now an .exe file rather than a *.py file and should be run from
the command line as f2py whenever the Scripts directory is in the path. Running f2py as a module python -m
numpy.f2py [...] will work without path modification in any version of NumPy.

392 15. Release notes

NumPy User Guide, Release 1.22.0

NaT comparisons

Consistent with the behavior of NaN, all comparisons other than inequality checks with datetime64 or timedelta64 NaT
(“not-a-time”) values now always return False, and inequality checks with NaT now always return True. This includes
comparisons between NaT values. For compatibility with the old behavior, use np.isnat to explicitly check for NaT
or convert datetime64/timedelta64 arrays with .astype(np.int64) before making comparisons.

complex64/128 alignment has changed

The memory alignment of complex types is now the same as a C-struct composed of two floating point values, while
before it was equal to the size of the type. For many users (for instance on x64/unix/gcc) this means that complex64 is
now 4-byte aligned instead of 8-byte aligned. An important consequence is that aligned structured dtypes may now have
a different size. For instance, np.dtype('c8,u1', align=True) used to have an itemsize of 16 (on x64/gcc)
but now it is 12.
More in detail, the complex64 type now has the same alignment as a C-struct struct {float r, i;}, according
to the compiler used to compile numpy, and similarly for the complex128 and complex256 types.

nd_grid __len__ removal

len(np.mgrid) and len(np.ogrid) are now considered nonsensical and raise a TypeError.

np.unravel_index now accepts shape keyword argument

Previously, only the dims keyword argument was accepted for specification of the shape of the array to be used for
unraveling. dims remains supported, but is now deprecated.

multi-field views return a view instead of a copy

Indexing a structured array with multiple fields, e.g., arr[['f1', 'f3']], returns a view into the original array
instead of a copy. The returned view will often have extra padding bytes corresponding to intervening fields in the original
array, unlike before, which will affect code such as arr[['f1', 'f3']].view('float64'). This change has
been planned since numpy 1.7. Operations hitting this path have emitted FutureWarnings since then. Additional
FutureWarnings about this change were added in 1.12.
To help users update their code to account for these changes, a number of functions have been added to the numpy.
lib.recfunctions module which safely allow such operations. For instance, the code above can be replaced with
structured_to_unstructured(arr[['f1', 'f3']], dtype='float64'). See the “accessing mul-
tiple fields” section of the user guide.

15.36.7 C API changes

The NPY_FEATURE_VERSION was incremented to 0x0000D, due to the addition of:
• PyUFuncObject.core_dim_flags

• PyUFuncObject.core_dim_sizes

• PyUFuncObject.identity_value

• PyUFunc_FromFuncAndDataAndSignatureAndIdentity

15.36. NumPy 1.16.0 Release Notes 393

https://docs.scipy.org/doc/numpy/user/basics.rec.html#accessing-multiple-fields

NumPy User Guide, Release 1.22.0

15.36.8 New Features

Integrated squared error (ISE) estimator added to histogram

This method (bins='stone') for optimizing the bin number is a generalization of the Scott’s rule. The Scott’s rule
assumes the distribution is approximately Normal, while the ISE is a non-parametric method based on cross-validation.

max_rows keyword added for np.loadtxt

New keyword max_rows in numpy.loadtxt sets the maximum rows of the content to be read after skiprows, as
in numpy.genfromtxt.

modulus operator support added for np.timedelta64 operands

The modulus (remainder) operator is now supported for two operands of type np.timedelta64. The operands may
have different units and the return value will match the type of the operands.

15.36.9 Improvements

no-copy pickling of numpy arrays

Up to protocol 4, numpy array pickling created 2 spurious copies of the data being serialized. With pickle protocol 5, and
the PickleBuffer API, a large variety of numpy arrays can now be serialized without any copy using out-of-band
buffers, and with one less copy using in-band buffers. This results, for large arrays, in an up to 66% drop in peak memory
usage.

build shell independence

NumPy builds should no longer interact with the host machine shell directly. exec_command has been replaced with
subprocess.check_output where appropriate.

np.polynomial.Polynomial classes render in LaTeX in Jupyter notebooks

When used in a front-end that supports it, Polynomial instances are now rendered through LaTeX. The current format is
experimental, and is subject to change.

randint and choice now work on empty distributions

Even when no elements needed to be drawn, np.random.randint and np.random.choice raised an error when
the arguments described an empty distribution. This has been fixed so that e.g. np.random.choice([], 0) ==
np.array([], dtype=float64).

394 15. Release notes

https://en.wikipedia.org/wiki/Histogram#Minimizing_cross-validation_estimated_squared_error

NumPy User Guide, Release 1.22.0

linalg.lstsq, linalg.qr, and linalg.svd now work with empty arrays

Previously, a LinAlgError would be raised when an empty matrix/empty matrices (with zero rows and/or columns)
is/are passed in. Now outputs of appropriate shapes are returned.

Chain exceptions to give better error messages for invalid PEP3118 format strings

This should help track down problems.

Einsum optimization path updates and efficiency improvements

Einsum was synchronized with the current upstream work.

numpy.angle and numpy.expand_dims now work on ndarray subclasses

In particular, they now work for masked arrays.

NPY_NO_DEPRECATED_API compiler warning suppression

Setting NPY_NO_DEPRECATED_API to a value of 0 will suppress the current compiler warnings when the deprecated
numpy API is used.

np.diff Added kwargs prepend and append

New kwargs prepend and append, allow for values to be inserted on either end of the differences. Similar to options
for ediff1d. Now the inverse of cumsum can be obtained easily via prepend=0.

ARM support updated

Support for ARM CPUs has been updated to accommodate 32 and 64 bit targets, and also big and little endian byte
ordering. AARCH32memory alignment issues have been addressed. CI testing has been expanded to include AARCH64
targets via the services of shippable.com.

Appending to build flags

numpy.distutils has always overridden rather than appended to LDFLAGS and other similar such environment
variables for compiling Fortran extensions. Now, if the NPY_DISTUTILS_APPEND_FLAGS environment variable is set
to 1, the behavior will be appending. This applied to: LDFLAGS, F77FLAGS, F90FLAGS, FREEFLAGS, FOPT, FDEBUG,
and FFLAGS. See gh-11525 for more details.

15.36. NumPy 1.16.0 Release Notes 395

NumPy User Guide, Release 1.22.0

Generalized ufunc signatures now allow fixed-size dimensions

By using a numerical value in the signature of a generalized ufunc, one can indicate that the given function requires
input or output to have dimensions with the given size. E.g., the signature of a function that converts a polar angle to
a two-dimensional cartesian unit vector would be ()->(2); that for one that converts two spherical angles to a three-
dimensional unit vector would be (),()->(3); and that for the cross product of two three-dimensional vectors would
be (3),(3)->(3).
Note that to the elementary function these dimensions are not treated any differently from variable ones indicated with a
name starting with a letter; the loop still is passed the corresponding size, but it can now count on that size being equal to
the fixed one given in the signature.

Generalized ufunc signatures now allow flexible dimensions

Some functions, in particular numpy’s implementation of @ as matmul, are very similar to generalized ufuncs in that
they operate over core dimensions, but one could not present them as such because they were able to deal with inputs in
which a dimension is missing. To support this, it is now allowed to postfix a dimension name with a question mark to
indicate that the dimension does not necessarily have to be present.
With this addition, the signature for matmul can be expressed as (m?,n),(n,p?)->(m?,p?). This indicates that
if, e.g., the second operand has only one dimension, for the purposes of the elementary function it will be treated as if that
input has core shape (n, 1), and the output has the corresponding core shape of (m, 1). The actual output array,
however, has the flexible dimension removed, i.e., it will have shape (..., m). Similarly, if both arguments have only a
single dimension, the inputs will be presented as having shapes (1, n) and (n, 1) to the elementary function, and the
output as (1, 1), while the actual output array returned will have shape (). In this way, the signature allows one to use
a single elementary function for four related but different signatures, (m,n),(n,p)->(m,p), (n),(n,p)->(p),
(m,n),(n)->(m) and (n),(n)->().

np.clip and the clip method check for memory overlap

The out argument to these functions is now always tested for memory overlap to avoid corrupted results when memory
overlap occurs.

New value unscaled for option cov in np.polyfit

A further possible value has been added to the cov parameter of the np.polyfit function. With cov='unscaled'
the scaling of the covariance matrix is disabled completely (similar to setting absolute_sigma=True in scipy.
optimize.curve_fit). This would be useful in occasions, where the weights are given by 1/sigma with sigma being
the (known) standard errors of (Gaussian distributed) data points, in which case the unscaled matrix is already a correct
estimate for the covariance matrix.

Detailed docstrings for scalar numeric types

The help function, when applied to numeric types such as numpy.intc, numpy.int_, and numpy.longlong,
now lists all of the aliased names for that type, distinguishing between platform -dependent and -independent aliases.

396 15. Release notes

NumPy User Guide, Release 1.22.0

__module__ attribute now points to public modules

The __module__ attribute on most NumPy functions has been updated to refer to the preferred public module from
which to access a function, rather than the module in which the function happens to be defined. This produces more infor-
mative displays for functions in tools such as IPython, e.g., instead of <function 'numpy.core.fromnumeric.
sum'> you now see <function 'numpy.sum'>.

Large allocations marked as suitable for transparent hugepages

On systems that support transparent hugepages over the madvise system call numpy now marks that large memory allo-
cations can be backed by hugepages which reduces page fault overhead and can in some fault heavy cases improve per-
formance significantly. On Linux the setting for huge pages to be used, /sys/kernel/mm/transparent_hugepage/enabled,
must be at least madvise. Systems which already have it set to always will not see much difference as the kernel will
automatically use huge pages where appropriate.
Users of very old Linux kernels (~3.x and older) should make sure that /sys/kernel/mm/transparent_hugepage/defrag is
not set to always to avoid performance problems due concurrency issues in the memory defragmentation.

Alpine Linux (and other musl c library distros) support

We now default to use fenv.h for floating point status error reporting. Previously we had a broken default that sometimes
would not report underflow, overflow, and invalid floating point operations. Now we can support non-glibc distributions
like Alpine Linux as long as they ship fenv.h.

Speedup np.block for large arrays

Large arrays (greater than 512 * 512) now use a blocking algorithm based on copying the data directly into the appro-
priate slice of the resulting array. This results in significant speedups for these large arrays, particularly for arrays being
blocked along more than 2 dimensions.

arr.ctypes.data_as(...) holds a reference to arr
Previously the caller was responsible for keeping the array alive for the lifetime of the pointer.

Speedup np.take for read-only arrays

The implementation of np.take no longer makes an unnecessary copy of the source array when its writeable flag
is set to False.

Support path-like objects for more functions

The np.core.records.fromfile function now supports pathlib.Path and other path-like objects in addition
to a file object. Furthermore, the np.load function now also supports path-like objects when using memory mapping
(mmap_mode keyword argument).

15.36. NumPy 1.16.0 Release Notes 397

NumPy User Guide, Release 1.22.0

Better behaviour of ufunc identities during reductions

Universal functions have an .identity which is used when .reduce is called on an empty axis.
As of this release, the logical binary ufuncs, logical_and, logical_or, and logical_xor, now have identity s of type
bool, where previously they were of type int. This restores the 1.14 behavior of getting bool s when reducing empty
object arrays with these ufuncs, while also keeping the 1.15 behavior of getting int s when reducing empty object arrays
with arithmetic ufuncs like add and multiply.
Additionally, logaddexp now has an identity of -inf, allowing it to be called on empty sequences, where previously it
could not be.
This is possible thanks to the new PyUFunc_FromFuncAndDataAndSignatureAndIdentity, which allows
arbitrary values to be used as identities now.

Improved conversion from ctypes objects

Numpy has always supported taking a value or type from ctypes and converting it into an array or dtype, but only
behaved correctly for simpler types. As of this release, this caveat is lifted - now:

• The _pack_ attribute of ctypes.Structure, used to emulate C’s __attribute__((packed)), is
respected.

• Endianness of all ctypes objects is preserved
• ctypes.Union is supported
• Non-representable constructs raise exceptions, rather than producing dangerously incorrect results:

– Bitfields are no longer interpreted as sub-arrays
– Pointers are no longer replaced with the type that they point to

A new ndpointer.contents member

This matches the .contentsmember of normal ctypes arrays, and can be used to construct an np.array around the
pointers contents. This replaces np.array(some_nd_pointer), which stopped working in 1.15. As a side effect
of this change, ndpointer now supports dtypes with overlapping fields and padding.

matmul is now a ufunc

numpy.matmul is now a ufunc which means that both the function and the __matmul__ operator can now be over-
ridden by __array_ufunc__. Its implementation has also changed. It uses the same BLAS routines as numpy.dot,
ensuring its performance is similar for large matrices.

Start and stop arrays for linspace, logspace and geomspace

These functions used to be limited to scalar stop and start values, but can now take arrays, which will be properly broadcast
and result in an output which has one axis prepended. This can be used, e.g., to obtain linearly interpolated points between
sets of points.

398 15. Release notes

NumPy User Guide, Release 1.22.0

CI extended with additional services

We now use additional free CI services, thanks to the companies that provide:
• Codecoverage testing via codecov.io
• Arm testing via shippable.com
• Additional test runs on azure pipelines

These are in addition to our continued use of travis, appveyor (for wheels) and LGTM

15.36.10 Changes

Comparison ufuncs will now error rather than return NotImplemented

Previously, comparison ufuncs such asnp.equalwould returnNotImplemented if their arguments had structured dtypes,
to help comparison operators such as __eq__ deal with those. This is no longer needed, as the relevant logic has moved
to the comparison operators proper (which thus do continue to return NotImplemented as needed). Hence, like all other
ufuncs, the comparison ufuncs will now error on structured dtypes.

Positive will now raise a deprecation warning for non-numerical arrays

Previously, +array unconditionally returned a copy. Now, it will raise a DeprecationWarning if the array is not
numerical (i.e., if np.positive(array) raises a TypeError. For ndarray subclasses that override the default
__array_ufunc__ implementation, the TypeError is passed on.

NDArrayOperatorsMixin now implements matrix multiplication

Previously, np.lib.mixins.NDArrayOperatorsMixin did not implement the special methods for Python’s
matrix multiplication operator (@). This has changed now that matmul is a ufunc and can be overridden using
__array_ufunc__.

The scaling of the covariance matrix in np.polyfit is different

So far, np.polyfit used a non-standard factor in the scaling of the the covariancematrix. Namely, rather than using the
standard chisq/(M-N), it scaled it with chisq/(M-N-2)where M is the number of data points and N is the number
of parameters. This scaling is inconsistent with other fitting programs such as e.g. scipy.optimize.curve_fit
and was changed to chisq/(M-N).

maximum and minimum no longer emit warnings

As part of code introduced in 1.10, float32 and float64 set invalid float status when a Nan is encountered in
numpy.maximum and numpy.minimum, when using SSE2 semantics. This caused a RuntimeWarning to sometimes
be emitted. In 1.15 we fixed the inconsistencies which caused the warnings to become more conspicuous. Now no
warnings will be emitted.

15.36. NumPy 1.16.0 Release Notes 399

NumPy User Guide, Release 1.22.0

Umath and multiarray c-extension modules merged into a single module

The two modules were merged, according to NEP 15. Previously np.core.umath and np.core.multiarray were separate
c-extension modules. They are now python wrappers to the single np.core/_multiarray_math c-extension module.

getfield validity checks extended

numpy.ndarray.getfield now checks the dtype and offset arguments to prevent accessing invalid memory loca-
tions.

NumPy functions now support overrides with __array_function__

NumPy has a new experimental mechanism for overriding the implementation of almost all NumPy functions on non-
NumPy arrays by defining an __array_function__ method, as described in NEP 18.
This feature is not yet been enabled by default, but has been released to facilitate experimentation by potential users.
See the NEP for details on setting the appropriate environment variable. We expect the NumPy 1.17 release will enable
overrides by default, which will also be more performant due to a new implementation written in C.

Arrays based off readonly buffers cannot be set writeable

We now disallow setting the writeable flag True on arrays created from fromstring(readonly-buffer).

15.37 NumPy 1.15.4 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.3 release. The Python versions supported by
this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.

15.37.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future
releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

15.37.2 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Matti Picus
• Sebastian Berg
• bbbbbbbbba +

400 15. Release notes

http://www.numpy.org/neps/nep-0015-merge-multiarray-umath.html
http://www.numpy.org/neps/nep-0018-array-function-protocol.html
https://github.com/numpy/numpy/issues/11625

NumPy User Guide, Release 1.22.0

15.37.3 Pull requests merged

A total of 4 pull requests were merged for this release.
• #12296: BUG: Dealloc cached buffer info
• #12297: BUG: Fix fill value in masked array ‘==’ and ‘!=’ ops.
• #12307: DOC: Correct the default value of optimize in numpy.einsum
• #12320: REL: Prepare for the NumPy 1.15.4 release

15.38 NumPy 1.15.3 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.2 release. The Python versions supported by
this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.

15.38.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future
releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

15.38.2 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Jeroen Demeyer
• Kevin Sheppard
• Matthew Bowden +
• Matti Picus
• Tyler Reddy

15.38.3 Pull requests merged

A total of 12 pull requests were merged for this release.
• #12080: MAINT: Blacklist some MSVC complex functions.
• #12083: TST: Add azure CI testing to 1.15.x branch.
• #12084: BUG: test_path() now uses Path.resolve()
• #12085: TST, MAINT: Fix some failing tests on azure-pipelines mac and…
• #12187: BUG: Fix memory leak in mapping.c
• #12188: BUG: Allow boolean subtract in histogram
• #12189: BUG: Fix in-place permutation

15.38. NumPy 1.15.3 Release Notes 401

https://github.com/numpy/numpy/pull/12296
https://github.com/numpy/numpy/pull/12297
https://github.com/numpy/numpy/pull/12307
https://github.com/numpy/numpy/pull/12320
https://github.com/numpy/numpy/issues/11625
https://github.com/numpy/numpy/pull/12080
https://github.com/numpy/numpy/pull/12083
https://github.com/numpy/numpy/pull/12084
https://github.com/numpy/numpy/pull/12085
https://github.com/numpy/numpy/pull/12187
https://github.com/numpy/numpy/pull/12188
https://github.com/numpy/numpy/pull/12189

NumPy User Guide, Release 1.22.0

• #12190: BUG: limit default for get_num_build_jobs() to 8
• #12191: BUG: OBJECT_to_* should check for errors
• #12192: DOC: Prepare for NumPy 1.15.3 release.
• #12237: BUG: Fix MaskedArray fill_value type conversion.
• #12238: TST: Backport azure-pipeline testing fixes for Mac

15.39 NumPy 1.15.2 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.1 release.
• The matrix PendingDeprecationWarning is now suppressed in pytest 3.8.
• The new cached allocations machinery has been fixed to be thread safe.
• The boolean indexing of subclasses now works correctly.
• A small memory leak in PyArray_AdaptFlexibleDType has been fixed.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which
should fix some of the linalg problems reported for NumPy 1.14.

15.39.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future
releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

15.39.2 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Julian Taylor
• Marten van Kerkwijk
• Matti Picus

15.39.3 Pull requests merged

A total of 4 pull requests were merged for this release.
• #11902: BUG: Fix matrix PendingDeprecationWarning suppression for pytest…
• #11981: BUG: fix cached allocations without the GIL for 1.15.x
• #11982: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
• #11992: BUG: Ensure boolean indexing of subclasses sets base correctly.

402 15. Release notes

https://github.com/numpy/numpy/pull/12190
https://github.com/numpy/numpy/pull/12191
https://github.com/numpy/numpy/pull/12192
https://github.com/numpy/numpy/pull/12237
https://github.com/numpy/numpy/pull/12238
https://github.com/numpy/numpy/issues/11625
https://github.com/numpy/numpy/pull/11902
https://github.com/numpy/numpy/pull/11981
https://github.com/numpy/numpy/pull/11982
https://github.com/numpy/numpy/pull/11992

NumPy User Guide, Release 1.22.0

15.40 NumPy 1.15.1 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.0 release.
• The annoying but harmless RuntimeWarning that “numpy.dtype size changed” has been suppressed. The long
standing suppression was lost in the transition to pytest.

• The update to Cython 0.28.3 exposed a problematic use of a gcc attribute used to prefer code size over speed in
module initialization, possibly resulting in incorrect compiled code. This has been fixed in latest Cython but has
been disabled here for safety.

• Support for big-endian and ARMv8 architectures has been improved.
The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which
should fix some of the linalg problems reported for NumPy 1.14.

15.40.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future
releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

15.40.2 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Chris Billington
• Elliott Sales de Andrade +
• Eric Wieser
• Jeremy Manning +
• Matti Picus
• Ralf Gommers

15.40.3 Pull requests merged

A total of 24 pull requests were merged for this release.
• #11647: MAINT: Filter Cython warnings in __init__.py
• #11648: BUG: Fix doc source links to unwrap decorators
• #11657: BUG: Ensure singleton dimensions are not dropped when converting…
• #11661: BUG: Warn on Nan in minimum,maximum for scalars
• #11665: BUG: cython sometimes emits invalid gcc attribute
• #11682: BUG: Fix regression in void_getitem
• #11698: BUG: Make matrix_power again work for object arrays.
• #11700: BUG: Add missing PyErr_NoMemory after failing malloc
• #11719: BUG: Fix undefined functions on big-endian systems.

15.40. NumPy 1.15.1 Release Notes 403

https://github.com/numpy/numpy/issues/11625
https://github.com/numpy/numpy/pull/11647
https://github.com/numpy/numpy/pull/11648
https://github.com/numpy/numpy/pull/11657
https://github.com/numpy/numpy/pull/11661
https://github.com/numpy/numpy/pull/11665
https://github.com/numpy/numpy/pull/11682
https://github.com/numpy/numpy/pull/11698
https://github.com/numpy/numpy/pull/11700
https://github.com/numpy/numpy/pull/11719

NumPy User Guide, Release 1.22.0

• #11720: MAINT: Make einsum optimize default to False.
• #11746: BUG: Fix regression in loadtxt for bz2 text files in Python 2.
• #11757: BUG: Revert use of console_scripts.
• #11758: BUG: Fix Fortran kind detection for aarch64 & s390x.
• #11759: BUG: Fix printing of longdouble on ppc64le.
• #11760: BUG: Fixes for unicode field names in Python 2
• #11761: BUG: Increase required cython version on python 3.7
• #11763: BUG: check return value of _buffer_format_string
• #11775: MAINT: Make assert_array_compare more generic.
• #11776: TST: Fix urlopen stubbing.
• #11777: BUG: Fix regression in intersect1d.
• #11779: BUG: Fix test sensitive to platform byte order.
• #11781: BUG: Avoid signed overflow in histogram
• #11785: BUG: Fix pickle and memoryview for datetime64, timedelta64 scalars
• #11786: BUG: Deprecation triggers segfault

15.41 NumPy 1.15.0 Release Notes

NumPy 1.15.0 is a release with an unusual number of cleanups, many deprecations of old functions, and improvements
to many existing functions. Please read the detailed descriptions below to see if you are affected.
For testing, we have switched to pytest as a replacement for the no longer maintained nose framework. The old nose
based interface remains for downstream projects who may still be using it.
The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which
should fix some of the linalg problems reported for NumPy 1.14.

15.41.1 Highlights

• NumPy has switched to pytest for testing.
• A new numpy.printoptions context manager.
• Many improvements to the histogram functions.
• Support for unicode field names in python 2.7.
• Improved support for PyPy.
• Fixes and improvements to numpy.einsum.

404 15. Release notes

https://github.com/numpy/numpy/pull/11720
https://github.com/numpy/numpy/pull/11746
https://github.com/numpy/numpy/pull/11757
https://github.com/numpy/numpy/pull/11758
https://github.com/numpy/numpy/pull/11759
https://github.com/numpy/numpy/pull/11760
https://github.com/numpy/numpy/pull/11761
https://github.com/numpy/numpy/pull/11763
https://github.com/numpy/numpy/pull/11775
https://github.com/numpy/numpy/pull/11776
https://github.com/numpy/numpy/pull/11777
https://github.com/numpy/numpy/pull/11779
https://github.com/numpy/numpy/pull/11781
https://github.com/numpy/numpy/pull/11785
https://github.com/numpy/numpy/pull/11786

NumPy User Guide, Release 1.22.0

15.41.2 New functions

• numpy.gcd and numpy.lcm, to compute the greatest common divisor and least common multiple.
• numpy.ma.stack, the numpy.stack array-joining function generalized to masked arrays.
• numpy.quantile function, an interface to percentile without factors of 100
• numpy.nanquantile function, an interface to nanpercentile without factors of 100
• numpy.printoptions, a context manager that sets print options temporarily for the scope of the with block:

>>> with np.printoptions(precision=2):
... print(np.array([2.0]) / 3)
[0.67]

• numpy.histogram_bin_edges, a function to get the edges of the bins used by a histogram without needing
to calculate the histogram.

• C functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier have been added to deal with compiler
optimization changing the order of operations. See below for details.

15.41.3 Deprecations

• Aliases of builtin pickle functions are deprecated, in favor of their unaliased pickle.<func> names:
– numpy.loads

– numpy.core.numeric.load

– numpy.core.numeric.loads

– numpy.ma.loads, numpy.ma.dumps

– numpy.ma.load, numpy.ma.dump - these functions already failed on python 3 when called with a string.
• Multidimensional indexing with anything but a tuple is deprecated. This means that the index list in ind =
[slice(None), 0]; arr[ind] should be changed to a tuple, e.g., ind = [slice(None), 0];
arr[tuple(ind)] or arr[(slice(None), 0)]. That change is necessary to avoid ambiguity in expres-
sions such as arr[[[0, 1], [0, 1]]], currently interpreted as arr[array([0, 1]), array([0,
1])], that will be interpreted as arr[array([[0, 1], [0, 1]])] in the future.

• Imports from the following sub-modules are deprecated, they will be removed at some future date.
– numpy.testing.utils

– numpy.testing.decorators

– numpy.testing.nosetester

– numpy.testing.noseclasses

– numpy.core.umath_tests

• Giving a generator to numpy.sum is now deprecated. This was undocumented behavior, but worked. Previously,
it would calculate the sum of the generator expression. In the future, it might return a different result. Use np.
sum(np.from_iter(generator)) or the built-in Python sum instead.

• Users of the C-API should call PyArrayResolveWriteBackIfCopy or
PyArray_DiscardWritbackIfCopy on any array with the WRITEBACKIFCOPY flag set, before
deallocating the array. A deprecation warning will be emitted if those calls are not used when needed.

15.41. NumPy 1.15.0 Release Notes 405

https://docs.python.org/dev/library/pickle.html#module-pickle

NumPy User Guide, Release 1.22.0

• Users of nditer should use the nditer object as a context manager anytime one of the iterator operands is write-
able, so that numpy can manage writeback semantics, or should call it.close(). A RuntimeWarning may be
emitted otherwise in these cases.

• The normed argument of np.histogram, deprecated long ago in 1.6.0, now emits a
DeprecationWarning.

15.41.4 Future Changes

• NumPy 1.16 will drop support for Python 3.4.
• NumPy 1.17 will drop support for Python 2.7.

15.41.5 Compatibility notes

Compiled testing modules renamed and made private

The following compiled modules have been renamed and made private:
• umath_tests -> _umath_tests
• test_rational -> _rational_tests
• multiarray_tests -> _multiarray_tests
• struct_ufunc_test -> _struct_ufunc_tests
• operand_flag_tests -> _operand_flag_tests

The umath_tests module is still available for backwards compatibility, but will be removed in the future.

The NpzFile returned by np.savez is now a collections.abc.Mapping

This means it behaves like a readonly dictionary, and has a new .values() method and len() implementation.
For python 3, this means that .iteritems(), .iterkeys() have been deprecated, and .keys() and .items()
now return views and not lists. This is consistent with how the builtin dict type changed between python 2 and python
3.

Under certain conditions, nditer must be used in a context manager

When using an numpy.nditer with the "writeonly" or "readwrite" flags, there are some circumstances
where nditer doesn’t actually give you a view of the writable array. Instead, it gives you a copy, and if you make changes
to the copy, nditer later writes those changes back into your actual array. Currently, this writeback occurs when the array
objects are garbage collected, which makes this API error-prone on CPython and entirely broken on PyPy. Therefore,
nditer should now be used as a context manager whenever it is used with writeable arrays, e.g., with np.nditer(.
..) as it: You may also explicitly call it.close() for cases where a context manager is unusable, for
instance in generator expressions.

406 15. Release notes

NumPy User Guide, Release 1.22.0

Numpy has switched to using pytest instead of nose for testing

The last nose release was 1.3.7 in June, 2015, and development of that tool has ended, consequently NumPy has now
switched to using pytest. The old decorators and nose tools that were previously used by some downstream projects remain
available, but will not be maintained. The standard testing utilities, assert_almost_equal and such, are not be
affected by this change except for the nose specific functions import_nose and raises. Those functions are not
used in numpy, but are kept for downstream compatibility.

Numpy no longer monkey-patches ctypes with __array_interface__

Previously numpy added __array_interface__ attributes to all the integer types from ctypes.

np.ma.notmasked_contiguous and np.ma.flatnotmasked_contiguous always return lists

This is the documented behavior, but previously the result could be any of slice, None, or list.
All downstream users seem to check for the None result from flatnotmasked_contiguous and replace it with
[]. Those callers will continue to work as before.

np.squeeze restores old behavior of objects that cannot handle an axis argument

Prior to version 1.7.0, numpy.squeeze did not have an axis argument and all empty axes were removed by default.
The incorporation of an axis argument made it possible to selectively squeeze single or multiple empty axes, but the old
API expectation was not respected because axes could still be selectively removed (silent success) from an object expecting
all empty axes to be removed. That silent, selective removal of empty axes for objects expecting the old behavior has been
fixed and the old behavior restored.

unstructured void array’s .item method now returns a bytes object

.item now returns a bytes object instead of a buffer or byte array. This may affect code which assumed the return
value was mutable, which is no longer the case.

copy.copy and copy.deepcopy no longer turn masked into an array

Since np.ma.masked is a readonly scalar, copying should be a no-op. These functions now behave consistently with
np.copy().

Multifield Indexing of Structured Arrays will still return a copy

The change that multi-field indexing of structured arrays returns a view instead of a copy is pushed back to 1.16. A new
method numpy.lib.recfunctions.repack_fields has been introduced to help mitigate the effects of this
change, which can be used to write code compatible with both numpy 1.15 and 1.16. For more information on how to
update code to account for this future change see the “accessing multiple fields” section of the user guide.

15.41. NumPy 1.15.0 Release Notes 407

https://docs.scipy.org/doc/numpy/user/basics.rec.html

NumPy User Guide, Release 1.22.0

15.41.6 C API changes

New functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier

Functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier have been added
and should be used in place of the npy_get_floatstatus``and ``npy_clear_status functions. Opti-
mizing compilers like GCC 8.1 and Clang were rearranging the order of operations when the previous functions were
used in the ufunc SIMD functions, resulting in the floatstatus flags being checked before the operation whose status we
wanted to check was run. See #10339.

Changes to PyArray_GetDTypeTransferFunction

PyArray_GetDTypeTransferFunction now defaults to using user-defined copyswapn / copyswap for user-
defined dtypes. If this causes a significant performance hit, consider implementing copyswapn to reflect the imple-
mentation of PyArray_GetStridedCopyFn. See #10898.

15.41.7 New Features

np.gcd and np.lcm ufuncs added for integer and objects types

These compute the greatest common divisor, and lowest common multiple, respectively. These work on all the numpy
integer types, as well as the builtin arbitrary-precision Decimal and long types.

Support for cross-platform builds for iOS

The build system has been modified to add support for the _PYTHON_HOST_PLATFORM environment variable, used
by distutils when compiling on one platform for another platform. This makes it possible to compile NumPy for
iOS targets.
This only enables you to compile NumPy for one specific platform at a time. Creating a full iOS-compatible NumPy
package requires building for the 5 architectures supported by iOS (i386, x86_64, armv7, armv7s and arm64), and
combining these 5 compiled builds products into a single “fat” binary.

return_indices keyword added for np.intersect1d

New keyword return_indices returns the indices of the two input arrays that correspond to the common elements.

np.quantile and np.nanquantile

Like np.percentile and np.nanpercentile, but takes quantiles in [0, 1] rather than percentiles in [0, 100].
np.percentile is now a thin wrapper around np.quantile with the extra step of dividing by 100.

408 15. Release notes

https://github.com/numpy/numpy/issues/10370
https://github.com/numpy/numpy/pull/10898

NumPy User Guide, Release 1.22.0

Build system

Added experimental support for the 64-bit RISC-V architecture.

15.41.8 Improvements

np.einsum updates

Syncs einsum path optimization tech between numpy and opt_einsum. In particular, the greedy path has received many
enhancements by @jcmgray. A full list of issues fixed are:

• Arbitrary memory can be passed into the greedy path. Fixes gh-11210.
• The greedy path has been updated to contain more dynamic programming ideas preventing a large number of
duplicate (and expensive) calls that figure out the actual pair contraction that takes place. Now takes a few seconds
on several hundred input tensors. Useful for matrix product state theories.

• Reworks the broadcasting dot error catching found in gh-11218 gh-10352 to be a bit earlier in the process.
• Enhances the can_dot functionality that previous missed an edge case (part of gh-11308).

np.ufunc.reduce and related functions now accept an initial value

np.ufunc.reduce, np.sum, np.prod, np.min and np.max all now accept an initial keyword argument
that specifies the value to start the reduction with.

np.flip can operate over multiple axes

np.flip now accepts None, or tuples of int, in its axis argument. If axis is None, it will flip over all the axes.

histogram and histogramdd functions have moved to np.lib.histograms

These were originally found in np.lib.function_base. They are still available under their un-
scoped np.histogram(dd) names, and to maintain compatibility, aliased at np.lib.function_base.
histogram(dd).
Code that does from np.lib.function_base import * will need to be updated with the new location, and
should consider not using import * in future.

histogram will accept NaN values when explicit bins are given

Previously it would fail when trying to compute a finite range for the data. Since the range is ignored anyway when the
bins are given explicitly, this error was needless.
Note that calling histogram on NaN values continues to raise the RuntimeWarning s typical of working with nan
values, which can be silenced as usual with errstate.

15.41. NumPy 1.15.0 Release Notes 409

NumPy User Guide, Release 1.22.0

histogram works on datetime types, when explicit bin edges are given

Dates, times, and timedeltas can now be histogrammed. The bin edges must be passed explicitly, and are not yet computed
automatically.

histogram “auto” estimator handles limited variance better

No longer does an IQR of 0 result in n_bins=1, rather the number of bins chosen is related to the data size in this
situation.

The edges returned by histogram‘ and histogramdd now match the data float type

When passed np.float16, np.float32, or np.longdouble data, the returned edges are now of the same dtype.
Previously, histogram would only return the same type if explicit bins were given, and histogram would produce
float64 bins no matter what the inputs.

histogramdd allows explicit ranges to be given in a subset of axes

The range argument of numpy.histogramdd can now contain None values to indicate that the range for the
corresponding axis should be computed from the data. Previously, this could not be specified on a per-axis basis.

The normed arguments of histogramdd and histogram2d have been renamed

These arguments are now called density, which is consistent with histogram. The old argument continues to work,
but the new name should be preferred.

np.r_ works with 0d arrays, and np.ma.mr_ works with np.ma.masked

0d arrays passed to the r_ andmr_ concatenation helpers are now treated as though they are arrays of length 1. Previously,
passing these was an error. As a result, numpy.ma.mr_ now works correctly on the masked constant.

np.ptp accepts a keepdims argument, and extended axis tuples

np.ptp (peak-to-peak) can now work over multiple axes, just like np.max and np.min.

MaskedArray.astype now is identical to ndarray.astype

This means it takes all the same arguments, making more code written for ndarray work for masked array too.

410 15. Release notes

NumPy User Guide, Release 1.22.0

Enable AVX2/AVX512 at compile time

Change to simd.inc.src to allow use of AVX2 or AVX512 at compile time. Previously compilation for avx2 (or 512) with
-march=native would still use the SSE code for the simd functions even when the rest of the code got AVX2.

nan_to_num always returns scalars when receiving scalar or 0d inputs

Previously an array was returned for integer scalar inputs, which is inconsistent with the behavior for float inputs, and that
of ufuncs in general. For all types of scalar or 0d input, the result is now a scalar.

np.flatnonzero works on numpy-convertible types

np.flatnonzero now uses np.ravel(a) instead of a.ravel(), so it works for lists, tuples, etc.

np.interp returns numpy scalars rather than builtin scalars

Previously np.interp(0.5, [0, 1], [10, 20]) would return a float, but now it returns a np.float64
object, which more closely matches the behavior of other functions.
Additionally, the special case of np.interp(object_array_0d, ...) is no longer supported, as np.
interp(object_array_nd) was never supported anyway.
As a result of this change, the period argument can now be used on 0d arrays.

Allow dtype field names to be unicode in Python 2

Previously np.dtype([(u'name', float)]) would raise a TypeError in Python 2, as only bytestrings
were allowed in field names. Now any unicode string field names will be encoded with the ascii codec, raising a
UnicodeEncodeError upon failure.
This change makes it easier to write Python 2/3 compatible code using from __future__ import
unicode_literals, which previously would cause string literal field names to raise a TypeError in Python 2.

Comparison ufuncs accept dtype=object, overriding the default bool

This allows object arrays of symbolic types, which override == and other operators to return expressions, to be compared
elementwise with np.equal(a, b, dtype=object).

sort functions accept kind='stable'

Up until now, to perform a stable sort on the data, the user must do:

>>> np.sort([5, 2, 6, 2, 1], kind='mergesort')
[1, 2, 2, 5, 6]

because merge sort is the only stable sorting algorithm available in NumPy. However, having kind=’mergesort’ does not
make it explicit that the user wants to perform a stable sort thus harming the readability.
This change allows the user to specify kind=’stable’ thus clarifying the intent.

15.41. NumPy 1.15.0 Release Notes 411

NumPy User Guide, Release 1.22.0

Do not make temporary copies for in-place accumulation

When ufuncs perform accumulation they no longer make temporary copies because of the overlap between input an
output, that is, the next element accumulated is added before the accumulated result is stored in its place, hence the
overlap is safe. Avoiding the copy results in faster execution.

linalg.matrix_power can now handle stacks of matrices

Like other functions in linalg, matrix_power can now deal with arrays of dimension larger than 2, which are
treated as stacks of matrices. As part of the change, to further improve consistency, the name of the first argument has
been changed to a (from M), and the exceptions for non-square matrices have been changed to LinAlgError (from
ValueError).

Increased performance in random.permutation for multidimensional arrays

permutation uses the fast path in random.shuffle for all input array dimensions. Previously the fast path was
only used for 1-d arrays.

Generalized ufuncs now accept axes, axis and keepdims arguments

One can control over which axes a generalized ufunc operates by passing in an axes argument, a list of tuples with indices
of particular axes. For instance, for a signature of (i,j),(j,k)->(i,k) appropriate for matrix multiplication, the
base elements are two-dimensional matrices and these are taken to be stored in the two last axes of each argument.
The corresponding axes keyword would be [(-2, -1), (-2, -1), (-2, -1)]. If one wanted to use leading
dimensions instead, one would pass in [(0, 1), (0, 1), (0, 1)].
For simplicity, for generalized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted instead
of a single-element tuple, and for generalized ufuncs for which all outputs are scalars, the (empty) output tuples can be
omitted. Hence, for a signature of (i),(i)->() appropriate for an inner product, one could pass in axes=[0, 0]
to indicate that the vectors are stored in the first dimensions of the two inputs arguments.
As a short-cut for generalized ufuncs that are similar to reductions, i.e., that act on a single, shared core dimension such as
the inner product example above, one can pass an axis argument. This is equivalent to passing in axes with identical
entries for all arguments with that core dimension (e.g., for the example above, axes=[(axis,), (axis,)]).
Furthermore, like for reductions, for generalized ufuncs that have inputs that all have the same number of core dimensions
and outputs with no core dimension, one can pass in keepdims to leave a dimension with size 1 in the outputs, thus
allowing proper broadcasting against the original inputs. The location of the extra dimension can be controlled with
axes. For instance, for the inner-product example, keepdims=True, axes=[-2, -2, -2] would act on the
inner-product example, keepdims=True, axis=-2would act on the one-but-last dimension of the input arguments,
and leave a size 1 dimension in that place in the output.

float128 values now print correctly on ppc systems

Previously printing float128 values was buggy on ppc, since the special double-double floating-point-format on these
systems was not accounted for. float128s now print with correct rounding and uniqueness.
Warning to ppc users: You should upgrade glibc if it is version <=2.23, especially if using float128. On ppc, glibc’s
malloc in these version often misaligns allocated memory which can crash numpy when using float128 values.

412 15. Release notes

NumPy User Guide, Release 1.22.0

New np.take_along_axis and np.put_along_axis functions

When used on multidimensional arrays, argsort, argmin, argmax, and argpartition return arrays that are
difficult to use as indices. take_along_axis provides an easy way to use these indices to lookup values within an
array, so that:

np.take_along_axis(a, np.argsort(a, axis=axis), axis=axis)

is the same as:

np.sort(a, axis=axis)

np.put_along_axis acts as the dual operation for writing to these indices within an array.

15.42 NumPy 1.14.6 Release Notes

This is a bugfix release for bugs reported following the 1.14.5 release. The most significant fixes are:
• Fix for behavior change in ma.masked_values(shrink=True)
• Fix the new cached allocations machinery to be thread safe.

The Python versions supported in this release are 2.7 and 3.4 - 3.7. The Python 3.6 wheels on PyPI should be compatible
with all Python 3.6 versions.

15.42.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Eric Wieser
• Julian Taylor
• Matti Picus

15.42.2 Pull requests merged

A total of 4 pull requests were merged for this release.
• #11985: BUG: fix cached allocations without the GIL
• #11986: BUG: Undo behavior change in ma.masked_values(shrink=True)
• #11987: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
• #11995: TST: Add Python 3.7 testing to NumPy 1.14.

15.42. NumPy 1.14.6 Release Notes 413

https://github.com/numpy/numpy/pull/11985
https://github.com/numpy/numpy/pull/11986
https://github.com/numpy/numpy/pull/11987
https://github.com/numpy/numpy/pull/11995

NumPy User Guide, Release 1.22.0

15.43 NumPy 1.14.5 Release Notes

This is a bugfix release for bugs reported following the 1.14.4 release. The most significant fixes are:
• fixes for compilation errors on alpine and NetBSD

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built
with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized
with Cython 0.28.2 and should work for the upcoming Python 3.7.

15.43.1 Contributors

A total of 1 person contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris

15.43.2 Pull requests merged

A total of 2 pull requests were merged for this release.
• #11274: BUG: Correct use of NPY_UNUSED.
• #11294: BUG: Remove extra trailing parentheses.

15.44 NumPy 1.14.4 Release Notes

This is a bugfix release for bugs reported following the 1.14.3 release. The most significant fixes are:
• fixes for compiler instruction reordering that resulted in NaN’s not being properly propagated in np.max and np.min,
• fixes for bus faults on SPARC and older ARM due to incorrect alignment checks.

There are also improvements to printing of long doubles on PPC platforms. All is not yet perfect on that platform, the
whitespace padding is still incorrect and is to be fixed in numpy 1.15, consequently NumPy still fails some printing-related
(and other) unit tests on ppc systems. However, the printed values are now correct.
Note that NumPy will error on import if it detects incorrect float32 dot results. This problem has been seen on the Mac
when working in the Anaconda environment and is due to a subtle interaction between MKL and PyQt5. It is not strictly
a NumPy problem, but it is best that users be aware of it. See the gh-8577 NumPy issue for more information.
The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built
with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized
with Cython 0.28.2 and should work for the upcoming Python 3.7.

15.44.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Marten van Kerkwijk
• Matti Picus

414 15. Release notes

https://github.com/numpy/numpy/pull/11274
https://github.com/numpy/numpy/pull/11294

NumPy User Guide, Release 1.22.0

• Pauli Virtanen
• Ryan Soklaski +
• Sebastian Berg

15.44.2 Pull requests merged

A total of 11 pull requests were merged for this release.
• #11104: BUG: str of DOUBLE_DOUBLE format wrong on ppc64
• #11170: TST: linalg: add regression test for gh-8577
• #11174: MAINT: add sanity-checks to be run at import time
• #11181: BUG: void dtype setup checked offset not actual pointer for alignment
• #11194: BUG: Python2 doubles don’t print correctly in interactive shell.
• #11198: BUG: optimizing compilers can reorder call to npy_get_floatstatus
• #11199: BUG: reduce using SSE only warns if inside SSE loop
• #11203: BUG: Bytes delimiter/comments in genfromtxt should be decoded
• #11211: BUG: Fix reference count/memory leak exposed by better testing
• #11219: BUG: Fixes einsum broadcasting bug when optimize=True
• #11251: DOC: Document 1.14.4 release.

15.45 NumPy 1.14.3 Release Notes

This is a bugfix release for a few bugs reported following the 1.14.2 release:
• np.lib.recfunctions.fromrecords accepts a list-of-lists, until 1.15
• In python2, float types use the new print style when printing to a file
• style arg in “legacy” print mode now works for 0d arrays

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built
with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized
with Cython 0.28.2.

15.45.1 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Jonathan March +
• Malcolm Smith +
• Matti Picus
• Pauli Virtanen

15.45. NumPy 1.14.3 Release Notes 415

https://github.com/numpy/numpy/pull/11104
https://github.com/numpy/numpy/pull/11170
https://github.com/numpy/numpy/pull/11174
https://github.com/numpy/numpy/pull/11181
https://github.com/numpy/numpy/pull/11194
https://github.com/numpy/numpy/pull/11198
https://github.com/numpy/numpy/pull/11199
https://github.com/numpy/numpy/pull/11203
https://github.com/numpy/numpy/pull/11211
https://github.com/numpy/numpy/pull/11219
https://github.com/numpy/numpy/pull/11251

NumPy User Guide, Release 1.22.0

15.45.2 Pull requests merged

A total of 8 pull requests were merged for this release.
• #10862: BUG: floating types should override tp_print (1.14 backport)
• #10905: BUG: for 1.14 back-compat, accept list-of-lists in fromrecords
• #10947: BUG: ‘style’ arg to array2string broken in legacy mode (1.14…
• #10959: BUG: test, fix for missing flags[‘WRITEBACKIFCOPY’] key
• #10960: BUG: Add missing underscore to prototype in check_embedded_lapack
• #10961: BUG: Fix encoding regression in ma/bench.py (Issue #10868)
• #10962: BUG: core: fix NPY_TITLE_KEY macro on pypy
• #10974: BUG: test, fix PyArray_DiscardWritebackIfCopy…

15.46 NumPy 1.14.2 Release Notes

This is a bugfix release for some bugs reported following the 1.14.1 release. The major problems dealt with are as follows.
• Residual bugs in the new array printing functionality.
• Regression resulting in a relocation problem with shared library.
• Improved PyPy compatibility.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built
with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized
with Cython 0.26.1, which is known to not support the upcoming Python 3.7 release. People who wish to run Python 3.7
should check out the NumPy repo and try building with the, as yet, unreleased master branch of Cython.

15.46.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Eric Wieser
• Pauli Virtanen

15.46.2 Pull requests merged

A total of 5 pull requests were merged for this release.
• #10674: BUG: Further back-compat fix for subclassed array repr
• #10725: BUG: dragon4 fractional output mode adds too many trailing zeros
• #10726: BUG: Fix f2py generated code to work on PyPy
• #10727: BUG: Fix missing NPY_VISIBILITY_HIDDEN on npy_longdouble_to_PyLong
• #10729: DOC: Create 1.14.2 notes and changelog.

416 15. Release notes

https://github.com/numpy/numpy/pull/10862
https://github.com/numpy/numpy/pull/10905
https://github.com/numpy/numpy/pull/10947
https://github.com/numpy/numpy/pull/10959
https://github.com/numpy/numpy/pull/10960
https://github.com/numpy/numpy/pull/10961
https://github.com/numpy/numpy/pull/10962
https://github.com/numpy/numpy/pull/10974
https://github.com/numpy/numpy/pull/10674
https://github.com/numpy/numpy/pull/10725
https://github.com/numpy/numpy/pull/10726
https://github.com/numpy/numpy/pull/10727
https://github.com/numpy/numpy/pull/10729

NumPy User Guide, Release 1.22.0

15.47 NumPy 1.14.1 Release Notes

This is a bugfix release for some problems reported following the 1.14.0 release. The major problems fixed are the
following.

• Problems with the new array printing, particularly the printing of complex values, Please report any additional
problems that may turn up.

• Problems with np.einsum due to the new optimized=True default. Some fixes for optimization have been
applied and optimize=False is now the default.

• The sort order in np.unique when axis=<some-number> will now always be lexicographic in the subarray
elements. In previous NumPy versions there was an optimization that could result in sorting the subarrays as
unsigned byte strings.

• The change in 1.14.0 that multi-field indexing of structured arrays returns a view instead of a copy has been re-
verted but remains on track for NumPy 1.15. Affected users should read the 1.14.1 Numpy User Guide section
“basics/structured arrays/accessing multiple fields” for advice on how to manage this transition.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built
with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized
with Cython 0.26.1, which is known to not support the upcoming Python 3.7 release. People who wish to run Python 3.7
should check out the NumPy repo and try building with the, as yet, unreleased master branch of Cython.

15.47.1 Contributors

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Charles Harris
• Daniel Smith
• Dennis Weyland +
• Eric Larson
• Eric Wieser
• Jarrod Millman
• Kenichi Maehashi +
• Marten van Kerkwijk
• Mathieu Lamarre
• Sebastian Berg
• Simon Conseil
• Simon Gibbons
• xoviat

15.47. NumPy 1.14.1 Release Notes 417

NumPy User Guide, Release 1.22.0

15.47.2 Pull requests merged

A total of 36 pull requests were merged for this release.
• #10339: BUG: restrict the __config__ modifications to win32
• #10368: MAINT: Adjust type promotion in linalg.norm
• #10375: BUG: add missing paren and remove quotes from repr of fieldless…
• #10395: MAINT: Update download URL in setup.py.
• #10396: BUG: fix einsum issue with unicode input and py2
• #10397: BUG: fix error message not formatted in einsum
• #10398: DOC: add documentation about how to handle new array printing
• #10403: BUG: Set einsum optimize parameter default to False.
• #10424: ENH: Fix repr of np.record objects to match np.void types #10412
• #10425: MAINT: Update zesty to artful for i386 testing
• #10431: REL: Add 1.14.1 release notes template
• #10435: MAINT: Use ValueError for duplicate field names in lookup (backport)
• #10534: BUG: Provide a better error message for out-of-order fields
• #10536: BUG: Resize bytes columns in genfromtxt (backport of #10401)
• #10537: BUG: multifield-indexing adds padding bytes: revert for 1.14.1
• #10539: BUG: fix np.save issue with python 2.7.5
• #10540: BUG: Add missing DECREF in Py2 int() cast
• #10541: TST: Add circleci document testing to maintenance/1.14.x
• #10542: BUG: complex repr has extra spaces, missing + (1.14 backport)
• #10550: BUG: Set missing exception after malloc
• #10557: BUG: In numpy.i, clear CARRAY flag if wrapped buffer is not C_CONTIGUOUS.
• #10558: DEP: Issue FutureWarning when malformed records detected.
• #10559: BUG: Fix einsum optimize logic for singleton dimensions
• #10560: BUG: Fix calling ufuncs with a positional output argument.
• #10561: BUG: Fix various Big-Endian test failures (ppc64)
• #10562: BUG: Make dtype.descr error for out-of-order fields.
• #10563: BUG: arrays not being flattened in union1d

• #10607: MAINT: Update sphinxext submodule hash.
• #10608: BUG: Revert sort optimization in np.unique.
• #10609: BUG: infinite recursion in str of 0d subclasses
• #10610: BUG: Align type definition with generated lapack
• #10612: BUG/ENH: Improve output for structured non-void types
• #10622: BUG: deallocate recursive closure in arrayprint.py (1.14 backport)
• #10624: BUG: Correctly identify comma separated dtype strings

418 15. Release notes

https://github.com/numpy/numpy/pull/10339
https://github.com/numpy/numpy/pull/10368
https://github.com/numpy/numpy/pull/10375
https://github.com/numpy/numpy/pull/10395
https://github.com/numpy/numpy/pull/10396
https://github.com/numpy/numpy/pull/10397
https://github.com/numpy/numpy/pull/10398
https://github.com/numpy/numpy/pull/10403
https://github.com/numpy/numpy/pull/10424
https://github.com/numpy/numpy/pull/10425
https://github.com/numpy/numpy/pull/10431
https://github.com/numpy/numpy/pull/10435
https://github.com/numpy/numpy/pull/10534
https://github.com/numpy/numpy/pull/10536
https://github.com/numpy/numpy/pull/10537
https://github.com/numpy/numpy/pull/10539
https://github.com/numpy/numpy/pull/10540
https://github.com/numpy/numpy/pull/10541
https://github.com/numpy/numpy/pull/10542
https://github.com/numpy/numpy/pull/10550
https://github.com/numpy/numpy/pull/10557
https://github.com/numpy/numpy/pull/10558
https://github.com/numpy/numpy/pull/10559
https://github.com/numpy/numpy/pull/10560
https://github.com/numpy/numpy/pull/10561
https://github.com/numpy/numpy/pull/10562
https://github.com/numpy/numpy/pull/10563
https://github.com/numpy/numpy/pull/10607
https://github.com/numpy/numpy/pull/10608
https://github.com/numpy/numpy/pull/10609
https://github.com/numpy/numpy/pull/10610
https://github.com/numpy/numpy/pull/10612
https://github.com/numpy/numpy/pull/10622
https://github.com/numpy/numpy/pull/10624

NumPy User Guide, Release 1.22.0

• #10629: BUG: deallocate recursive closure in arrayprint.py (backport…
• #10630: REL: Prepare for 1.14.1 release.

15.48 NumPy 1.14.0 Release Notes

Numpy 1.14.0 is the result of seven months of work and contains a large number of bug fixes and new features, along with
several changes with potential compatibility issues. The major change that users will notice are the stylistic changes in
the way numpy arrays and scalars are printed, a change that will affect doctests. See below for details on how to preserve
the old style printing when needed.
A major decision affecting future development concerns the schedule for dropping Python 2.7 support in the runup to
2020. The decision has been made to support 2.7 for all releases made in 2018, with the last release being designated a
long term release with support for bug fixes extending through 2019. In 2019 support for 2.7 will be dropped in all new
releases. More details can be found in NEP 12.
This release supports Python 2.7 and 3.4 - 3.6.

15.48.1 Highlights

• The np.einsum function uses BLAS when possible
• genfromtxt, loadtxt, fromregex and savetxt can now handle files with arbitrary Python supported
encoding.

• Major improvements to printing of NumPy arrays and scalars.

15.48.2 New functions

• parametrize: decorator added to numpy.testing
• chebinterpolate: Interpolate function at Chebyshev points.
• format_float_positional and format_float_scientific : format floating-point scalars unam-
biguously with control of rounding and padding.

• PyArray_ResolveWritebackIfCopy and PyArray_SetWritebackIfCopyBase, new C-API
functions useful in achieving PyPy compatibility.

15.48.3 Deprecations

• Using np.bool_ objects in place of integers is deprecated. Previously operator.index(np.bool_) was
legal and allowed constructs such as [1, 2, 3][np.True_]. That was misleading, as it behaved differently
from np.array([1, 2, 3])[np.True_].

• Truth testing of an empty array is deprecated. To check if an array is not empty, use array.size > 0.
• Calling np.bincount with minlength=None is deprecated. minlength=0 should be used instead.
• Calling np.fromstring with the default value of the sep argument is deprecated. When that argument is not
provided, a broken version of np.frombuffer is used that silently accepts unicode strings and – after encoding
them as either utf-8 (python 3) or the default encoding (python 2) – treats them as binary data. If reading binary
data is desired, np.frombuffer should be used directly.

• The style option of array2string is deprecated in non-legacy printing mode.

15.48. NumPy 1.14.0 Release Notes 419

https://github.com/numpy/numpy/pull/10629
https://github.com/numpy/numpy/pull/10630
http://www.numpy.org/neps/nep-0014-dropping-python2.7-proposal.html

NumPy User Guide, Release 1.22.0

• PyArray_SetUpdateIfCopyBase has been deprecated. For NumPy versions >= 1.14 use
PyArray_SetWritebackIfCopyBase instead, see C API changes below for more details.

• The use of UPDATEIFCOPY arrays is deprecated, see C API changes below for details. We will not be dropping
support for those arrays, but they are not compatible with PyPy.

15.48.4 Future Changes

• np.issubdtype will stop downcasting dtype-like arguments. It might be expected that issubdtype(np.
float32, 'float64') and issubdtype(np.float32, np.float64)mean the same thing - how-
ever, there was an undocumented special case that translated the former into issubdtype(np.float32,
np.floating), giving the surprising result of True.
This translation now gives a warning that explains what translation is occurring. In the future, the translation will
be disabled, and the first example will be made equivalent to the second.

• np.linalg.lstsq default for rcond will be changed. The rcond parameter to np.linalg.lstsq will
change its default to machine precision times the largest of the input array dimensions. A FutureWarning is issued
when rcond is not passed explicitly.

• a.flat.__array__() will return a writeable copy of a when a is non-contiguous. Previously it returned
an UPDATEIFCOPY array when a was writeable. Currently it returns a non-writeable copy. See gh-7054 for a
discussion of the issue.

• Unstructured void array’s .item method will return a bytes object. In the future, calling .item() on arrays or
scalars of np.void datatype will return a bytes object instead of a buffer or int array, the same as returned
by bytes(void_scalar). This may affect code which assumed the return value was mutable, which will no
longer be the case. A FutureWarning is now issued when this would occur.

15.48.5 Compatibility notes

The mask of a masked array view is also a view rather than a copy

There was a FutureWarning about this change in NumPy 1.11.x. In short, it is now the case that, when changing a view of
a masked array, changes to the mask are propagated to the original. That was not previously the case. This change affects
slices in particular. Note that this does not yet work properly if the mask of the original array is nomask and the mask
of the view is changed. See gh-5580 for an extended discussion. The original behavior of having a copy of the mask can
be obtained by calling the unshare_mask method of the view.

np.ma.masked is no longer writeable

Attempts to mutate the masked constant now error, as the underlying arrays are marked readonly. In the past, it was
possible to get away with:

emulating a function that sometimes returns np.ma.masked
val = random.choice([np.ma.masked, 10])
var_arr = np.asarray(val)
val_arr += 1 # now errors, previously changed np.ma.masked.data

420 15. Release notes

NumPy User Guide, Release 1.22.0

np.ma functions producing fill_value s have changed

Previously, np.ma.default_fill_value would return a 0d array, but np.ma.minimum_fill_value and
np.ma.maximum_fill_value would return a tuple of the fields. Instead, all three methods return a structured
np.void object, which is what you would already find in the .fill_value attribute.
Additionally, the dtype guessing now matches that of np.array - so when passing a python scalar x,
maximum_fill_value(x) is always the same as maximum_fill_value(np.array(x)). Previously x =
long(1) on Python 2 violated this assumption.

a.flat.__array__() returns non-writeable arrays when a is non-contiguous

The intent is that the UPDATEIFCOPY array previously returned when a was non-contiguous will be replaced by a
writeable copy in the future. This temporary measure is aimed to notify folks who expect the underlying array be modified
in this situation that that will no longer be the case. The most likely places for this to be noticed is when expressions of
the form np.asarray(a.flat) are used, or when a.flat is passed as the out parameter to a ufunc.

np.tensordot now returns zero array when contracting over 0-length dimension

Previously np.tensordot raised a ValueError when contracting over 0-length dimension. Now it returns a zero array,
which is consistent with the behaviour of np.dot and np.einsum.

numpy.testing reorganized

This is not expected to cause problems, but possibly something has been left out. If you experience an unexpected import
problem using numpy.testing let us know.

np.asfarray no longer accepts non-dtypes through the dtype argument

This previously would accept dtype=some_array, with the implied semantics of dtype=some_array.dtype.
This was undocumented, unique across the numpy functions, and if used would likely correspond to a typo.

1D np.linalg.norm preserves float input types, even for arbitrary orders

Previously, this would promote to float64 when arbitrary orders were passed, despite not doing so under the simple
cases:

>>> f32 = np.float32([[1, 2]])
>>> np.linalg.norm(f32, 2.0, axis=-1).dtype
dtype('float32')
>>> np.linalg.norm(f32, 2.0001, axis=-1).dtype
dtype('float64') # numpy 1.13
dtype('float32') # numpy 1.14

This change affects only float32 and float16 arrays.

15.48. NumPy 1.14.0 Release Notes 421

NumPy User Guide, Release 1.22.0

count_nonzero(arr, axis=()) now counts over no axes, not all axes

Elsewhere, axis==() is always understood as “no axes”, but count_nonzero had a special case to treat this as “all axes”.
This was inconsistent and surprising. The correct way to count over all axes has always been to pass axis == None.

__init__.py files added to test directories

This is for pytest compatibility in the case of duplicate test file names in the different directories. As a result,
run_module_suite no longer works, i.e., python <path-to-test-file> results in an error.

.astype(bool) on unstructured void arrays now calls bool on each element

On Python 2, void_array.astype(bool) would always return an array of True, unless the dtype is V0. On
Python 3, this operation would usually crash. Going forwards, astype matches the behavior of bool(np.void), con-
sidering a buffer of all zeros as false, and anything else as true. Checks for V0 can still be done with arr.dtype.
itemsize == 0.

MaskedArray.squeeze never returns np.ma.masked

np.squeeze is documented as returning a view, but the masked variant would sometimes return masked, which is
not a view. This has been fixed, so that the result is always a view on the original masked array. This breaks any code that
used masked_arr.squeeze() is np.ma.masked, but fixes code that writes to the result of squeeze().

Renamed first parameter of can_cast from from to from_

The previous parameter name from is a reserved keyword in Python, which made it difficult to pass the argument by
name. This has been fixed by renaming the parameter to from_.

isnat raises TypeError when passed wrong type

The ufunc isnat used to raise a ValueError when it was not passed variables of type datetime or timedelta.
This has been changed to raising a TypeError.

dtype.__getitem__ raises TypeError when passed wrong type

When indexed with a float, the dtype object used to raise ValueError.

User-defined types now need to implement __str__ and __repr__

Previously, user-defined types could fall back to a default implementation of __str__ and __repr__ implemented in
numpy, but this has now been removed. Now user-defined types will fall back to the python default object.__str__
and object.__repr__.

422 15. Release notes

NumPy User Guide, Release 1.22.0

Many changes to array printing, disableable with the new “legacy” printing mode

The str and repr of ndarrays and numpy scalars have been changed in a variety of ways. These changes are likely to
break downstream user’s doctests.
These new behaviors can be disabled to mostly reproduce numpy 1.13 behavior by enabling the new 1.13 “legacy” print-
ing mode. This is enabled by calling np.set_printoptions(legacy="1.13"), or using the new legacy
argument to np.array2string, as np.array2string(arr, legacy='1.13').
In summary, the major changes are:

• For floating-point types:
– The repr of float arrays often omits a space previously printed in the sign position. See the new sign option
to np.set_printoptions.

– Floating-point arrays and scalars use a new algorithm for decimal representations, giving the shortest
unique representation. This will usually shorten float16 fractional output, and sometimes float32
and float128 output. float64 should be unaffected. See the new floatmode option to np.
set_printoptions.

– Float arrays printed in scientific notation no longer use fixed-precision, and now instead show the shortest
unique representation.

– The str of floating-point scalars is no longer truncated in python2.
• For other data types:

– Non-finite complex scalars print like nanj instead of nan*j.
– NaT values in datetime arrays are now properly aligned.
– Arrays and scalars of np.void datatype are now printed using hex notation.

• For line-wrapping:
– The “dtype” part of ndarray reprs will now be printed on the next line if there isn’t space on the last line of
array output.

– The linewidth format option is now always respected. The repr or str of an array will never exceed this,
unless a single element is too wide.

– The last line of an array string will never have more elements than earlier lines.
– An extra space is no longer inserted on the first line if the elements are too wide.

• For summarization (the use of ... to shorten long arrays):
– A trailing comma is no longer inserted for str. Previously, str(np.arange(1001)) gave '[0 1
2 ..., 998 999 1000]', which has an extra comma.

– For arrays of 2-D and beyond, when ... is printed on its own line in order to summarize any but the last
axis, newlines are now appended to that line to match its leading newlines and a trailing space character is
removed.

• MaskedArray arrays now separate printed elements with commas, always print the dtype, and correctly wrap
the elements of long arrays to multiple lines. If there is more than 1 dimension, the array attributes are now printed
in a new “left-justified” printing style.

• recarray arrays no longer print a trailing space before their dtype, and wrap to the right number of columns.
• 0d arrays no longer have their own idiosyncratic implementations of str and repr. The style argument to
np.array2string is deprecated.

• Arrays of bool datatype will omit the datatype in the repr.

15.48. NumPy 1.14.0 Release Notes 423

NumPy User Guide, Release 1.22.0

• User-defined dtypes (subclasses of np.generic) now need to implement __str__ and __repr__.
Some of these changes are described in more detail below. If you need to retain the previous behavior for doctests or
other reasons, you may want to do something like:

FIXME: We need the str/repr formatting used in Numpy < 1.14.
try:

np.set_printoptions(legacy='1.13')
except TypeError:

pass

15.48.6 C API changes

PyPy compatible alternative to UPDATEIFCOPY arrays

UPDATEIFCOPY arrays are contiguous copies of existing arrays, possibly with different dimensions, whose contents are
copied back to the original array when their refcount goes to zero and they are deallocated. Because PyPy does not use
refcounts, they do not function correctly with PyPy. NumPy is in the process of eliminating their use internally and two
new C-API functions,

• PyArray_SetWritebackIfCopyBase

• PyArray_ResolveWritebackIfCopy,
have been added together with a complementary flag, NPY_ARRAY_WRITEBACKIFCOPY. Using the new function-
ality also requires that some flags be changed when new arrays are created, to wit: NPY_ARRAY_INOUT_ARRAY
should be replaced by NPY_ARRAY_INOUT_ARRAY2 and NPY_ARRAY_INOUT_FARRAY should be replaced by
NPY_ARRAY_INOUT_FARRAY2. Arrays created with these new flags will then have the WRITEBACKIFCOPY se-
mantics.
If PyPy compatibility is not a concern, these new functions can be ignored, although there will be a
DeprecationWarning. If you do wish to pursue PyPy compatibility, more information on these functions and
their use may be found in the c-api documentation and the example in how-to-extend.

15.48.7 New Features

Encoding argument for text IO functions

genfromtxt, loadtxt, fromregex and savetxt can now handle files with arbitrary encoding supported by
Python via the encoding argument. For backward compatibility the argument defaults to the special bytes value which
continues to treat text as raw byte values and continues to pass latin1 encoded bytes to custom converters. Using any other
value (including None for system default) will switch the functions to real text IO so one receives unicode strings instead
of bytes in the resulting arrays.

424 15. Release notes

https://github.com/numpy/numpy/blob/master/doc/source/reference/c-api.array.rst
https://github.com/numpy/numpy/blob/master/doc/source/user/c-info.how-to-extend.rst

NumPy User Guide, Release 1.22.0

External nose plugins are usable by numpy.testing.Tester

numpy.testing.Tester is now aware of nose plugins that are outside the nose built-in ones. This allows using,
for example, nose-timer like so: np.test(extra_argv=['--with-timer', '--timer-top-n',
'20']) to obtain the runtime of the 20 slowest tests. An extra keyword timer was also added to Tester.test, so
np.test(timer=20) will also report the 20 slowest tests.

parametrize decorator added to numpy.testing

A basic parametrize decorator is now available in numpy.testing. It is intended to allow rewriting yield based
tests that have been deprecated in pytest so as to facilitate the transition to pytest in the future. The nose testing framework
has not been supported for several years and looks like abandonware.
The new parametrize decorator does not have the full functionality of the one in pytest. It doesn’t work for classes,
doesn’t support nesting, and does not substitute variable names. Even so, it should be adequate to rewrite the NumPy
tests.

chebinterpolate function added to numpy.polynomial.chebyshev

The new chebinterpolate function interpolates a given function at the Chebyshev points of the first kind. A new
Chebyshev.interpolate class method adds support for interpolation over arbitrary intervals using the scaled and
shifted Chebyshev points of the first kind.

Support for reading lzma compressed text files in Python 3

With Python versions containing the lzma module the text IO functions can now transparently read from files with xz
or lzma extension.

sign option added to np.setprintoptions and np.array2string

This option controls printing of the sign of floating-point types, and may be one of the characters ‘-’, ‘+’ or ‘ ‘. With ‘+’
numpy always prints the sign of positive values, with ‘ ‘ it always prints a space (whitespace character) in the sign position
of positive values, and with ‘-’ it will omit the sign character for positive values. The new default is ‘-‘.
This new default changes the float output relative to numpy 1.13. The old behavior can be obtained in 1.13 “legacy”
printing mode, see compatibility notes above.

hermitian option added to“np.linalg.matrix_rank“

The new hermitian option allows choosing between standard SVD basedmatrix rank calculation and the more efficient
eigenvalue based method for symmetric/hermitian matrices.

15.48. NumPy 1.14.0 Release Notes 425

NumPy User Guide, Release 1.22.0

threshold and edgeitems options added to np.array2string

These options could previously be controlled using np.set_printoptions, but now can be changed on a per-call
basis as arguments to np.array2string.

concatenate and stack gained an out argument

A preallocated buffer of the desired dtype can now be used for the output of these functions.

Support for PGI flang compiler on Windows

The PGI flang compiler is a Fortran front end for LLVM released by NVIDIA under the Apache 2 license. It can be
invoked by

python setup.py config --compiler=clang --fcompiler=flang install

There is little experience with this new compiler, so any feedback from people using it will be appreciated.

15.48.8 Improvements

Numerator degrees of freedom in random.noncentral_f need only be positive.

Prior to NumPy 1.14.0, the numerator degrees of freedom needed to be > 1, but the distribution is valid for values > 0,
which is the new requirement.

The GIL is released for all np.einsum variations

Some specific loop structures which have an accelerated loop version did not release the GIL prior to NumPy 1.14.0.
This oversight has been fixed.

The np.einsum function will use BLAS when possible and optimize by default

The np.einsum function will now call np.tensordot when appropriate. Because np.tensordot uses BLAS
when possible, that will speed up execution. By default, np.einsum will also attempt optimization as the overhead is
small relative to the potential improvement in speed.

f2py now handles arrays of dimension 0

f2py now allows for the allocation of arrays of dimension 0. This allows for more consistent handling of corner cases
downstream.

426 15. Release notes

NumPy User Guide, Release 1.22.0

numpy.distutils supports using MSVC and mingw64-gfortran together

Numpy distutils now supports using Mingw64 gfortran and MSVC compilers together. This enables the production of
Python extension modules onWindows containing Fortran code while retaining compatibility with the binaries distributed
by Python.org. Not all use cases are supported, but most common ways to wrap Fortran for Python are functional.
Compilation in this mode is usually enabled automatically, and can be selected via the --fcompiler and
--compiler options to setup.py. Moreover, linking Fortran codes to static OpenBLAS is supported; by default a
gfortran compatible static archive openblas.a is looked for.

np.linalg.pinv now works on stacked matrices

Previously it was limited to a single 2d array.

numpy.save aligns data to 64 bytes instead of 16

Saving NumPy arrays in the npy format with numpy.save inserts padding before the array data to align it at 64 bytes.
Previously this was only 16 bytes (and sometimes less due to a bug in the code for version 2). Now the alignment is 64
bytes, which matches the widest SIMD instruction set commonly available, and is also the most common cache line size.
This makes npy files easier to use in programs which open them with mmap, especially on Linux where an mmap offset
must be a multiple of the page size.

NPZ files now can be written without using temporary files

In Python 3.6+ numpy.savez and numpy.savez_compressed now write directly to a ZIP file, without creating
intermediate temporary files.

Better support for empty structured and string types

Structured types can contain zero fields, and string dtypes can contain zero characters. Zero-length strings still cannot be
created directly, and must be constructed through structured dtypes:

str0 = np.empty(10, np.dtype([('v', str, N)]))['v']
void0 = np.empty(10, np.void)

It was always possible to work with these, but the following operations are now supported for these arrays:
• arr.sort()

• arr.view(bytes)

• arr.resize(…)

• pickle.dumps(arr)

15.48. NumPy 1.14.0 Release Notes 427

NumPy User Guide, Release 1.22.0

Support for decimal.Decimal in np.lib.financial

Unless otherwise stated all functions within the financial package now support using the decimal.Decimal
built-in type.

Float printing now uses “dragon4” algorithm for shortest decimal representation

The str and repr of floating-point values (16, 32, 64 and 128 bit) are now printed to give the shortest decimal repre-
sentation which uniquely identifies the value from others of the same type. Previously this was only true for float64
values. The remaining float types will now often be shorter than in numpy 1.13. Arrays printed in scientific notation now
also use the shortest scientific representation, instead of fixed precision as before.

Additionally, the str of float scalars scalars will no longer be truncated in python2, unlike python2 float‘s.
‘np.double scalars now have a str and repr identical to that of a python3 float.

New functions np.format_float_scientific and np.format_float_positional are provided to gen-
erate these decimal representations.
A new option floatmode has been added to np.set_printoptions and np.array2string, which gives
control over uniqueness and rounding of printed elements in an array. The new default is floatmode='maxprec'
with precision=8, which will print at most 8 fractional digits, or fewer if an element can be uniquely represented with
fewer. A useful new mode is floatmode="unique", which will output enough digits to specify the array elements
uniquely.
Numpy complex-floating-scalars with values like inf*j or nan*j now print as infj and nanj, like the pure-python
complex type.
The FloatFormat and LongFloatFormat classes are deprecated and should both be replaced by
FloatingFormat. Similarly ComplexFormat and LongComplexFormat should be replaced by
ComplexFloatingFormat.

void datatype elements are now printed in hex notation

A hex representation compatible with the python bytes type is now printed for unstructured np.void elements, e.g.,
V4 datatype. Previously, in python2 the raw void data of the element was printed to stdout, or in python3 the integer byte
values were shown.

printing style for void datatypes is now independently customizable

The printing style of np.void arrays is now independently customizable using the formatter argument to np.
set_printoptions, using the 'void' key, instead of the catch-all numpystr key as before.

Reduced memory usage of np.loadtxt

np.loadtxt now reads files in chunks instead of all at once which decreases its memory usage significantly for large
files.

428 15. Release notes

NumPy User Guide, Release 1.22.0

15.48.9 Changes

Multiple-field indexing/assignment of structured arrays

The indexing and assignment of structured arrays with multiple fields has changed in a number of ways, as warned about
in previous releases.
First, indexing a structured array with multiple fields, e.g., arr[['f1', 'f3']], returns a view into the original array
instead of a copy. The returned view will have extra padding bytes corresponding to intervening fields in the original array,
unlike the copy in 1.13, which will affect code such as arr[['f1', 'f3']].view(newdtype).
Second, assignment between structured arrays will now occur “by position” instead of “by field name”. The Nth field of
the destination will be set to the Nth field of the source regardless of field name, unlike in numpy versions 1.6 to 1.13 in
which fields in the destination array were set to the identically-named field in the source array or to 0 if the source did not
have a field.
Correspondingly, the order of fields in a structured dtypes now matters when computing dtype equality. For example,
with the dtypes

x = dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]})
y = dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]})

the expression x == y will now return False, unlike before. This makes dictionary based dtype specifications like
dtype({'a': ('i4', 0), 'b': ('f4', 4)}) dangerous in python < 3.6 since dict key order is not pre-
served in those versions.
Assignment from a structured array to a boolean array now raises a ValueError, unlike in 1.13, where it always set the
destination elements to True.
Assignment from structured array with more than one field to a non-structured array now raises a ValueError. In 1.13
this copied just the first field of the source to the destination.
Using field “titles” in multiple-field indexing is now disallowed, as is repeating a field name in a multiple-field index.
The documentation for structured arrays in the user guide has been significantly updated to reflect these changes.

Integer and Void scalars are now unaffected by np.set_string_function

Previously, unlike most other numpy scalars, the str and repr of integer and void scalars could be controlled by
np.set_string_function. This is no longer possible.

0d array printing changed, style arg of array2string deprecated

Previously the str and repr of 0d arrays had idiosyncratic implementations which returned str(a.item()) and
'array(' + repr(a.item()) + ')' respectively for 0d array a, unlike both numpy scalars and higher dimen-
sion ndarrays.
Now, the str of a 0d array acts like a numpy scalar using str(a[()]) and the repr acts like higher dimension arrays
using formatter(a[()]), where formatter can be specified using np.set_printoptions. The style
argument of np.array2string is deprecated.
This new behavior is disabled in 1.13 legacy printing mode, see compatibility notes above.

15.48. NumPy 1.14.0 Release Notes 429

NumPy User Guide, Release 1.22.0

Seeding RandomState using an array requires a 1-d array

RandomState previously would accept empty arrays or arrays with 2 or more dimensions, which resulted in either a
failure to seed (empty arrays) or for some of the passed values to be ignored when setting the seed.

MaskedArray objects show a more useful repr

The repr of a MaskedArray is now closer to the python code that would produce it, with arrays now being shown
with commas and dtypes. Like the other formatting changes, this can be disabled with the 1.13 legacy printing mode in
order to help transition doctests.

The repr of np.polynomial classes is more explicit

It now shows the domain and window parameters as keyword arguments to make them more clear:

>>> np.polynomial.Polynomial(range(4))
Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])

15.49 NumPy 1.13.3 Release Notes

This is a bugfix release for some problems found since 1.13.1. The most important fixes are for CVE-2017-12852 and
temporary elision. Users of earlier versions of 1.13 should upgrade.
The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python
3.6.2 and should be compatible with all previous versions of Python 3.6. It was cythonized with Cython 0.26.1, which
should be free of the bugs found in 0.27 while also being compatible with Python 3.7-dev. The Windows wheels were
built with OpenBlas instead ATLAS, which should improve the performance of the linear algebra functions.
The NumPy 1.13.3 release is a re-release of 1.13.2, which suffered from a bug in Cython 0.27.0.

15.49.1 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Brandon Carter
• Charles Harris
• Eric Wieser
• Iryna Shcherbina +
• James Bourbeau +
• Jonathan Helmus
• Julian Taylor
• Matti Picus
• Michael Lamparski +
• Michael Seifert
• Ralf Gommers

430 15. Release notes

NumPy User Guide, Release 1.22.0

15.49.2 Pull requests merged

A total of 22 pull requests were merged for this release.
• #9390 BUG: Return the poly1d coefficients array directly
• #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
• #9556 BUG: Fix true_divide when dtype=np.float64 specified.
• #9557 DOC: Fix some rst markup in numpy/doc/basics.py.
• #9558 BLD: Remove -xhost flag from IntelFCompiler.
• #9559 DOC: Removes broken docstring example (source code, png, pdf)…
• #9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
• #9732 BUG: Make scalar function elision check if temp is writeable.
• #9736 BUG: Various fixes to np.gradient
• #9742 BUG: Fix np.pad for CVE-2017-12852
• #9744 BUG: Check for exception in sort functions, add tests
• #9745 DOC: Add whitespace after “versionadded::” directive so it actually…
• #9746 BUG: Memory leak in np.dot of size 0
• #9747 BUG: Adjust gfortran version search regex
• #9757 BUG: Cython 0.27 breaks NumPy on Python 3.
• #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed.
• #9765 BUG: PyArray_CountNonzero does not check for exceptions
• #9766 BUG: Fixes histogram monotonicity check for unsigned bin values
• #9767 BUG: Ensure consistent result dtype of count_nonzero
• #9771 BUG: MAINT: Fix mtrand for Cython 0.27.
• #9772 DOC: Create the 1.13.2 release notes.
• #9794 DOC: Create 1.13.3 release notes.

15.50 NumPy 1.13.2 Release Notes

This is a bugfix release for some problems found since 1.13.1. The most important fixes are for CVE-2017-12852 and
temporary elision. Users of earlier versions of 1.13 should upgrade.
The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2
and should be compatible with all previous versions of Python 3.6. The Windows wheels are now built with OpenBlas
instead ATLAS, which should improve the performance of the linear algebra functions.

15.50. NumPy 1.13.2 Release Notes 431

NumPy User Guide, Release 1.22.0

15.50.1 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Allan Haldane
• Brandon Carter
• Charles Harris
• Eric Wieser
• Iryna Shcherbina +
• James Bourbeau +
• Jonathan Helmus
• Julian Taylor
• Matti Picus
• Michael Lamparski +
• Michael Seifert
• Ralf Gommers

15.50.2 Pull requests merged

A total of 20 pull requests were merged for this release.
• #9390 BUG: Return the poly1d coefficients array directly
• #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
• #9556 BUG: Fix true_divide when dtype=np.float64 specified.
• #9557 DOC: Fix some rst markup in numpy/doc/basics.py.
• #9558 BLD: Remove -xhost flag from IntelFCompiler.
• #9559 DOC: Removes broken docstring example (source code, png, pdf)…
• #9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
• #9732 BUG: Make scalar function elision check if temp is writeable.
• #9736 BUG: Various fixes to np.gradient
• #9742 BUG: Fix np.pad for CVE-2017-12852
• #9744 BUG: Check for exception in sort functions, add tests
• #9745 DOC: Add whitespace after “versionadded::” directive so it actually…
• #9746 BUG: Memory leak in np.dot of size 0
• #9747 BUG: Adjust gfortran version search regex
• #9757 BUG: Cython 0.27 breaks NumPy on Python 3.
• #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed.
• #9765 BUG: PyArray_CountNonzero does not check for exceptions
• #9766 BUG: Fixes histogram monotonicity check for unsigned bin values

432 15. Release notes

NumPy User Guide, Release 1.22.0

• #9767 BUG: Ensure consistent result dtype of count_nonzero
• #9771 BUG, MAINT: Fix mtrand for Cython 0.27.

15.51 NumPy 1.13.1 Release Notes

This is a bugfix release for problems found in 1.13.0. The major changes are fixes for the new memory overlap detection
and temporary elision as well as reversion of the removal of the boolean binary - operator. Users of 1.13.0 should
upgrade.
Thr Python versions supported are 2.7 and 3.4 - 3.6. Note that the Python 3.6 wheels available from PIP are built against
3.6.1, hence will not work when used with 3.6.0 due to Python bug 29943. NumPy 1.13.2 will be released shortly after
Python 3.6.2 is out to fix that problem. If you are using 3.6.0 the workaround is to upgrade to 3.6.1 or use an earlier
Python version.

15.51.1 Pull requests merged

A total of 19 pull requests were merged for this release.
• #9240 DOC: BLD: fix lots of Sphinx warnings/errors.
• #9255 Revert “DEP: Raise TypeError for subtract(bool, bool).”
• #9261 BUG: don’t elide into readonly and updateifcopy temporaries for…
• #9262 BUG: fix missing keyword rename for common block in numpy.f2py
• #9263 BUG: handle resize of 0d array
• #9267 DOC: update f2py front page and some doc build metadata.
• #9299 BUG: Fix Intel compilation on Unix.
• #9317 BUG: fix wrong ndim used in empty where check
• #9319 BUG: Make extensions compilable with MinGW on Py2.7
• #9339 BUG: Prevent crash if ufunc doc string is null
• #9340 BUG: umath: un-break ufunc where= when no out= is given
• #9371 DOC: Add isnat/positive ufunc to documentation
• #9372 BUG: Fix error in fromstring function from numpy.core.records…
• #9373 BUG: ‘)’ is printed at the end pointer of the buffer in numpy.f2py.
• #9374 DOC: Create NumPy 1.13.1 release notes.
• #9376 BUG: Prevent hang traversing ufunc userloop linked list
• #9377 DOC: Use x1 and x2 in the heaviside docstring.
• #9378 DOC: Add $PARAMS to the isnat docstring
• #9379 DOC: Update the 1.13.1 release notes

15.51. NumPy 1.13.1 Release Notes 433

https://bugs.python.org/issue29943

NumPy User Guide, Release 1.22.0

15.51.2 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Andras Deak +
• Bob Eldering +
• Charles Harris
• Daniel Hrisca +
• Eric Wieser
• Joshua Leahy +
• Julian Taylor
• Michael Seifert
• Pauli Virtanen
• Ralf Gommers
• Roland Kaufmann
• Warren Weckesser

15.52 NumPy 1.13.0 Release Notes

This release supports Python 2.7 and 3.4 - 3.6.

15.52.1 Highlights

• Operations like a + b + c will reuse temporaries on some platforms, resulting in less memory use and faster
execution.

• Inplace operations check if inputs overlap outputs and create temporaries to avoid problems.
• New __array_ufunc__ attribute provides improved ability for classes to override default ufunc behavior.
• New np.block function for creating blocked arrays.

15.52.2 New functions

• New np.positive ufunc.
• New np.divmod ufunc provides more efficient divmod.
• New np.isnat ufunc tests for NaT special values.
• New np.heaviside ufunc computes the Heaviside function.
• New np.isin function, improves on in1d.
• New np.block function for creating blocked arrays.
• New PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API.

See below for details.

434 15. Release notes

NumPy User Guide, Release 1.22.0

15.52.3 Deprecations

• Calling np.fix, np.isposinf, and np.isneginf with f(x, y=out) is deprecated - the argument
should be passed as f(x, out=out), which matches other ufunc-like interfaces.

• Use of the C-API NPY_CHAR type number deprecated since version 1.7 will now raise deprecation warnings at
runtime. Extensions built with older f2py versions need to be recompiled to remove the warning.

• np.ma.argsort, np.ma.minimum.reduce, and np.ma.maximum.reduce should be called with an
explicit axis argument when applied to arrays with more than 2 dimensions, as the default value of this argument
(None) is inconsistent with the rest of numpy (-1, 0, and 0, respectively).

• np.ma.MaskedArray.mini is deprecated, as it almost duplicates the functionality of np.MaskedArray.
min. Exactly equivalent behaviour can be obtained with np.ma.minimum.reduce.

• The single-argument form of np.ma.minimum and np.ma.maximum is deprecated. np.maximum. np.
ma.minimum(x) should now be spelt np.ma.minimum.reduce(x), which is consistent with how this
would be done with np.minimum.

• Calling ndarray.conjugate on non-numeric dtypes is deprecated (it should match the behavior of np.
conjugate, which throws an error).

• Calling expand_dims when the axis keyword does not satisfy -a.ndim - 1 <= axis <= a.ndim,
where a is the array being reshaped, is deprecated.

15.52.4 Future Changes

• Assignment between structured arrays with different field names will change in NumPy 1.14. Previously, fields
in the dst would be set to the value of the identically-named field in the src. In numpy 1.14 fields will instead
be assigned ‘by position’: The n-th field of the dst will be set to the n-th field of the src array. Note that the
FutureWarning raised in NumPy 1.12 incorrectly reported this change as scheduled for NumPy 1.13 rather
than NumPy 1.14.

15.52.5 Build System Changes

• numpy.distutils now automatically determines C-file dependencies with GCC compatible compilers.

15.52.6 Compatibility notes

Error type changes

• numpy.hstack() now throws ValueError instead of IndexError when input is empty.
• Functions taking an axis argument, when that argument is out of range, now throw np.AxisError instead of
a mixture of IndexError and ValueError. For backwards compatibility, AxisError subclasses both of
these.

15.52. NumPy 1.13.0 Release Notes 435

NumPy User Guide, Release 1.22.0

Tuple object dtypes

Support has been removed for certain obscure dtypes that were unintentionally allowed, of the form (old_dtype,
new_dtype), where either of the dtypes is or contains the object dtype. As an exception, dtypes of the form
(object, [('name', object)]) are still supported due to evidence of existing use.

DeprecationWarning to error

See Changes section for more detail.
• partition, TypeError when non-integer partition index is used.
• NpyIter_AdvancedNew, ValueError when oa_ndim == 0 and op_axes is NULL
• negative(bool_), TypeError when negative applied to booleans.
• subtract(bool_, bool_), TypeError when subtracting boolean from boolean.
• np.equal, np.not_equal, object identity doesn’t override failed comparison.
• np.equal, np.not_equal, object identity doesn’t override non-boolean comparison.
• Deprecated boolean indexing behavior dropped. See Changes below for details.
• Deprecated np.alterdot() and np.restoredot() removed.

FutureWarning to changed behavior

See Changes section for more detail.
• numpy.average preserves subclasses
• array == None and array != None do element-wise comparison.
• np.equal, np.not_equal, object identity doesn’t override comparison result.

dtypes are now always true

Previously bool(dtype) would fall back to the default python implementation, which checked if len(dtype) >
0. Since dtype objects implement __len__ as the number of record fields, bool of scalar dtypes would evaluate to
False, which was unintuitive. Now bool(dtype) == True for all dtypes.

__getslice__ and __setslice__ are no longer needed in ndarray subclasses

When subclassing np.ndarray in Python 2.7, it is no longer _necessary_ to implement __*slice__ on the derived class,
as __*item__ will intercept these calls correctly.
Any code that did implement these will work exactly as before. Code that invokes“ndarray.__getslice__“ (e.g. through
super(...).__getslice__) will now issue a DeprecationWarning - .__getitem__(slice(start,
end)) should be used instead.

436 15. Release notes

NumPy User Guide, Release 1.22.0

Indexing MaskedArrays/Constants with ... (ellipsis) now returns MaskedArray

This behavior mirrors that of np.ndarray, and accounts for nested arrays in MaskedArrays of object dtype, and ellipsis
combined with other forms of indexing.

15.52.7 C API changes

GUfuncs on empty arrays and NpyIter axis removal

It is now allowed to remove a zero-sized axis from NpyIter. Which may mean that code removing axes from NpyIter has
to add an additional check when accessing the removed dimensions later on.
The largest followup change is that gufuncs are now allowed to have zero-sized inner dimensions. This means that a
gufunc now has to anticipate an empty inner dimension, while this was never possible and an error raised instead.
For most gufuncs no change should be necessary. However, it is now possible for gufuncs with a signature such as (...,
N, M) -> (..., M) to return a valid result if N=0 without further wrapping code.

PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API

Similar to PyArray_MapIterArray but with an additional copy_if_overlap argument. If
copy_if_overlap != 0, checks if input has memory overlap with any of the other arrays and make copies
as appropriate to avoid problems if the input is modified during the iteration. See the documentation for more complete
documentation.

15.52.8 New Features

__array_ufunc__ added

This is the renamed and redesigned __numpy_ufunc__. Any class, ndarray subclass or not, can define this method
or set it to None in order to override the behavior of NumPy’s ufuncs. This works quite similarly to Python’s __mul__
and other binary operation routines. See the documentation for a more detailed description of the implementation and
behavior of this new option. The API is provisional, we do not yet guarantee backward compatibility as modifications
may be made pending feedback. See NEP 13 and documentation for more details.

New positive ufunc

This ufunc corresponds to unary +, but unlike + on an ndarray it will raise an error if array values do not support numeric
operations.

New divmod ufunc

This ufunc corresponds to the Python builtin divmod, and is used to implement divmod when called on numpy arrays. np.
divmod(x, y) calculates a result equivalent to (np.floor_divide(x, y), np.remainder(x, y)) but
is approximately twice as fast as calling the functions separately.

15.52. NumPy 1.13.0 Release Notes 437

http://www.numpy.org/neps/nep-0013-ufunc-overrides.html
https://github.com/numpy/numpy/blob/master/doc/source/reference/arrays.classes.rst

NumPy User Guide, Release 1.22.0

np.isnat ufunc tests for NaT special datetime and timedelta values

The new ufunc np.isnat finds the positions of special NaT values within datetime and timedelta arrays. This is
analogous to np.isnan.

np.heaviside ufunc computes the Heaviside function

The new function np.heaviside(x, h0) (a ufunc) computes the Heaviside function:

{ 0 if x < 0,
heaviside(x, h0) = { h0 if x == 0,

{ 1 if x > 0.

np.block function for creating blocked arrays

Add a new block function to the current stacking functions vstack, hstack, and stack. This allows concatenation
across multiple axes simultaneously, with a similar syntax to array creation, but where elements can themselves be arrays.
For instance:

>>> A = np.eye(2) * 2
>>> B = np.eye(3) * 3
>>> np.block([
... [A, np.zeros((2, 3))],
... [np.ones((3, 2)), B]
...])
array([[2., 0., 0., 0., 0.],

[0., 2., 0., 0., 0.],
[1., 1., 3., 0., 0.],
[1., 1., 0., 3., 0.],
[1., 1., 0., 0., 3.]])

While primarily useful for block matrices, this works for arbitrary dimensions of arrays.
It is similar to Matlab’s square bracket notation for creating block matrices.

isin function, improving on in1d

The new function isin tests whether each element of an N-dimensional array is present anywhere within a second array.
It is an enhancement of in1d that preserves the shape of the first array.

Temporary elision

On platforms providing the backtrace function NumPy will try to avoid creating temporaries in expression involving
basic numeric types. For example d = a + b + c is transformed to d = a + b; d += c which can improve
performance for large arrays as less memory bandwidth is required to perform the operation.

438 15. Release notes

NumPy User Guide, Release 1.22.0

axes argument for unique

In an N-dimensional array, the user can now choose the axis along which to look for duplicate N-1-dimensional elements
using numpy.unique. The original behaviour is recovered if axis=None (default).

np.gradient now supports unevenly spaced data

Users can now specify a not-constant spacing for data. In particular np.gradient can now take:
1. A single scalar to specify a sample distance for all dimensions.
2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, …
3. N arrays to specify the coordinates of the values along each dimension of F. The length of the array must match

the size of the corresponding dimension
4. Any combination of N scalars/arrays with the meaning of 2. and 3.

This means that, e.g., it is now possible to do the following:

>>> f = np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float_)
>>> dx = 2.
>>> y = [1., 1.5, 3.5]
>>> np.gradient(f, dx, y)
[array([[1. , 1. , -0.5], [1. , 1. , -0.5]]),
array([[2. , 2. , 2.], [2. , 1.7, 0.5]])]

Support for returning arrays of arbitrary dimensions in apply_along_axis

Previously, only scalars or 1D arrays could be returned by the function passed to apply_along_axis. Now, it can
return an array of any dimensionality (including 0D), and the shape of this array replaces the axis of the array being
iterated over.

.ndim property added to dtype to complement .shape

For consistency with ndarray and broadcast, d.ndim is a shorthand for len(d.shape).

Support for tracemalloc in Python 3.6

NumPy now supports memory tracing with tracemalloc module of Python 3.6 or newer. Memory allocations fromNumPy
are placed into the domain defined by numpy.lib.tracemalloc_domain. Note that NumPy allocation will not
show up in tracemalloc of earlier Python versions.

NumPy may be built with relaxed stride checking debugging

Setting NPY_RELAXED_STRIDES_DEBUG=1 in the environment when relaxed stride checking is enabled will cause
NumPy to be compiled with the affected strides set to the maximum value of npy_intp in order to help detect invalid
usage of the strides in downstream projects. When enabled, invalid usage often results in an error being raised, but the
exact type of error depends on the details of the code. TypeError and OverflowError have been observed in the wild.
It was previously the case that this option was disabled for releases and enabled in master and changing between the two
required editing the code. It is now disabled by default but can be enabled for test builds.

15.52. NumPy 1.13.0 Release Notes 439

https://docs.python.org/3/library/tracemalloc.html
https://docs.python.org/3/library/tracemalloc.html

NumPy User Guide, Release 1.22.0

15.52.9 Improvements

Ufunc behavior for overlapping inputs

Operations where ufunc input and output operands have memory overlap produced undefined results in previous NumPy
versions, due to data dependency issues. In NumPy 1.13.0, results from such operations are now defined to be the same
as for equivalent operations where there is no memory overlap.
Operations affected now make temporary copies, as needed to eliminate data dependency. As detecting these cases is
computationally expensive, a heuristic is used, which may in rare cases result to needless temporary copies. For operations
where the data dependency is simple enough for the heuristic to analyze, temporary copies will not be made even if the
arrays overlap, if it can be deduced copies are not necessary. As an example,“np.add(a, b, out=a)“ will not involve copies.
To illustrate a previously undefined operation:

>>> x = np.arange(16).astype(float)
>>> np.add(x[1:], x[:-1], out=x[1:])

In NumPy 1.13.0 the last line is guaranteed to be equivalent to:

>>> np.add(x[1:].copy(), x[:-1].copy(), out=x[1:])

A similar operation with simple non-problematic data dependence is:

>>> x = np.arange(16).astype(float)
>>> np.add(x[1:], x[:-1], out=x[:-1])

It will continue to produce the same results as in previous NumPy versions, and will not involve unnecessary temporary
copies.
The change applies also to in-place binary operations, for example:

>>> x = np.random.rand(500, 500)
>>> x += x.T

This statement is now guaranteed to be equivalent to x[...] = x + x.T, whereas in previous NumPy versions the
results were undefined.

Partial support for 64-bit f2py extensions with MinGW

Extensions that incorporate Fortran libraries can now be built using the free MinGW toolset, also under Python 3.5. This
works best for extensions that only do calculations and uses the runtime modestly (reading and writing from files, for
instance). Note that this does not remove the need for Mingwpy; if you make extensive use of the runtime, you will most
likely run into issues. Instead, it should be regarded as a band-aid until Mingwpy is fully functional.
Extensions can also be compiled using the MinGW toolset using the runtime library from the (moveable) WinPython 3.4
distribution, which can be useful for programs with a PySide1/Qt4 front-end.

440 15. Release notes

https://sf.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/6.2.0/threads-win32/seh/
https://mingwpy.github.io/issues.html

NumPy User Guide, Release 1.22.0

Performance improvements for packbits and unpackbits

The functions numpy.packbits with boolean input and numpy.unpackbits have been optimized to be a signif-
icantly faster for contiguous data.

Fix for PPC long double floating point information

In previous versions of NumPy, the finfo function returned invalid information about the double double format of the
longdouble float type on Power PC (PPC). The invalid values resulted from the failure of the NumPy algorithm to
deal with the variable number of digits in the significand that are a feature of PPC long doubles. This release by-passes
the failing algorithm by using heuristics to detect the presence of the PPC double double format. A side-effect of using
these heuristics is that the finfo function is faster than previous releases.

Better default repr for ndarray subclasses

Subclasses of ndarray with no repr specialization now correctly indent their data and type lines.

More reliable comparisons of masked arrays

Comparisons of masked arrays were buggy for masked scalars and failed for structured arrays with dimension higher than
one. Both problems are now solved. In the process, it was ensured that in getting the result for a structured array, masked
fields are properly ignored, i.e., the result is equal if all fields that are non-masked in both are equal, thus making the
behaviour identical to what one gets by comparing an unstructured masked array and then doing .all() over some axis.

np.matrix with booleans elements can now be created using the string syntax

np.matrix failed whenever one attempts to use it with booleans, e.g., np.matrix('True'). Now, this works as
expected.

More linalg operations now accept empty vectors and matrices

All of the following functions in np.linalg now work when given input arrays with a 0 in the last two dimensions:
det, slogdet, pinv, eigvals, eigvalsh, eig, eigh.

Bundled version of LAPACK is now 3.2.2

NumPy comes bundled with a minimal implementation of lapack for systems without a lapack library installed, under the
name of lapack_lite. This has been upgraded from LAPACK 3.0.0 (June 30, 1999) to LAPACK 3.2.2 (June 30,
2010). See the LAPACK changelogs for details on the all the changes this entails.
While no new features are exposed through numpy, this fixes some bugs regarding “workspace” sizes, and in some places
may use faster algorithms.

15.52. NumPy 1.13.0 Release Notes 441

https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
http://www.netlib.org/lapack/release_notes.html#_4_history_of_lapack_releases

NumPy User Guide, Release 1.22.0

reduce of np.hypot.reduce and np.logical_xor allowed in more cases

This now works on empty arrays, returning 0, and can reduce over multiple axes. Previously, a ValueErrorwas thrown
in these cases.

Better repr of object arrays

Object arrays that contain themselves no longer cause a recursion error.
Object arrays that contain list objects are now printed in a way that makes clear the difference between a 2d object
array, and a 1d object array of lists.

15.52.10 Changes

argsort on masked arrays takes the same default arguments as sort

By default, argsort now places the masked values at the end of the sorted array, in the same way that sort already
did. Additionally, the end_with argument is added to argsort, for consistency with sort. Note that this argument
is not added at the end, so breaks any code that passed fill_value as a positional argument.

average now preserves subclasses

For ndarray subclasses, numpy.average will now return an instance of the subclass, matching the behavior of most
other NumPy functions such as mean. As a consequence, also calls that returned a scalar may now return a subclass array
scalar.

array == None and array != None do element-wise comparison

Previously these operations returned scalars False and True respectively.

np.equal, np.not_equal for object arrays ignores object identity

Previously, these functions always treated identical objects as equal. This had the effect of overriding comparison failures,
comparison of objects that did not return booleans, such as np.arrays, and comparison of objects where the results differed
from object identity, such as NaNs.

Boolean indexing changes

• Boolean array-likes (such as lists of python bools) are always treated as boolean indexes.
• Boolean scalars (including python True) are legal boolean indexes and never treated as integers.
• Boolean indexes must match the dimension of the axis that they index.
• Boolean indexes used on the lhs of an assignment must match the dimensions of the rhs.
• Boolean indexing into scalar arrays return a new 1-d array. This means that array(1)[array(True)] gives
array([1]) and not the original array.

442 15. Release notes

NumPy User Guide, Release 1.22.0

np.random.multivariate_normal behavior with bad covariance matrix

It is now possible to adjust the behavior the function will have when dealing with the covariance matrix by using two new
keyword arguments:

• tol can be used to specify a tolerance to use when checking that the covariance matrix is positive semidefinite.
• check_valid can be used to configure what the function will do in the presence of a matrix that is not positive
semidefinite. Valid options are ignore, warn and raise. The default value, warn keeps the the behavior used
on previous releases.

assert_array_less compares np.inf and -np.inf now

Previously, np.testing.assert_array_less ignored all infinite values. This is not the expected behavior both
according to documentation and intuitively. Now, -inf < x < inf is considered True for any real number x and all other
cases fail.

assert_array_ and masked arrays assert_equal hide less warnings

Some warnings that were previously hidden by the assert_array_ functions are not hidden anymore. In most cases
the warnings should be correct and, should they occur, will require changes to the tests using these functions. For the
masked array assert_equal version, warnings may occur when comparing NaT. The function presently does not
handle NaT or NaN specifically and it may be best to avoid it at this time should a warning show up due to this change.

offset attribute value in memmap objects

The offset attribute in a memmap object is now set to the offset into the file. This is a behaviour change only for offsets
greater than mmap.ALLOCATIONGRANULARITY.

np.real and np.imag return scalars for scalar inputs

Previously, np.real and np.imag used to return array objects when provided a scalar input, which was inconsistent
with other functions like np.angle and np.conj.

The polynomial convenience classes cannot be passed to ufuncs

The ABCPolyBase class, from which the convenience classes are derived, sets __array_ufun__ = None in order
of opt out of ufuncs. If a polynomial convenience class instance is passed as an argument to a ufunc, a TypeError will
now be raised.

Output arguments to ufuncs can be tuples also for ufunc methods

For calls to ufuncs, it was already possible, and recommended, to use an out argument with a tuple for ufuncs with
multiple outputs. This has now been extended to output arguments in the reduce, accumulate, and reduceat
methods. This is mostly for compatibility with __array_ufunc; there are no ufuncs yet that have more than one
output.

15.52. NumPy 1.13.0 Release Notes 443

NumPy User Guide, Release 1.22.0

15.53 NumPy 1.12.1 Release Notes

NumPy 1.12.1 supports Python 2.7 and 3.4 - 3.6 and fixes bugs and regressions found in NumPy 1.12.0. In particular,
the regression in f2py constant parsing is fixed. Wheels for Linux, Windows, and OSX can be found on pypi,

15.53.1 Bugs Fixed

• BUG: Fix wrong future nat warning and equiv type logic error…
• BUG: Fix wrong masked median for some special cases
• DOC: Place np.average in inline code
• TST: Work around isfinite inconsistency on i386
• BUG: Guard against replacing constants without ‘_’ spec in f2py.
• BUG: Fix mean for float 16 non-array inputs for 1.12
• BUG: Fix calling python api with error set and minor leaks for…
• BUG: Make iscomplexobj compatible with custom dtypes again
• BUG: Fix undefined behaviour induced by bad __array_wrap__
• BUG: Fix MaskedArray.__setitem__
• BUG: PPC64el machines are POWER for Fortran in f2py
• BUG: Look up methods on MaskedArray in _frommethod

• BUG: Remove extra digit in binary_repr at limit
• BUG: Fix deepcopy regression for empty arrays.
• BUG: Fix ma.median for empty ndarrays

15.54 NumPy 1.12.0 Release Notes

This release supports Python 2.7 and 3.4 - 3.6.

15.54.1 Highlights

The NumPy 1.12.0 release contains a large number of fixes and improvements, but few that stand out above all others.
That makes picking out the highlights somewhat arbitrary but the following may be of particular interest or indicate areas
likely to have future consequences.

• Order of operations in np.einsum can now be optimized for large speed improvements.
• New signature argument to np.vectorize for vectorizing with core dimensions.
• The keepdims argument was added to many functions.
• New context manager for testing warnings
• Support for BLIS in numpy.distutils
• Much improved support for PyPy (not yet finished)

444 15. Release notes

NumPy User Guide, Release 1.22.0

15.54.2 Dropped Support

• Support for Python 2.6, 3.2, and 3.3 has been dropped.

15.54.3 Added Support

• Support for PyPy 2.7 v5.6.0 has been added. While not complete (nditer updateifcopy is not supported yet),
this is a milestone for PyPy’s C-API compatibility layer.

15.54.4 Build System Changes

• Library order is preserved, instead of being reordered to match that of the directories.

15.54.5 Deprecations

Assignment of ndarray object’s data attribute

Assigning the ‘data’ attribute is an inherently unsafe operation as pointed out in gh-7083. Such a capability will be removed
in the future.

Unsafe int casting of the num attribute in linspace

np.linspace now raises DeprecationWarning when num cannot be safely interpreted as an integer.

Insufficient bit width parameter to binary_repr

If a ‘width’ parameter is passed into binary_repr that is insufficient to represent the number in base 2 (positive) or
2’s complement (negative) form, the function used to silently ignore the parameter and return a representation using the
minimal number of bits needed for the form in question. Such behavior is now considered unsafe from a user perspective
and will raise an error in the future.

15.54.6 Future Changes

• In 1.13 NAT will always compare False except for NAT != NAT, which will be True. In short, NAT will behave
like NaN

• In 1.13 np.average will preserve subclasses, to match the behavior of most other numpy functions such as
np.mean. In particular, this means calls which returned a scalar may return a 0-d subclass object instead.

15.54. NumPy 1.12.0 Release Notes 445

NumPy User Guide, Release 1.22.0

Multiple-field manipulation of structured arrays

In 1.13 the behavior of structured arrays involving multiple fields will change in two ways:
First, indexing a structured array with multiple fields (eg, arr[['f1', 'f3']]) will return a view into the original
array in 1.13, instead of a copy. Note the returned view will have extra padding bytes corresponding to intervening fields in
the original array, unlike the copy in 1.12, whichwill affect code such asarr[['f1', 'f3']].view(newdtype).
Second, for numpy versions 1.6 to 1.12 assignment between structured arrays occurs “by field name”: Fields in the
destination array are set to the identically-named field in the source array or to 0 if the source does not have a field:

>>> a = np.array([(1,2),(3,4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> b = np.ones(2, dtype=[('z', 'i4'), ('y', 'i4'), ('x', 'i4')])
>>> b[:] = a
>>> b
array([(0, 2, 1), (0, 4, 3)],

dtype=[('z', '<i4'), ('y', '<i4'), ('x', '<i4')])

In 1.13 assignment will instead occur “by position”: The Nth field of the destination will be set to the Nth field of the source
regardless of field name. The old behavior can be obtained by using indexing to reorder the fields before assignment, e.g.,
b[['x', 'y']] = a[['y', 'x']].

15.54.7 Compatibility notes

DeprecationWarning to error

• Indexing with floats raises IndexError, e.g., a[0, 0.0].
• Indexing with non-integer array_like raises IndexError, e.g., a['1', '2']

• Indexing with multiple ellipsis raises IndexError, e.g., a[..., ...].
• Non-integers used as index values raise TypeError, e.g., in reshape, take, and specifying reduce axis.

FutureWarning to changed behavior

• np.full now returns an array of the fill-value’s dtype if no dtype is given, instead of defaulting to float.
• np.averagewill emit a warning if the argument is a subclass of ndarray, as the subclass will be preserved starting
in 1.13. (see Future Changes)

power and ** raise errors for integer to negative integer powers

The previous behavior depended on whether numpy scalar integers or numpy integer arrays were involved.
For arrays

• Zero to negative integer powers returned least integral value.
• Both 1, -1 to negative integer powers returned correct values.
• The remaining integers returned zero when raised to negative integer powers.

For scalars
• Zero to negative integer powers returned least integral value.
• Both 1, -1 to negative integer powers returned correct values.

446 15. Release notes

NumPy User Guide, Release 1.22.0

• The remaining integers sometimes returned zero, sometimes the correct float depending on the integer type com-
bination.

All of these cases now raise a ValueError except for those integer combinations whose common type is float, for
instance uint64 and int8. It was felt that a simple rule was the best way to go rather than have special exceptions for the
integer units. If you need negative powers, use an inexact type.

Relaxed stride checking is the default

This will have some impact on code that assumed that F_CONTIGUOUS and C_CONTIGUOUS were mutually exclusive
and could be set to determine the default order for arrays that are now both.

The np.percentile ‘midpoint’ interpolation method fixed for exact indices

The ‘midpoint’ interpolator now gives the same result as ‘lower’ and ‘higher’ when the two coincide. Previous behavior of
‘lower’ + 0.5 is fixed.

keepdims kwarg is passed through to user-class methods

numpy functions that take a keepdims kwarg now pass the value through to the corresponding methods on ndarray
sub-classes. Previously the keepdims keyword would be silently dropped. These functions now have the following
behavior:

1. If user does not provide keepdims, no keyword is passed to the underlying method.
2. Any user-provided value of keepdims is passed through as a keyword argument to the method.

This will raise in the case where the method does not support a keepdims kwarg and the user explicitly passes in
keepdims.
The following functions are changed: sum, product, sometrue, alltrue, any, all, amax, amin, prod, mean,
std, var, nanmin, nanmax, nansum, nanprod, nanmean, nanmedian, nanvar, nanstd

bitwise_and identity changed

The previous identity was 1, it is now -1. See entry in Improvements for more explanation.

ma.median warns and returns nan when unmasked invalid values are encountered

Similar to unmasked median the masked median ma.median now emits a Runtime warning and returns NaN in slices
where an unmasked NaN is present.

Greater consistency in assert_almost_equal

The precision check for scalars has been changed to match that for arrays. It is now:

abs(actual - desired) < 1.5 * 10**(-decimal)

Note that this is looser than previously documented, but agrees with the previous implementation used in
assert_array_almost_equal. Due to the change in implementation some very delicate tests may fail that did
not fail before.

15.54. NumPy 1.12.0 Release Notes 447

NumPy User Guide, Release 1.22.0

NoseTester behaviour of warnings during testing

When raise_warnings="develop" is given, all uncaught warnings will now be considered a test failure. Previ-
ously only selected ones were raised. Warnings which are not caught or raised (mostly when in release mode) will be
shown once during the test cycle similar to the default python settings.

assert_warns and deprecated decorator more specific

The assert_warns function and context manager are now more specific to the given warning category. This in-
creased specificity leads to them being handled according to the outer warning settings. This means that no warning
may be raised in cases where a wrong category warning is given and ignored outside the context. Alternatively the in-
creased specificity may mean that warnings that were incorrectly ignored will now be shown or raised. See also the new
suppress_warnings context manager. The same is true for the deprecated decorator.

C API

No changes.

15.54.8 New Features

Writeable keyword argument for as_strided

np.lib.stride_tricks.as_strided now has a writeable keyword argument. It can be set to False when
no write operation to the returned array is expected to avoid accidental unpredictable writes.

axes keyword argument for rot90

The axes keyword argument in rot90 determines the plane in which the array is rotated. It defaults to axes=(0,1)
as in the original function.

Generalized flip

flipud and fliplr reverse the elements of an array along axis=0 and axis=1 respectively. The newly added flip
function reverses the elements of an array along any given axis.

• np.count_nonzero now has an axis parameter, allowing non-zero counts to be generated on more than just
a flattened array object.

BLIS support in numpy.distutils

Building against the BLAS implementation provided by the BLIS library is now supported. See the [blis] section in
site.cfg.example (in the root of the numpy repo or source distribution).

448 15. Release notes

NumPy User Guide, Release 1.22.0

Hook in numpy/__init__.py to run distribution-specific checks

Binary distributions of numpy may need to run specific hardware checks or load specific libraries during numpy initial-
ization. For example, if we are distributing numpy with a BLAS library that requires SSE2 instructions, we would like to
check the machine on which numpy is running does have SSE2 in order to give an informative error.
Add a hook in numpy/__init__.py to import a numpy/_distributor_init.py file that will remain empty
(bar a docstring) in the standard numpy source, but that can be overwritten by people making binary distributions of
numpy.

New nanfunctions nancumsum and nancumprod added

Nan-functions nancumsum and nancumprod have been added to compute cumsum and cumprod by ignoring nans.

np.interp can now interpolate complex values

np.lib.interp(x, xp, fp) now allows the interpolated array fp to be complex and will interpolate at
complex128 precision.

New polynomial evaluation function polyvalfromroots added

The new function polyvalfromroots evaluates a polynomial at given points from the roots of the polynomial. This
is useful for higher order polynomials, where expansion into polynomial coefficients is inaccurate at machine precision.

New array creation function geomspace added

The new function geomspace generates a geometric sequence. It is similar to logspace, but with start
and stop specified directly: geomspace(start, stop) behaves the same as logspace(log10(start),
log10(stop)).

New context manager for testing warnings

A new context manager suppress_warnings has been added to the testing utils. This context manager is designed
to help reliably test warnings. Specifically to reliably filter/ignore warnings. Ignoring warnings by using an “ignore” filter
in Python versions before 3.4.x can quickly result in these (or similar) warnings not being tested reliably.
The context manager allows to filter (as well as record) warnings similar to the catch_warnings context, but allows
for easier specificity. Also printing warnings that have not been filtered or nesting the context manager will work as
expected. Additionally, it is possible to use the context manager as a decorator which can be useful when multiple tests
give need to hide the same warning.

15.54. NumPy 1.12.0 Release Notes 449

NumPy User Guide, Release 1.22.0

New masked array functions ma.convolve and ma.correlate added

These functions wrapped the non-masked versions, but propagate through masked values. There are two different prop-
agation modes. The default causes masked values to contaminate the result with masks, but the other mode only outputs
masks if there is no alternative.

New float_power ufunc

The new float_power ufunc is like the power function except all computation is done in a minimum precision
of float64. There was a long discussion on the numpy mailing list of how to treat integers to negative integer powers
and a popular proposal was that the __pow__ operator should always return results of at least float64 precision. The
float_power function implements that option. Note that it does not support object arrays.

np.loadtxt now supports a single integer as usecol argument

Instead of using usecol=(n,) to read the nth column of a file it is now allowed to use usecol=n. Also the error
message is more user friendly when a non-integer is passed as a column index.

Improved automated bin estimators for histogram

Added ‘doane’ and ‘sqrt’ estimators to histogram via the bins argument. Added support for range-restricted his-
tograms with automated bin estimation.

np.roll can now roll multiple axes at the same time

The shift and axis arguments to roll are now broadcast against each other, and each specified axis is shifted
accordingly.

The __complex__ method has been implemented for the ndarrays

Calling complex() on a size 1 array will now cast to a python complex.

pathlib.Path objects now supported

The standard np.load, np.save, np.loadtxt, np.savez, and similar functions can now take pathlib.Path
objects as an argument instead of a filename or open file object.

New bits attribute for np.finfo

This makes np.finfo consistent with np.iinfo which already has that attribute.

450 15. Release notes

NumPy User Guide, Release 1.22.0

New signature argument to np.vectorize

This argument allows for vectorizing user defined functions with core dimensions, in the style of NumPy’s generalized
universal functions. This allows for vectorizing a much broader class of functions. For example, an arbitrary distance
metric that combines two vectors to produce a scalar could be vectorized with signature='(n),(n)->()'. See
np.vectorize for full details.

Emit py3kwarnings for division of integer arrays

To help people migrate their code bases from Python 2 to Python 3, the python interpreter has a handy option -3, which
issues warnings at runtime. One of its warnings is for integer division:

$ python -3 -c "2/3"

-c:1: DeprecationWarning: classic int division

In Python 3, the new integer division semantics also apply to numpy arrays. With this version, numpy will emit a similar
warning:

$ python -3 -c "import numpy as np; np.array(2)/np.array(3)"

-c:1: DeprecationWarning: numpy: classic int division

Previously, it included str (bytes) and unicode on Python2, but only str (unicode) on Python3.

15.54.9 Improvements

bitwise_and identity changed

The previous identity was 1 with the result that all bits except the LSB were masked out when the reduce method was
used. The new identity is -1, which should work properly on twos complement machines as all bits will be set to one.

Generalized Ufuncs will now unlock the GIL

Generalized Ufuncs, including most of the linalg module, will now unlock the Python global interpreter lock.

Caches in np.fft are now bounded in total size and item count

The caches in np.fft that speed up successive FFTs of the same length can no longer grow without bounds. They have
been replaced with LRU (least recently used) caches that automatically evict no longer needed items if either the memory
size or item count limit has been reached.

15.54. NumPy 1.12.0 Release Notes 451

NumPy User Guide, Release 1.22.0

Improved handling of zero-width string/unicode dtypes

Fixed several interfaces that explicitly disallowed arrays with zero-width string dtypes (i.e. dtype('S0') or
dtype('U0'), and fixed several bugs where such dtypes were not handled properly. In particular, changed ndarray.
__new__ to not implicitly convert dtype('S0') to dtype('S1') (and likewise for unicode) when creating new
arrays.

Integer ufuncs vectorized with AVX2

If the cpu supports it at runtime the basic integer ufuncs now use AVX2 instructions. This feature is currently only
available when compiled with GCC.

Order of operations optimization in np.einsum

np.einsum now supports the optimize argument which will optimize the order of contraction. For example, np.
einsum would complete the chain dot example np.einsum(‘ij,jk,kl->il’, a, b, c) in a single pass
which would scale like N^4; however, when optimize=True np.einsumwill create an intermediate array to reduce
this scaling to N^3 or effectively np.dot(a, b).dot(c). Usage of intermediate tensors to reduce scaling has been
applied to the general einsum summation notation. See np.einsum_path for more details.

quicksort has been changed to an introsort

The quicksort kind of np.sort and np.argsort is now an introsort which is regular quicksort but changing to a
heapsort when not enough progress is made. This retains the good quicksort performance while changing the worst case
runtime from O(N^2) to O(N*log(N)).

ediff1d improved performance and subclass handling

The ediff1d function uses an array instead on a flat iterator for the subtraction. When to_begin or to_end is not None, the
subtraction is performed in place to eliminate a copy operation. A side effect is that certain subclasses are handled better,
namely astropy.Quantity, since the complete array is created, wrapped, and then begin and end values are set, instead of
using concatenate.

Improved precision of ndarray.mean for float16 arrays

The computation of the mean of float16 arrays is now carried out in float32 for improved precision. This should be useful
in packages such as Theano where the precision of float16 is adequate and its smaller footprint is desirable.

15.54.10 Changes

All array-like methods are now called with keyword arguments in fromnumeric.py

Internally, many array-like methods in fromnumeric.py were being called with positional arguments instead of keyword
arguments as their external signatures were doing. This caused a complication in the downstream ‘pandas’ library that
encountered an issue with ‘numpy’ compatibility. Now, all array-like methods in this module are called with keyword
arguments instead.

452 15. Release notes

NumPy User Guide, Release 1.22.0

Operations on np.memmap objects return numpy arrays in most cases

Previously operations on a memmap object would misleadingly return a memmap instance even if the result was actually
not memmapped. For example, arr + 1 or arr + arr would return memmap instances, although no memory from
the output array is memmapped. Version 1.12 returns ordinary numpy arrays from these operations.
Also, reduction of a memmap (e.g. .sum(axis=None) now returns a numpy scalar instead of a 0d memmap.

stacklevel of warnings increased

The stacklevel for python based warnings was increased so that most warnings will report the offending line of the user
code instead of the line the warning itself is given. Passing of stacklevel is now tested to ensure that new warnings will
receive the stacklevel argument.
This causes warnings with the “default” or “module” filter to be shown once for every offending user code line or user
module instead of only once. On python versions before 3.4, this can cause warnings to appear that were falsely ignored
before, which may be surprising especially in test suits.

15.55 NumPy 1.11.3 Release Notes

Numpy 1.11.3 fixes a bug that leads to file corruption when very large files opened in appendmode are used in ndarray.
tofile. It supports Python versions 2.6 - 2.7 and 3.2 - 3.5. Wheels for Linux, Windows, and OS X can be found on
PyPI.

15.55.1 Contributors to maintenance/1.11.3

A total of 2 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
• Charles Harris
• Pavel Potocek +

15.55.2 Pull Requests Merged

• #8341: BUG: Fix ndarray.tofile large file corruption in append mode.
• #8346: TST: Fix tests in PR #8341 for NumPy 1.11.x

15.56 NumPy 1.11.2 Release Notes

Numpy 1.11.2 supports Python 2.6 - 2.7 and 3.2 - 3.5. It fixes bugs and regressions found in Numpy 1.11.1 and includes
several build related improvements. Wheels for Linux, Windows, and OS X can be found on PyPI.

15.55. NumPy 1.11.3 Release Notes 453

https://github.com/numpy/numpy/pull/8341
https://github.com/numpy/numpy/pull/8346

NumPy User Guide, Release 1.22.0

15.56.1 Pull Requests Merged

Fixes overridden by later merges and release notes updates are omitted.
• #7736 BUG: Many functions silently drop ‘keepdims’ kwarg.
• #7738 ENH: Add extra kwargs and update doc of many MA methods.
• #7778 DOC: Update Numpy 1.11.1 release notes.
• #7793 BUG: MaskedArray.count treats negative axes incorrectly.
• #7816 BUG: Fix array too big error for wide dtypes.
• #7821 BUG: Make sure npy_mul_with_overflow_<type> detects overflow.
• #7824 MAINT: Allocate fewer bytes for empty arrays.
• #7847 MAINT,DOC: Fix some imp module uses and update f2py.compile docstring.
• #7849 MAINT: Fix remaining uses of deprecated Python imp module.
• #7851 BLD: Fix ATLAS version detection.
• #7896 BUG: Construct ma.array from np.array which contains padding.
• #7904 BUG: Fix float16 type not being called due to wrong ordering.
• #7917 BUG: Production install of numpy should not require nose.
• #7919 BLD: Fixed MKL detection for recent versions of this library.
• #7920 BUG: Fix for issue #7835 (ma.median of 1d).
• #7932 BUG: Monkey-patch _msvccompile.gen_lib_option like other compilers.
• #7939 BUG: Check for HAVE_LDOUBLE_DOUBLE_DOUBLE_LE in npy_math_complex.
• #7953 BUG: Guard against buggy comparisons in generic quicksort.
• #7954 BUG: Use keyword arguments to initialize Extension base class.
• #7955 BUG: Make sure numpy globals keep identity after reload.
• #7972 BUG: MSVCCompiler grows ‘lib’ & ‘include’ env strings exponentially.
• #8005 BLD: Remove __NUMPY_SETUP__ from builtins at end of setup.py.
• #8010 MAINT: Remove leftover imp module imports.
• #8020 BUG: Fix return of np.ma.count if keepdims is True and axis is None.
• #8024 BUG: Fix numpy.ma.median.
• #8031 BUG: Fix np.ma.median with only one non-masked value.
• #8044 BUG: Fix bug in NpyIter buffering with discontinuous arrays.

454 15. Release notes

NumPy User Guide, Release 1.22.0

15.57 NumPy 1.11.1 Release Notes

Numpy 1.11.1 supports Python 2.6 - 2.7 and 3.2 - 3.5. It fixes bugs and regressions found in Numpy 1.11.0 and includes
several build related improvements. Wheels for Linux, Windows, and OSX can be found on pypi.

15.57.1 Fixes Merged

• #7506 BUG: Make sure numpy imports on python 2.6 when nose is unavailable.
• #7530 BUG: Floating exception with invalid axis in np.lexsort.
• #7535 BUG: Extend glibc complex trig functions blacklist to glibc < 2.18.
• #7551 BUG: Allow graceful recovery for no compiler.
• #7558 BUG: Constant padding expected wrong type in constant_values.
• #7578 BUG: Fix OverflowError in Python 3.x. in swig interface.
• #7590 BLD: Fix configparser.InterpolationSyntaxError.
• #7597 BUG: Make np.ma.take work on scalars.
• #7608 BUG: linalg.norm(): Don’t convert object arrays to float.
• #7638 BLD: Correct C compiler customization in system_info.py.
• #7654 BUG: ma.median of 1d array should return a scalar.
• #7656 BLD: Remove hardcoded Intel compiler flag -xSSE4.2.
• #7660 BUG: Temporary fix for str(mvoid) for object field types.
• #7665 BUG: Fix incorrect printing of 1D masked arrays.
• #7670 BUG: Correct initial index estimate in histogram.
• #7671 BUG: Boolean assignment no GIL release when transfer needs API.
• #7676 BUG: Fix handling of right edge of final histogram bin.
• #7680 BUG: Fix np.clip bug NaN handling for Visual Studio 2015.
• #7724 BUG: Fix segfaults in np.random.shuffle.
• #7731 MAINT: Change mkl_info.dir_env_var from MKL to MKLROOT.
• #7737 BUG: Fix issue on OS X with Python 3.x, npymath.ini not installed.

15.58 NumPy 1.11.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.5 and contains a number of enhancements and improvements. Note
also the build system changes listed below as they may have subtle effects.
No Windows (TM) binaries are provided for this release due to a broken toolchain. One of the providers of Python
packages for Windows (TM) is your best bet.

15.57. NumPy 1.11.1 Release Notes 455

NumPy User Guide, Release 1.22.0

15.58.1 Highlights

Details of these improvements can be found below.
• The datetime64 type is now timezone naive.
• A dtype parameter has been added to randint.
• Improved detection of two arrays possibly sharing memory.
• Automatic bin size estimation for np.histogram.
• Speed optimization of A @ A.T and dot(A, A.T).
• New function np.moveaxis for reordering array axes.

15.58.2 Build System Changes

• Numpy now uses setuptools for its builds instead of plain distutils. This fixes usage of
install_requires='numpy' in the setup.py files of projects that depend on Numpy (see gh-
6551). It potentially affects the way that build/install methods for Numpy itself behave though. Please report any
unexpected behavior on the Numpy issue tracker.

• Bento build support and related files have been removed.
• Single file build support and related files have been removed.

15.58.3 Future Changes

The following changes are scheduled for Numpy 1.12.0.
• Support for Python 2.6, 3.2, and 3.3 will be dropped.
• Relaxed stride checking will become the default. See the 1.8.0 release notes for a more extended discussion of
what this change implies.

• The behavior of the datetime64 “not a time” (NaT) value will be changed to match that of floating point “not a
number” (NaN) values: all comparisons involving NaT will return False, except for NaT != NaT which will return
True.

• Indexing with floats will raise IndexError, e.g., a[0, 0.0].
• Indexing with non-integer array_like will raise IndexError, e.g., a['1', '2']

• Indexing with multiple ellipsis will raise IndexError, e.g., a[..., ...].
• Non-integers used as index values will raise TypeError, e.g., in reshape, take, and specifying reduce axis.

In a future release the following changes will be made.
• The rand function exposed in numpy.testing will be removed. That function is left over from early Numpy
and was implemented using the Python random module. The random number generators from numpy.random
should be used instead.

• The ndarray.view method will only allow c_contiguous arrays to be viewed using a dtype of different size
causing the last dimension to change. That differs from the current behavior where arrays that are f_contiguous but
not c_contiguous can be viewed as a dtype type of different size causing the first dimension to change.

• Slicing a MaskedArray will return views of both data and mask. Currently the mask is copy-on-write and
changes to the mask in the slice do not propagate to the original mask. See the FutureWarnings section below for
details.

456 15. Release notes

NumPy User Guide, Release 1.22.0

15.58.4 Compatibility notes

datetime64 changes

In prior versions of NumPy the experimental datetime64 type always stored times in UTC. By default, creating a date-
time64 object from a string or printing it would convert from or to local time:

old behavior
>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00-0800') # note the timezone offset -08:00

A consensus of datetime64 users agreed that this behavior is undesirable and at odds with how datetime64 is usually used
(e.g., by pandas). For most use cases, a timezone naive datetime type is preferred, similar to the datetime.datetime
type in the Python standard library. Accordingly, datetime64 no longer assumes that input is in local time, nor does it
print local times:

>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00')

For backwards compatibility, datetime64 still parses timezone offsets, which it handles by converting to UTC. However,
the resulting datetime is timezone naive:

>>> np.datetime64('2000-01-01T00:00:00-08')
DeprecationWarning: parsing timezone aware datetimes is deprecated;
this will raise an error in the future
numpy.datetime64('2000-01-01T08:00:00')

As a corollary to this change, we no longer prohibit casting between datetimes with date units and datetimes with time
units. With timezone naive datetimes, the rule for casting from dates to times is no longer ambiguous.

linalg.norm return type changes

The return type of the linalg.norm function is now floating point without exception. Some of the norm types previ-
ously returned integers.

polynomial fit changes

The various fit functions in the numpy polynomial package no longer accept non-integers for degree specification.

np.dot now raises TypeError instead of ValueError

This behaviour mimics that of other functions such as np.inner. If the two arguments cannot be cast to a common
type, it could have raised a TypeError or ValueError depending on their order. Now, np.dot will now always
raise a TypeError.

15.58. NumPy 1.11.0 Release Notes 457

http://pandas.pydata.org

NumPy User Guide, Release 1.22.0

FutureWarning to changed behavior

• In np.lib.split an empty array in the result always had dimension (0,) no matter the dimensions of the
array being split. This has been changed so that the dimensions will be preserved. A FutureWarning for this
change has been in place since Numpy 1.9 but, due to a bug, sometimes no warning was raised and the dimensions
were already preserved.

% and // operators

These operators are implemented with the remainder and floor_divide functions respectively. Those functions
are now based around fmod and are computed together so as to be compatible with each other and with the Python
versions for float types. The results should be marginally more accurate or outright bug fixes compared to the pre-
vious results, but they may differ significantly in cases where roundoff makes a difference in the integer returned by
floor_divide. Some corner cases also change, for instance, NaN is always returned for both functions when the
divisor is zero, divmod(1.0, inf) returns (0.0, 1.0) except on MSVC 2008, and divmod(-1.0, inf)
returns (-1.0, inf).

C API

Removed the check_return and inner_loop_selector members of the PyUFuncObject struct (replacing
them with reserved slots to preserve struct layout). These were never used for anything, so it’s unlikely that any
third-party code is using them either, but we mention it here for completeness.

object dtype detection for old-style classes

In python 2, objects which are instances of old-style user-defined classes no longer automatically count as ‘object’ type in
the dtype-detection handler. Instead, as in python 3, they may potentially count as sequences, but only if they define both
a __len__ and a __getitem__ method. This fixes a segfault and inconsistency between python 2 and 3.

15.58.5 New Features

• np.histogram now provides plugin estimators for automatically estimating the optimal number of bins. Passing
one of [‘auto’, ‘fd’, ‘scott’, ‘rice’, ‘sturges’] as the argument to ‘bins’ results in the corresponding estimator being used.

• A benchmark suite using Airspeed Velocity has been added, converting the previous vbench-based one. You can
run the suite locally via python runtests.py --bench. For more details, see benchmarks/README.
rst.

• A new function np.shares_memory that can check exactly whether two arrays have memory overlap is added.
np.may_share_memory also now has an option to spend more effort to reduce false positives.

• SkipTest and KnownFailureException exception classes are exposed in the numpy.testing names-
pace. Raise them in a test function to mark the test to be skipped or mark it as a known failure, respectively.

• f2py.compile has a new extension keyword parameter that allows the fortran extension to be specified
for generated temp files. For instance, the files can be specifies to be *.f90. The verbose argument is also
activated, it was previously ignored.

• A dtype parameter has been added to np.random.randint Random ndarrays of the following types can
now be generated:

– np.bool_,
– np.int8, np.uint8,

458 15. Release notes

https://asv.readthedocs.io/

NumPy User Guide, Release 1.22.0

– np.int16, np.uint16,
– np.int32, np.uint32,
– np.int64, np.uint64,
– np.int_ ``, ``np.intp

The specification is by precision rather than by C type. Hence, on some platforms np.int64 may be a long
instead of long long even if the specified dtype is long long because the two may have the same precision.
The resulting type depends on which C type numpy uses for the given precision. The byteorder specification is also
ignored, the generated arrays are always in native byte order.

• A new np.moveaxis function allows for moving one or more array axes to a new position by explicitly providing
source and destination axes. This function should be easier to use than the current rollaxis function as well as
providing more functionality.

• The deg parameter of the various numpy.polynomial fits has been extended to accept a list of the degrees
of the terms to be included in the fit, the coefficients of all other terms being constrained to zero. The change is
backward compatible, passing a scalar deg will behave as before.

• A divmod function for float types modeled after the Python version has been added to the npy_math library.

15.58.6 Improvements

np.gradient now supports an axis argument

The axis parameter was added to np.gradient for consistency. It allows to specify over which axes the gradient is
calculated.

np.lexsort now supports arrays with object data-type

The function now internally calls the generic npy_amergesort when the type does not implement a merge-sort kind
of argsort method.

np.ma.core.MaskedArray now supports an order argument

When constructing a new MaskedArray instance, it can be configured with an order argument analogous to the one
when calling np.ndarray. The addition of this argument allows for the proper processing of an order argument in
several MaskedArray-related utility functions such as np.ma.core.array and np.ma.core.asarray.

Memory and speed improvements for masked arrays

Creating a masked array with mask=True (resp. mask=False) now uses np.ones (resp. np.zeros) to create the
mask, which is faster and avoid a big memory peak. Another optimization was done to avoid a memory peak and useless
computations when printing a masked array.

15.58. NumPy 1.11.0 Release Notes 459

NumPy User Guide, Release 1.22.0

ndarray.tofile now uses fallocate on linux

The function now uses the fallocate system call to reserve sufficient disk space on file systems that support it.

Optimizations for operations of the form A.T @ A and A @ A.T

Previously, gemm BLAS operations were used for all matrix products. Now, if the matrix product is between a matrix
and its transpose, it will use syrk BLAS operations for a performance boost. This optimization has been extended to @,
numpy.dot, numpy.inner, and numpy.matmul.
Note: Requires the transposed and non-transposed matrices to share data.

np.testing.assert_warns can now be used as a context manager

This matches the behavior of assert_raises.

Speed improvement for np.random.shuffle

np.random.shuffle is now much faster for 1d ndarrays.

15.58.7 Changes

Pyrex support was removed from numpy.distutils

Themethodbuild_src.generate_a_pyrex_sourcewill remain available; it has beenmonkeypatched by users
to support Cython instead of Pyrex. It’s recommended to switch to a better supported method of build Cython extensions
though.

np.broadcast can now be called with a single argument

The resulting object in that case will simply mimic iteration over a single array. This change obsoletes distinctions like
if len(x) == 1:

shape = x[0].shape
else:

shape = np.broadcast(*x).shape
Instead, np.broadcast can be used in all cases.

np.trace now respects array subclasses

This behaviour mimics that of other functions such as np.diagonal and ensures, e.g., that for masked arrays np.
trace(ma) and ma.trace() give the same result.

460 15. Release notes

NumPy User Guide, Release 1.22.0

np.dot now raises TypeError instead of ValueError

This behaviour mimics that of other functions such as np.inner. If the two arguments cannot be cast to a common
type, it could have raised a TypeError or ValueError depending on their order. Now, np.dot will now always
raise a TypeError.

linalg.norm return type changes

The linalg.norm function now does all its computations in floating point and returns floating results. This change
fixes bugs due to integer overflow and the failure of abs with signed integers of minimum value, e.g., int8(-128). For
consistency, floats are used even where an integer might work.

15.58.8 Deprecations

Views of arrays in Fortran order

The F_CONTIGUOUS flag was used to signal that views using a dtype that changed the element size would change the
first index. This was always problematical for arrays that were both F_CONTIGUOUS and C_CONTIGUOUS because
C_CONTIGUOUS took precedence. Relaxed stride checking results in more such dual contiguous arrays and breaks
some existing code as a result. Note that this also affects changing the dtype by assigning to the dtype attribute of an
array. The aim of this deprecation is to restrict views to C_CONTIGUOUS arrays at some future time. A work around
that is backward compatible is to use a.T.view(...).T instead. A parameter may also be added to the view method
to explicitly ask for Fortran order views, but that will not be backward compatible.

Invalid arguments for array ordering

It is currently possible to pass in arguments for the order parameter in methods like array.flatten or array.
ravel that were not one of the following: ‘C’, ‘F’, ‘A’, ‘K’ (note that all of these possible values are both unicode and
case insensitive). Such behavior will not be allowed in future releases.

Random number generator in the testing namespace

The Python standard library random number generator was previously exposed in the testing namespace as
testing.rand. Using this generator is not recommended and it will be removed in a future release. Use genera-
tors from numpy.random namespace instead.

Random integer generation on a closed interval

In accordance with the Python CAPI, which gives preference to the half-open interval over the closed one, np.random.
random_integers is being deprecated in favor of calling np.random.randint, which has been enhanced with
the dtype parameter as described under “New Features”. However, np.random.random_integers will not be
removed anytime soon.

15.58. NumPy 1.11.0 Release Notes 461

NumPy User Guide, Release 1.22.0

15.58.9 FutureWarnings

Assigning to slices/views of MaskedArray

Currently a slice of a masked array contains a view of the original data and a copy-on-write view of the mask. Conse-
quently, any changes to the slice’s mask will result in a copy of the original mask being made and that new mask being
changed rather than the original. For example, if we make a slice of the original like so, view = original[:],
then modifications to the data in one array will affect the data of the other but, because the mask will be copied during
assignment operations, changes to the mask will remain local. A similar situation occurs when explicitly constructing a
masked array using MaskedArray(data, mask), the returned array will contain a view of data but the mask will
be a copy-on-write view of mask.
In the future, these cases will be normalized so that the data and mask arrays are treated the same way and modifications to
either will propagate between views. In 1.11, numpy will issue a MaskedArrayFutureWarning warning whenever
user codemodifies themask of a view that in the futuremay cause values to propagate back to the original. To silence these
warnings and make your code robust against the upcoming changes, you have two options: if you want to keep the current
behavior, call masked_view.unshare_mask() before modifying the mask. If you want to get the future behavior
early, use masked_view._sharedmask = False. However, note that setting the _sharedmask attribute will
break following explicit calls to masked_view.unshare_mask().

15.59 NumPy 1.10.4 Release Notes

This release is a bugfix source release motivated by a segfault regression. No windows binaries are provided for this
release, as there appear to be bugs in the toolchain we use to generate those files. Hopefully that problem will be fixed for
the next release. In the meantime, we suggest using one of the providers of windows binaries.

15.59.1 Compatibility notes

• The trace function now calls the trace method on subclasses of ndarray, except for matrix, for which the current
behavior is preserved. This is to help with the units package of AstroPy and hopefully will not cause problems.

15.59.2 Issues Fixed

• gh-6922 BUG: numpy.recarray.sort segfaults on Windows.
• gh-6937 BUG: busday_offset does the wrong thing with modifiedpreceding roll.
• gh-6949 BUG: Type is lost when slicing a subclass of recarray.

15.59.3 Merged PRs

The following PRs have been merged into 1.10.4. When the PR is a backport, the PR number for the original PR against
master is listed.

• gh-6840 TST: Update travis testing script in 1.10.x
• gh-6843 BUG: Fix use of python 3 only FileNotFoundError in test_f2py.
• gh-6884 REL: Update pavement.py and setup.py to reflect current version.
• gh-6916 BUG: Fix test_f2py so it runs correctly in runtests.py.
• gh-6924 BUG: Fix segfault gh-6922.

462 15. Release notes

NumPy User Guide, Release 1.22.0

• gh-6942 Fix datetime roll=’modifiedpreceding’ bug.
• gh-6943 DOC,BUG: Fix some latex generation problems.
• gh-6950 BUG trace is not subclass aware, np.trace(ma) != ma.trace().
• gh-6952 BUG recarray slices should preserve subclass.

15.60 NumPy 1.10.3 Release Notes

N/A this release did not happen due to various screwups involving PyPi.

15.61 NumPy 1.10.2 Release Notes

This release deals with a number of bugs that turned up in 1.10.1 and adds various build and release improvements.
Numpy 1.10.1 supports Python 2.6 - 2.7 and 3.2 - 3.5.

15.61.1 Compatibility notes

Relaxed stride checking is no longer the default

There were back compatibility problems involving views changing the dtype of multidimensional Fortran arrays that need
to be dealt with over a longer timeframe.

Fix swig bug in numpy.i

Relaxed stride checking revealed a bug in array_is_fortran(a), that was using PyArray_ISFORTRAN to check
for Fortran contiguity instead of PyArray_IS_F_CONTIGUOUS. You may want to regenerate swigged files using the
updated numpy.i

Deprecate views changing dimensions in fortran order

This deprecates assignment of a new descriptor to the dtype attribute of a non-C-contiguous array if it result in changing
the shape. This effectively bars viewing a multidimensional Fortran array using a dtype that changes the element size
along the first axis.
The reason for the deprecation is that, when relaxed strides checking is enabled, arrays that are both C and Fortran
contiguous are always treated as C contiguous which breaks some code that depended the two being mutually exclusive
for non-scalar arrays of ndim > 1. This deprecation prepares the way to always enable relaxed stride checking.

15.60. NumPy 1.10.3 Release Notes 463

NumPy User Guide, Release 1.22.0

15.61.2 Issues Fixed

• gh-6019 Masked array repr fails for structured array with multi-dimensional column.
• gh-6462 Median of empty array produces IndexError.
• gh-6467 Performance regression for record array access.
• gh-6468 numpy.interp uses ‘left’ value even when x[0]==xp[0].
• gh-6475 np.allclose returns a memmap when one of its arguments is a memmap.
• gh-6491 Error in broadcasting stride_tricks array.
• gh-6495 Unrecognized command line option ‘-ffpe-summary’ in gfortran.
• gh-6497 Failure of reduce operation on recarrays.
• gh-6498 Mention change in default casting rule in 1.10 release notes.
• gh-6530 The partition function errors out on empty input.
• gh-6532 numpy.inner return wrong inaccurate value sometimes.
• gh-6563 Intent(out) broken in recent versions of f2py.
• gh-6569 Cannot run tests after ‘python setup.py build_ext -i’
• gh-6572 Error in broadcasting stride_tricks array component.
• gh-6575 BUG: Split produces empty arrays with wrong number of dimensions
• gh-6590 Fortran Array problem in numpy 1.10.
• gh-6602 Random __all__ missing choice and dirichlet.
• gh-6611 ma.dot no longer always returns a masked array in 1.10.
• gh-6618 NPY_FORTRANORDER in make_fortran() in numpy.i
• gh-6636 Memory leak in nested dtypes in numpy.recarray
• gh-6641 Subsetting recarray by fields yields a structured array.
• gh-6667 ma.make_mask handles ma.nomask input incorrectly.
• gh-6675 Optimized blas detection broken in master and 1.10.
• gh-6678 Getting unexpected error from: X.dtype = complex (or Y = X.view(complex))
• gh-6718 f2py test fail in pip installed numpy-1.10.1 in virtualenv.
• gh-6719 Error compiling Cython file: Pythonic division not allowed without gil.
• gh-6771 Numpy.rec.fromarrays losing dtype metadata between versions 1.9.2 and 1.10.1
• gh-6781 The travis-ci script in maintenance/1.10.x needs fixing.
• gh-6807 Windows testing errors for 1.10.2

464 15. Release notes

NumPy User Guide, Release 1.22.0

15.61.3 Merged PRs

The following PRs have been merged into 1.10.2. When the PR is a backport, the PR number for the original PR against
master is listed.

• gh-5773 MAINT: Hide testing helper tracebacks when using them with pytest.
• gh-6094 BUG: Fixed a bug with string representation of masked structured arrays.
• gh-6208 MAINT: Speedup field access by removing unneeded safety checks.
• gh-6460 BUG: Replacing the os.environ.clear by less invasive procedure.
• gh-6470 BUG: Fix AttributeError in numpy distutils.
• gh-6472 MAINT: Use Python 3.5 instead of 3.5-dev for travis 3.5 testing.
• gh-6474 REL: Update Paver script for sdist and auto-switch test warnings.
• gh-6478 BUG: Fix Intel compiler flags for OS X build.
• gh-6481 MAINT: LIBPATH with spaces is now supported Python 2.7+ and Win32.
• gh-6487 BUG: Allow nested use of parameters in definition of arrays in f2py.
• gh-6488 BUG: Extend common blocks rather than overwriting in f2py.
• gh-6499 DOC: Mention that default casting for inplace operations has changed.
• gh-6500 BUG: Recarrays viewed as subarrays don’t convert to np.record type.
• gh-6501 REL: Add “make upload” command for built docs, update “make dist”.
• gh-6526 BUG: Fix use of __doc__ in setup.py for -OO mode.
• gh-6527 BUG: Fix the IndexError when taking the median of an empty array.
• gh-6537 BUG: Make ma.atleast_* with scalar argument return arrays.
• gh-6538 BUG: Fix ma.masked_values does not shrink mask if requested.
• gh-6546 BUG: Fix inner product regression for non-contiguous arrays.
• gh-6553 BUG: Fix partition and argpartition error for empty input.
• gh-6556 BUG: Error in broadcast_arrays with as_strided array.
• gh-6558 MAINT: Minor update to “make upload” doc build command.
• gh-6562 BUG: Disable view safety checks in recarray.
• gh-6567 BUG: Revert some import * fixes in f2py.
• gh-6574 DOC: Release notes for Numpy 1.10.2.
• gh-6577 BUG: Fix for #6569, allowing build_ext –inplace
• gh-6579 MAINT: Fix mistake in doc upload rule.
• gh-6596 BUG: Fix swig for relaxed stride checking.
• gh-6606 DOC: Update 1.10.2 release notes.
• gh-6614 BUG: Add choice and dirichlet to numpy.random.__all__.
• gh-6621 BUG: Fix swig make_fortran function.
• gh-6628 BUG: Make allclose return python bool.
• gh-6642 BUG: Fix memleak in _convert_from_dict.

15.61. NumPy 1.10.2 Release Notes 465

NumPy User Guide, Release 1.22.0

• gh-6643 ENH: make recarray.getitem return a recarray.
• gh-6653 BUG: Fix ma dot to always return masked array.
• gh-6668 BUG: ma.make_mask should always return nomask for nomask argument.
• gh-6686 BUG: Fix a bug in assert_string_equal.
• gh-6695 BUG: Fix removing tempdirs created during build.
• gh-6697 MAINT: Fix spurious semicolon in macro definition of PyArray_FROM_OT.
• gh-6698 TST: test np.rint bug for large integers.
• gh-6717 BUG: Readd fallback CBLAS detection on linux.
• gh-6721 BUG: Fix for #6719.
• gh-6726 BUG: Fix bugs exposed by relaxed stride rollback.
• gh-6757 BUG: link cblas library if cblas is detected.
• gh-6756 TST: only test f2py, not f2py2.7 etc, fixes #6718.
• gh-6747 DEP: Deprecate changing shape of non-C-contiguous array via descr.
• gh-6775 MAINT: Include from __future__ boilerplate in some files missing it.
• gh-6780 BUG: metadata is not copied to base_dtype.
• gh-6783 BUG: Fix travis ci testing for new google infrastructure.
• gh-6785 BUG: Quick and dirty fix for interp.
• gh-6813 TST,BUG: Make test_mvoid_multidim_print work for 32 bit systems.
• gh-6817 BUG: Disable 32-bit msvc9 compiler optimizations for npy_rint.
• gh-6819 TST: Fix test_mvoid_multidim_print failures on Python 2.x for Windows.

Initial support for mingwpy was reverted as it was causing problems for non-windows builds.
• gh-6536 BUG: Revert gh-5614 to fix non-windows build problems

A fix for np.lib.split was reverted because it resulted in “fixing” behavior that will be present in the Numpy 1.11 and that
was already present in Numpy 1.9. See the discussion of the issue at gh-6575 for clarification.

• gh-6576 BUG: Revert gh-6376 to fix split behavior for empty arrays.
Relaxed stride checking was reverted. There were back compatibility problems involving views changing the dtype of
multidimensional Fortran arrays that need to be dealt with over a longer timeframe.

• gh-6735 MAINT: Make no relaxed stride checking the default for 1.10.

15.61.4 Notes

A bug in the Numpy 1.10.1 release resulted in exceptions being raised for RuntimeWarning and
DeprecationWarning in projects depending on Numpy. That has been fixed.

466 15. Release notes

NumPy User Guide, Release 1.22.0

15.62 NumPy 1.10.1 Release Notes

This release deals with a few build problems that showed up in 1.10.0. Most users would not have seen these problems.
The differences are:

• Compiling with msvc9 or msvc10 for 32 bit Windows now requires SSE2. This was the easiest fix for what looked
to be somemiscompiled code when SSE2 was not used. If you need to compile for 32 bit Windows systems without
SSE2 support, mingw32 should still work.

• Make compiling with VS2008 python2.7 SDK easier
• Change Intel compiler options so that code will also be generated to support systems without SSE4.2.
• Some _config test functions needed an explicit integer return in order to avoid the openSUSE rpmlinter erring out.
• We ran into a problem with pipy not allowing reuse of filenames and a resulting proliferation of ..*.postN releases.
Not only were the names getting out of hand, some packages were unable to work with the postN suffix.

Numpy 1.10.1 supports Python 2.6 - 2.7 and 3.2 - 3.5.
Commits:
45a3d84DEP: Removewarning for fullwhen dtype is set. 0c1a5df BLD: import setuptools to allow compile with VS2008
python2.7 sdk 04211c6 BUG: mask nan to 1 in ordered compare 826716f DOC: Document the reason msvc requires
SSE2 on 32 bit platforms. 49fa187 BLD: enable SSE2 for 32-bit msvc 9 and 10 compilers dcbc4cc MAINT: remove
Wreturn-type warnings from config checks d6564cb BLD: do not build exclusively for SSE4.2 processors 15cb66f BLD:
do not build exclusively for SSE4.2 processors c38bc08 DOC: fix var. reference in percentile docstring 78497f4 DOC:
Sync 1.10.0-notes.rst in 1.10.x branch with master.

15.63 NumPy 1.10.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.5.

15.63.1 Highlights

• numpy.distutils now supports parallel compilation via the –parallel/-j argument passed to setup.py build
• numpy.distutils now supports additional customization via site.cfg to control compilation parameters, i.e. runtime
libraries, extra linking/compilation flags.

• Addition of np.linalg.multi_dot: compute the dot product of two or more arrays in a single function call, while
automatically selecting the fastest evaluation order.

• The new function np.stack provides a general interface for joining a sequence of arrays along a new axis, comple-
menting np.concatenate for joining along an existing axis.

• Addition of nanprod to the set of nanfunctions.
• Support for the ‘@’ operator in Python 3.5.

15.62. NumPy 1.10.1 Release Notes 467

NumPy User Guide, Release 1.22.0

15.63.2 Dropped Support

• The _dotblas module has been removed. CBLAS Support is now in Multiarray.
• The testcalcs.py file has been removed.
• The polytemplate.py file has been removed.
• npy_PyFile_Dup and npy_PyFile_DupClose have been removed from npy_3kcompat.h.
• splitcmdline has been removed from numpy/distutils/exec_command.py.
• try_run and get_output have been removed from numpy/distutils/command/config.py
• The a._format attribute is no longer supported for array printing.
• Keywords skiprows and missing removed from np.genfromtxt.
• Keyword old_behavior removed from np.correlate.

15.63.3 Future Changes

• In array comparisons like arr1 == arr2, many corner cases involving strings or structured dtypes that used
to return scalars now issue FutureWarning or DeprecationWarning, and in the future will be change to
either perform elementwise comparisons or raise an error.

• In np.lib.split an empty array in the result always had dimension (0,) no matter the dimensions of the
array being split. In Numpy 1.11 that behavior will be changed so that the dimensions will be preserved. A
FutureWarning for this change has been in place since Numpy 1.9 but, due to a bug, sometimes no warning
was raised and the dimensions were already preserved.

• The SafeEval class will be removed in Numpy 1.11.
• The alterdot and restoredot functions will be removed in Numpy 1.11.

See below for more details on these changes.

15.63.4 Compatibility notes

Default casting rule change

Default casting for inplace operations has changed to 'same_kind'. For instance, if n is an array of integers, and f
is an array of floats, then n += f will result in a TypeError, whereas in previous Numpy versions the floats would
be silently cast to ints. In the unlikely case that the example code is not an actual bug, it can be updated in a backward
compatible way by rewriting it as np.add(n, f, out=n, casting='unsafe'). The old 'unsafe' default
has been deprecated since Numpy 1.7.

numpy version string

The numpy version string for development builds has been changed from x.y.z.dev-githash to x.y.z.
dev0+githash (note the +) in order to comply with PEP 440.

468 15. Release notes

NumPy User Guide, Release 1.22.0

relaxed stride checking

NPY_RELAXED_STRIDE_CHECKING is now true by default.
UPDATE: In 1.10.2 the default value of NPY_RELAXED_STRIDE_CHECKING was changed to false for back com-
patibility reasons. More time is needed before it can be made the default. As part of the roadmap a deprecation of
dimension changing views of f_contiguous not c_contiguous arrays was also added.

Concatenation of 1d arrays along any but axis=0 raises IndexError

Using axis != 0 has raised a DeprecationWarning since NumPy 1.7, it now raises an error.

np.ravel, np.diagonal and np.diag now preserve subtypes

There was inconsistent behavior between x.ravel() and np.ravel(x), as well as between x.diagonal() and np.diagonal(x),
with the methods preserving subtypes while the functions did not. This has been fixed and the functions now behave like
the methods, preserving subtypes except in the case of matrices. Matrices are special cased for backward compatibility
and still return 1-D arrays as before. If you need to preserve the matrix subtype, use the methods instead of the functions.

rollaxis and swapaxes always return a view

Previously, a view was returned except when no change was made in the order of the axes, in which case the input array
was returned. A view is now returned in all cases.

nonzero now returns base ndarrays

Previously, an inconsistency existed between 1-D inputs (returning a base ndarray) and higher dimensional ones (which
preserved subclasses). Behavior has been unified, and the return will now be a base ndarray. Subclasses can still override
this behavior by providing their own nonzero method.

C API

The changes to swapaxes also apply to the PyArray_SwapAxes C function, which now returns a view in all cases.
The changes to nonzero also apply to the PyArray_Nonzero C function, which now returns a base ndarray in all cases.
The dtype structure (PyArray_Descr) has a new member at the end to cache its hash value. This shouldn’t affect any
well-written applications.
The change to the concatenation function DeprecationWarning also affects PyArray_ConcatenateArrays,

recarray field return types

Previously the returned types for recarray fields accessed by attribute and by index were inconsistent, and fields of string
type were returned as chararrays. Now, fields accessed by either attribute or indexing will return an ndarray for fields
of non-structured type, and a recarray for fields of structured type. Notably, this affect recarrays containing strings with
whitespace, as trailing whitespace is trimmed from chararrays but kept in ndarrays of string type. Also, the dtype.type of
nested structured fields is now inherited.

15.63. NumPy 1.10.0 Release Notes 469

NumPy User Guide, Release 1.22.0

recarray views

Viewing an ndarray as a recarray now automatically converts the dtype to np.record. See new record array documentation.
Additionally, viewing a recarray with a non-structured dtype no longer converts the result’s type to ndarray - the result
will remain a recarray.

‘out’ keyword argument of ufuncs now accepts tuples of arrays

When using the ‘out’ keyword argument of a ufunc, a tuple of arrays, one per ufunc output, can be provided. For ufuncs
with a single output a single array is also a valid ‘out’ keyword argument. Previously a single array could be provided in
the ‘out’ keyword argument, and it would be used as the first output for ufuncs with multiple outputs, is deprecated, and
will result in a DeprecationWarning now and an error in the future.

byte-array indices now raises an IndexError

Indexing an ndarray using a byte-string in Python 3 now raises an IndexError instead of a ValueError.

Masked arrays containing objects with arrays

For such (rare) masked arrays, getting a single masked item no longer returns a corrupted masked array, but a fully masked
version of the item.

Median warns and returns nan when invalid values are encountered

Similar to mean, median and percentile now emits a Runtime warning and returns NaN in slices where a NaN is present.
To compute the median or percentile while ignoring invalid values use the new nanmedian or nanpercentile functions.

Functions available from numpy.ma.testutils have changed

All functions from numpy.testing were once available from numpy.ma.testutils but not all of them were redefined to work
with masked arrays. Most of those functions have now been removed from numpy.ma.testutils with a small subset retained
in order to preserve backward compatibility. In the long run this should help avoid mistaken use of the wrong functions,
but it may cause import problems for some.

15.63.5 New Features

Reading extra flags from site.cfg

Previously customization of compilation of dependency libraries and numpy itself was only accomblishable via code
changes in the distutils package. Now numpy.distutils reads in the following extra flags from each group of the site.cfg:

• runtime_library_dirs/rpath, sets runtime library directories to override
LD_LIBRARY_PATH

• extra_compile_args, add extra flags to the compilation of sources
• extra_link_args, add extra flags when linking libraries

This should, at least partially, complete user customization.

470 15. Release notes

NumPy User Guide, Release 1.22.0

np.cbrt to compute cube root for real floats

np.cbrt wraps the C99 cube root function cbrt. Compared to np.power(x, 1./3.) it is well defined for negative real floats
and a bit faster.
By passing –parallel=n or -j n to setup.py build the compilation of extensions is now performed in n parallel processes. The
parallelization is limited to files within one extension so projects using Cython will not profit because it builds extensions
from single files.

genfromtxt has a new max_rows argument

A max_rows argument has been added to genfromtxt to limit the number of rows read in a single call. Using this
functionality, it is possible to read in multiple arrays stored in a single file by making repeated calls to the function.

New function np.broadcast_to for invoking array broadcasting

np.broadcast_tomanually broadcasts an array to a given shape according to numpy’s broadcasting rules. The functionality
is similar to broadcast_arrays, which in fact has been rewritten to use broadcast_to internally, but only a single array is
necessary.

New context manager clear_and_catch_warnings for testing warnings

When Python emits a warning, it records that this warning has been emitted in the module that caused the warning, in a
module attribute __warningregistry__. Once this has happened, it is not possible to emit the warning again, unless
you clear the relevant entry in __warningregistry__. This makes is hard and fragile to test warnings, because if
your test comes after another that has already caused the warning, you will not be able to emit the warning or test it. The
context manager clear_and_catch_warnings clears warnings from the module registry on entry and resets them
on exit, meaning that warnings can be re-raised.

cov has new fweights and aweights arguments

The fweights and aweights arguments add new functionality to covariance calculations by applying two types of
weighting to observation vectors. An array of fweights indicates the number of repeats of each observation vector,
and an array of aweights provides their relative importance or probability.

Support for the ‘@’ operator in Python 3.5+

Python 3.5 adds support for a matrix multiplication operator ‘@’ proposed in PEP465. Preliminary support for that has
been implemented, and an equivalent function matmul has also been added for testing purposes and use in earlier Python
versions. The function is preliminary and the order and number of its optional arguments can be expected to change.

15.63. NumPy 1.10.0 Release Notes 471

NumPy User Guide, Release 1.22.0

New argument norm to fft functions

The default normalization has the direct transforms unscaled and the inverse transforms are scaled by 1/n. It is possible
to obtain unitary transforms by setting the keyword argument norm to "ortho" (default is None) so that both direct
and inverse transforms will be scaled by 1/
sqrtn.

15.63.6 Improvements

np.digitize using binary search

np.digitize is now implemented in terms of np.searchsorted. This means that a binary search is used to bin the values,
which scales much better for larger number of bins than the previous linear search. It also removes the requirement for
the input array to be 1-dimensional.

np.poly now casts integer inputs to float

np.poly will now cast 1-dimensional input arrays of integer type to double precision floating point, to prevent integer
overflow when computing the monic polynomial. It is still possible to obtain higher precision results by passing in an
array of object type, filled e.g. with Python ints.

np.interp can now be used with periodic functions

np.interp now has a new parameter period that supplies the period of the input data xp. In such case, the input data is
properly normalized to the given period and one end point is added to each extremity of xp in order to close the previous
and the next period cycles, resulting in the correct interpolation behavior.

np.pad supports more input types for pad_width and constant_values

constant_values parameters now accepts NumPy arrays and float values. NumPy arrays are supported as input for
pad_width, and an exception is raised if its values are not of integral type.

np.argmax and np.argmin now support an out argument

The out parameter was added to np.argmax and np.argmin for consistency with ndarray.argmax and ndarray.argmin.
The new parameter behaves exactly as it does in those methods.

More system C99 complex functions detected and used

All of the functions in complex.h are now detected. There are new fallback implementations of the following func-
tions.

• npy_ctan,
• npy_cacos, npy_casin, npy_catan
• npy_ccosh, npy_csinh, npy_ctanh,
• npy_cacosh, npy_casinh, npy_catanh

As a result of these improvements, there will be some small changes in returned values, especially for corner cases.

472 15. Release notes

NumPy User Guide, Release 1.22.0

np.loadtxt support for the strings produced by the float.hex method

The strings produced by float.hex look like 0x1.921fb54442d18p+1, so this is not the hex used to represent
unsigned integer types.

np.isclose properly handles minimal values of integer dtypes

In order to properly handle minimal values of integer types, np.isclose will now cast to the float dtype during comparisons.
This aligns its behavior with what was provided by np.allclose.

np.allclose uses np.isclose internally.

np.allclose now uses np.isclose internally and inherits the ability to compareNaNs as equal by settingequal_nan=True.
Subclasses, such as np.ma.MaskedArray, are also preserved now.

np.genfromtxt now handles large integers correctly

np.genfromtxt now correctly handles integers larger than 2**31-1 on 32-bit systems and larger than 2**63-1 on 64-bit
systems (it previously crashed with an OverflowError in these cases). Integers larger than 2**63-1 are converted
to floating-point values.

np.load, np.save have pickle backward compatibility flags

The functions np.load and np.save have additional keyword arguments for controlling backward compatibility of pickled
Python objects. This enables Numpy on Python 3 to load npy files containing object arrays that were generated on Python
2.

MaskedArray support for more complicated base classes

Built-in assumptions that the baseclass behaved like a plain array are being removed. In particular, setting and getting
elements and ranges will respect baseclass overrides of __setitem__ and __getitem__, and arithmetic will respect
overrides of __add__, __sub__, etc.

15.63.7 Changes

dotblas functionality moved to multiarray

The cblas versions of dot, inner, and vdot have been integrated into the multiarray module. In particular, vdot is now a
multiarray function, which it was not before.

15.63. NumPy 1.10.0 Release Notes 473

NumPy User Guide, Release 1.22.0

stricter check of gufunc signature compliance

Inputs to generalized universal functions are nowmore strictly checked against the function’s signature: all core dimensions
are now required to be present in input arrays; core dimensions with the same label must have the exact same size; and
output core dimension’s must be specified, either by a same label input core dimension or by a passed-in output array.

views returned from np.einsum are writeable

Views returned by np.einsum will now be writeable whenever the input array is writeable.

np.argmin skips NaT values

np.argmin now skips NaT values in datetime64 and timedelta64 arrays, making it consistent with np.min, np.argmax and
np.max.

15.63.8 Deprecations

Array comparisons involving strings or structured dtypes

Normally, comparison operations on arrays perform elementwise comparisons and return arrays of booleans. But in
some corner cases, especially involving strings are structured dtypes, NumPy has historically returned a scalar instead.
For example:

Current behaviour

np.arange(2) == "foo"
-> False

np.arange(2) < "foo"
-> True on Python 2, error on Python 3

np.ones(2, dtype="i4,i4") == np.ones(2, dtype="i4,i4,i4")
-> False

Continuing work started in 1.9, in 1.10 these comparisons will now raise FutureWarning or
DeprecationWarning, and in the future they will be modified to behave more consistently with other com-
parison operations, e.g.:

Future behaviour

np.arange(2) == "foo"
-> array([False, False])

np.arange(2) < "foo"
-> error, strings and numbers are not orderable

np.ones(2, dtype="i4,i4") == np.ones(2, dtype="i4,i4,i4")
-> [False, False]

474 15. Release notes

NumPy User Guide, Release 1.22.0

SafeEval

The SafeEval class in numpy/lib/utils.py is deprecated and will be removed in the next release.

alterdot, restoredot

The alterdot and restoredot functions no longer do anything, and are deprecated.

pkgload, PackageLoader

These ways of loading packages are now deprecated.

bias, ddof arguments to corrcoef

The values for the bias and ddof arguments to the corrcoef function canceled in the division implied by the cor-
relation coefficient and so had no effect on the returned values.
We now deprecate these arguments to corrcoef and the masked array version ma.corrcoef.
Because we are deprecating the bias argument to ma.corrcoef, we also deprecate the use of the allow_masked
argument as a positional argument, as its position will change with the removal of bias. allow_masked will in due
course become a keyword-only argument.

dtype string representation changes

Since 1.6, creating a dtype object from its string representation, e.g. 'f4', would issue a deprecation warning if the size
did not correspond to an existing type, and default to creating a dtype of the default size for the type. Starting with this
release, this will now raise a TypeError.
The only exception is object dtypes, where both 'O4' and 'O8' will still issue a deprecation warning. This platform-
dependent representation will raise an error in the next release.
In preparation for this upcoming change, the string representation of an object dtype, i.e. np.dtype(object).str,
no longer includes the item size, i.e. will return '|O' instead of '|O4' or '|O8' as before.

15.64 NumPy 1.9.2 Release Notes

This is a bugfix only release in the 1.9.x series.

15.64.1 Issues fixed

• #5316: fix too large dtype alignment of strings and complex types
• #5424: fix ma.median when used on ndarrays
• #5481: Fix astype for structured array fields of different byte order
• #5354: fix segfault when clipping complex arrays
• #5524: allow np.argpartition on non ndarrays
• #5612: Fixes ndarray.fill to accept full range of uint64

15.64. NumPy 1.9.2 Release Notes 475

https://github.com/numpy/numpy/issues/5316
https://github.com/numpy/numpy/issues/5424
https://github.com/numpy/numpy/issues/5481
https://github.com/numpy/numpy/issues/5354
https://github.com/numpy/numpy/issues/5524
https://github.com/numpy/numpy/issues/5612

NumPy User Guide, Release 1.22.0

• #5155: Fix loadtxt with comments=None and a string None data
• #4476: Masked array view fails if structured dtype has datetime component
• #5388: Make RandomState.set_state and RandomState.get_state threadsafe
• #5390: make seed, randint and shuffle threadsafe
• #5374: Fixed incorrect assert_array_almost_equal_nulp documentation
• #5393: Add support for ATLAS > 3.9.33.
• #5313: PyArray_AsCArray caused segfault for 3d arrays
• #5492: handle out of memory in rfftf
• #4181: fix a few bugs in the random.pareto docstring
• #5359: minor changes to linspace docstring
• #4723: fix a compile issues on AIX

15.65 NumPy 1.9.1 Release Notes

This is a bugfix only release in the 1.9.x series.

15.65.1 Issues fixed

• gh-5184: restore linear edge behaviour of gradient to as it was in < 1.9. The second order behaviour is available
via the edge_order keyword

• gh-4007: workaround Accelerate sgemv crash on OSX 10.9
• gh-5100: restore object dtype inference from iterable objects without len()
• gh-5163: avoid gcc-4.1.2 (red hat 5) miscompilation causing a crash
• gh-5138: fix nanmedian on arrays containing inf
• gh-5240: fix not returning out array from ufuncs with subok=False set
• gh-5203: copy inherited masks in MaskedArray.__array_finalize__
• gh-2317: genfromtxt did not handle filling_values=0 correctly
• gh-5067: restore api of npy_PyFile_DupClose in python2
• gh-5063: cannot convert invalid sequence index to tuple
• gh-5082: Segmentation fault with argmin() on unicode arrays
• gh-5095: don’t propagate subtypes from np.where
• gh-5104: np.inner segfaults with SciPy’s sparse matrices
• gh-5251: Issue with fromarrays not using correct format for unicode arrays
• gh-5136: Import dummy_threading if importing threading fails
• gh-5148: Make numpy import when run with Python flag ‘-OO’
• gh-5147: Einsum double contraction in particular order causes ValueError
• gh-479: Make f2py work with intent(in out)

476 15. Release notes

https://github.com/numpy/numpy/issues/5155
https://github.com/numpy/numpy/issues/4476
https://github.com/numpy/numpy/issues/5388
https://github.com/numpy/numpy/issues/5390
https://github.com/numpy/numpy/issues/5374
https://github.com/numpy/numpy/issues/5393
https://github.com/numpy/numpy/issues/5313
https://github.com/numpy/numpy/issues/5492
https://github.com/numpy/numpy/issues/4181
https://github.com/numpy/numpy/issues/5359
https://github.com/numpy/numpy/issues/4723

NumPy User Guide, Release 1.22.0

• gh-5170: Make python2 .npy files readable in python3
• gh-5027: Use ‘ll’ as the default length specifier for long long
• gh-4896: fix build error with MSVC 2013 caused by C99 complex support
• gh-4465: Make PyArray_PutTo respect writeable flag
• gh-5225: fix crash when using arange on datetime without dtype set
• gh-5231: fix build in c99 mode

15.66 NumPy 1.9.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.4.

15.66.1 Highlights

• Numerous performance improvements in various areas, most notably indexing and operations on small arrays are
significantly faster. Indexing operations now also release the GIL.

• Addition of nanmedian and nanpercentile rounds out the nanfunction set.

15.66.2 Dropped Support

• The oldnumeric and numarray modules have been removed.
• The doc/pyrex and doc/cython directories have been removed.
• The doc/numpybook directory has been removed.
• The numpy/testing/numpytest.py file has been removed together with the importall function it contained.

15.66.3 Future Changes

• The numpy/polynomial/polytemplate.py file will be removed in NumPy 1.10.0.
• Default casting for inplace operations will change to ‘same_kind’ in Numpy 1.10.0. This will certainly break some
code that is currently ignoring the warning.

• Relaxed stride checking will be the default in 1.10.0
• String version checks will break because, e.g., ‘1.9’ > ‘1.10’ is True. A NumpyVersion class has been added that
can be used for such comparisons.

• The diagonal and diag functions will return writeable views in 1.10.0
• The S and/or a dtypes may be changed to represent Python strings instead of bytes, in Python 3 these two types are
very different.

15.66. NumPy 1.9.0 Release Notes 477

NumPy User Guide, Release 1.22.0

15.66.4 Compatibility notes

The diagonal and diag functions return readonly views.

In NumPy 1.8, the diagonal and diag functions returned readonly copies, in NumPy 1.9 they return readonly views, and
in 1.10 they will return writeable views.

Special scalar float values don’t cause upcast to double anymore

In previous numpy versions operations involving floating point scalars containing special values NaN, Inf and -Inf
caused the result type to be at least float64. As the special values can be represented in the smallest available floating
point type, the upcast is not performed anymore.
For example the dtype of:

np.array([1.], dtype=np.float32) * float('nan')

now remains float32 instead of being cast to float64. Operations involving non-special values have not been
changed.

Percentile output changes

If given more than one percentile to compute numpy.percentile returns an array instead of a list. A single percentile still
returns a scalar. The array is equivalent to converting the list returned in older versions to an array via np.array.
If the overwrite_input option is used the input is only partially instead of fully sorted.

ndarray.tofile exception type

All tofile exceptions are now IOError, some were previously ValueError.

Invalid fill value exceptions

Two changes to numpy.ma.core._check_fill_value:
• When the fill value is a string and the array type is not one of ‘OSUV’, TypeError is raised instead of the default
fill value being used.

• When the fill value overflows the array type, TypeError is raised instead of OverflowError.

Polynomial Classes no longer derived from PolyBase

This may cause problems with folks who depended on the polynomial classes being derived from PolyBase. They are now
all derived from the abstract base class ABCPolyBase. Strictly speaking, there should be a deprecation involved, but no
external code making use of the old baseclass could be found.

478 15. Release notes

NumPy User Guide, Release 1.22.0

Using numpy.random.binomial may change the RNG state vs. numpy < 1.9

A bug in one of the algorithms to generate a binomial random variate has been fixed. This change will likely alter
the number of random draws performed, and hence the sequence location will be different after a call to distribu-
tion.c::rk_binomial_btpe. Any tests which rely on the RNG being in a known state should be checked and/or updated as
a result.

Random seed enforced to be a 32 bit unsigned integer

np.random.seed and np.random.RandomState now throw a ValueError if the seed cannot safely be con-
verted to 32 bit unsigned integers. Applications that now fail can be fixed by masking the higher 32 bit values to zero:
seed = seed & 0xFFFFFFFF. This is what is done silently in older versions so the random stream remains the
same.

Argmin and argmax out argument

The out argument to np.argmin and np.argmax and their equivalent C-API functions is now checked to match the
desired output shape exactly. If the check fails a ValueError instead of TypeError is raised.

Einsum

Remove unnecessary broadcasting notation restrictions. np.einsum('ijk,j->ijk', A, B) can also be written
as np.einsum('ij...,j->ij...', A, B) (ellipsis is no longer required on ‘j’)

Indexing

The NumPy indexing has seen a complete rewrite in this version. This makes most advanced integer indexing operations
much faster and should have no other implications. However some subtle changes and deprecations were introduced in
advanced indexing operations:

• Boolean indexing into scalar arrays will always return a new 1-d array. This means that
array(1)[array(True)] gives array([1]) and not the original array.

• Advanced indexing into one dimensional arrays used to have (undocumented) special handling regarding repeating
the value array in assignments when the shape of the value array was too small or did not match. Code using this
will raise an error. For compatibility you can use arr.flat[index] = values, which uses the old code
branch. (for example a = np.ones(10); a[np.arange(10)] = [1, 2, 3])

• The iteration order over advanced indexes used to be always C-order. In NumPy 1.9. the iteration order adapts
to the inputs and is not guaranteed (with the exception of a single advanced index which is never reversed for
compatibility reasons). This means that the result is undefined if multiple values are assigned to the same element.
An example for this is arr[[0, 0], [1, 1]] = [1, 2], which may set arr[0, 1] to either 1 or 2.

• Equivalent to the iteration order, the memory layout of the advanced indexing result is adapted for faster indexing
and cannot be predicted.

• All indexing operations return a view or a copy. No indexing operation will return the original array object. (For
example arr[...])

• In the future Boolean array-likes (such as lists of python bools) will always be treated as Boolean indexes and
Boolean scalars (including python True) will be a legal boolean index. At this time, this is already the case for
scalar arrays to allow the general positive = a[a > 0] to work when a is zero dimensional.

15.66. NumPy 1.9.0 Release Notes 479

NumPy User Guide, Release 1.22.0

• In NumPy 1.8 it was possible to use array(True) and array(False) equivalent to 1 and 0 if the result of
the operation was a scalar. This will raise an error in NumPy 1.9 and, as noted above, treated as a boolean index
in the future.

• All non-integer array-likes are deprecated, object arrays of custom integer like objects may have to be cast explicitly.
• The error reporting for advanced indexing is more informative, however the error type has changed in some cases.
(Broadcasting errors of indexing arrays are reported as IndexError)

• Indexing with more then one ellipsis (...) is deprecated.

Non-integer reduction axis indexes are deprecated

Non-integer axis indexes to reduction ufuncs like add.reduce or sum are deprecated.

promote_types and string dtype

promote_types function now returns a valid string length when given an integer or float dtype as one argument and
a string dtype as another argument. Previously it always returned the input string dtype, even if it wasn’t long enough to
store the max integer/float value converted to a string.

can_cast and string dtype

can_cast function now returns False in “safe” casting mode for integer/float dtype and string dtype if the string dtype
length is not long enough to store the max integer/float value converted to a string. Previously can_cast in “safe” mode
returned True for integer/float dtype and a string dtype of any length.

astype and string dtype

The astype method now returns an error if the string dtype to cast to is not long enough in “safe” casting mode to
hold the max value of integer/float array that is being casted. Previously the casting was allowed even if the result was
truncated.

npyio.recfromcsv keyword arguments change

npyio.recfromcsv no longer accepts the undocumented update keyword, which used to override the dtype keyword.

The doc/swig directory moved

The doc/swig directory has been moved to tools/swig.

480 15. Release notes

NumPy User Guide, Release 1.22.0

The npy_3kcompat.h header changed

The unused simple_capsule_dtor function has been removed from npy_3kcompat.h. Note that this header
is not meant to be used outside of numpy; other projects should be using their own copy of this file when needed.

Negative indices in C-Api sq_item and sq_ass_item sequence methods

When directly accessing the sq_item or sq_ass_item PyObject slots for item getting, negative indices will not be
supported anymore. PySequence_GetItem and PySequence_SetItem however fix negative indices so that they
can be used there.

NDIter

When NpyIter_RemoveAxis is now called, the iterator range will be reset.
When a multi index is being tracked and an iterator is not buffered, it is possible to use NpyIter_RemoveAxis. In
this case an iterator can shrink in size. Because the total size of an iterator is limited, the iterator may be too large before
these calls. In this case its size will be set to -1 and an error issued not at construction time but when removing the multi
index, setting the iterator range, or getting the next function.
This has no effect on currently working code, but highlights the necessity of checking for an error return if these conditions
can occur. In most cases the arrays being iterated are as large as the iterator so that such a problem cannot occur.
This change was already applied to the 1.8.1 release.

zeros_like for string dtypes now returns empty strings

To match the zeros function zeros_like now returns an array initialized with empty strings instead of an array filled with
‘0’.

15.66.5 New Features

Percentile supports more interpolation options

np.percentile now has the interpolation keyword argument to specify in which way points should be interpolated
if the percentiles fall between two values. See the documentation for the available options.

Generalized axis support for median and percentile

np.median and np.percentile now support generalized axis arguments like ufunc reductions do since 1.7. One
can now say axis=(index, index) to pick a list of axes for the reduction. The keepdims keyword argument was also
added to allow convenient broadcasting to arrays of the original shape.

15.66. NumPy 1.9.0 Release Notes 481

NumPy User Guide, Release 1.22.0

Dtype parameter added to np.linspace and np.logspace

The returned data type from the linspace and logspace functions can now be specified using the dtype parameter.

More general np.triu and np.tril broadcasting

For arrays with ndim exceeding 2, these functions will now apply to the final two axes instead of raising an exception.

tobytes alias for tostring method

ndarray.tobytes and MaskedArray.tobytes have been added as aliases for tostringwhich exports arrays
as bytes. This is more consistent in Python 3 where str and bytes are not the same.

Build system

Added experimental support for the ppc64le and OpenRISC architecture.

Compatibility to python numbers module

All numerical numpy types are now registered with the type hierarchy in the python numbers module.

increasing parameter added to np.vander

The ordering of the columns of the Vandermonde matrix can be specified with this new boolean argument.

unique_counts parameter added to np.unique

The number of times each unique item comes up in the input can now be obtained as an optional return value.

Support for median and percentile in nanfunctions

The np.nanmedian and np.nanpercentile functions behave like the median and percentile functions except
that NaNs are ignored.

NumpyVersion class added

The class may be imported from numpy.lib and can be used for version comparison when the numpy version goes to
1.10.devel. For example:

>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.10.0'):
... print('Wow, that is an old NumPy version!')

482 15. Release notes

NumPy User Guide, Release 1.22.0

Allow saving arrays with large number of named columns

The numpy storage format 1.0 only allowed the array header to have a total size of 65535 bytes. This can be exceeded
by structured arrays with a large number of columns. A new format 2.0 has been added which extends the header size to
4 GiB. np.save will automatically save in 2.0 format if the data requires it, else it will always use the more compatible 1.0
format.

Full broadcasting support for np.cross

np.cross now properly broadcasts its two input arrays, even if they have different number of dimensions. In earlier
versions this would result in either an error being raised, or wrong results computed.

15.66.6 Improvements

Better numerical stability for sum in some cases

Pairwise summation is now used in the sum method, but only along the fast axis and for groups of the values <= 8192 in
length. This should also improve the accuracy of var and std in some common cases.

Percentile implemented in terms of np.partition

np.percentile has been implemented in terms of np.partitionwhich only partially sorts the data via a selection
algorithm. This improves the time complexity from O(nlog(n)) to O(n).

Performance improvement for np.array

The performance of converting lists containing arrays to arrays using np.array has been improved. It is now equivalent
in speed to np.vstack(list).

Performance improvement for np.searchsorted

For the built-in numeric types, np.searchsorted no longer relies on the data type’s compare function to perform
the search, but is now implemented by type specific functions. Depending on the size of the inputs, this can result in
performance improvements over 2x.

Optional reduced verbosity for np.distutils

Set numpy.distutils.system_info.system_info.verbosity = 0 and then calls to numpy.
distutils.system_info.get_info('blas_opt') will not print anything on the output. This is mostly
for other packages using numpy.distutils.

15.66. NumPy 1.9.0 Release Notes 483

NumPy User Guide, Release 1.22.0

Covariance check in np.random.multivariate_normal

A RuntimeWarning warning is raised when the covariance matrix is not positive-semidefinite.

Polynomial Classes no longer template based

The polynomial classes have been refactored to use an abstract base class rather than a template in order to implement
a common interface. This makes importing the polynomial package faster as the classes do not need to be compiled on
import.

More GIL releases

Several more functions now release the Global Interpreter Lock allowing more efficient parallelization using the
threading module. Most notably the GIL is now released for fancy indexing, np.where and the random module
now uses a per-state lock instead of the GIL.

MaskedArray support for more complicated base classes

Built-in assumptions that the baseclass behaved like a plain array are being removed. In particular, repr and str should
now work more reliably.

C-API

15.66.7 Deprecations

Non-integer scalars for sequence repetition

Using non-integer numpy scalars to repeat python sequences is deprecated. For example np.float_(2) * [1] will
be an error in the future.

select input deprecations

The integer and empty input to select is deprecated. In the future only boolean arrays will be valid conditions and an
empty condlist will be considered an input error instead of returning the default.

rank function

The rank function has been deprecated to avoid confusion with numpy.linalg.matrix_rank.

484 15. Release notes

NumPy User Guide, Release 1.22.0

Object array equality comparisons

In the future object array comparisons both == and np.equal will not make use of identity checks anymore. For example:

>>> a = np.array([np.array([1, 2, 3]), 1])
>>> b = np.array([np.array([1, 2, 3]), 1])
>>> a == b

will consistently return False (and in the future an error) even if the array in a and b was the same object.
The equality operator == will in the future raise errors like np.equal if broadcasting or element comparisons, etc. fails.
Comparison with arr == None will in the future do an elementwise comparison instead of just returning False. Code
should be using arr is None.
All of these changes will give Deprecation- or FutureWarnings at this time.

C-API

The utility function npy_PyFile_Dup and npy_PyFile_DupClose are broken by the internal buffering python 3 ap-
plies to its file objects. To fix this two new functions npy_PyFile_Dup2 and npy_PyFile_DupClose2 are declared in
npy_3kcompat.h and the old functions are deprecated. Due to the fragile nature of these functions it is recommended to
instead use the python API when possible.
This change was already applied to the 1.8.1 release.

15.67 NumPy 1.8.2 Release Notes

This is a bugfix only release in the 1.8.x series.

15.67.1 Issues fixed

• gh-4836: partition produces wrong results for multiple selections in equal ranges
• gh-4656: Make fftpack._raw_fft threadsafe
• gh-4628: incorrect argument order to _copyto in in np.nanmax, np.nanmin
• gh-4642: Hold GIL for converting dtypes types with fields
• gh-4733: fix np.linalg.svd(b, compute_uv=False)
• gh-4853: avoid unaligned simd load on reductions on i386
• gh-4722: Fix seg fault converting empty string to object
• gh-4613: Fix lack of NULL check in array_richcompare
• gh-4774: avoid unaligned access for strided byteswap
• gh-650: Prevent division by zero when creating arrays from some buffers
• gh-4602: ifort has issues with optimization flag O2, use O1

15.67. NumPy 1.8.2 Release Notes 485

NumPy User Guide, Release 1.22.0

15.68 NumPy 1.8.1 Release Notes

This is a bugfix only release in the 1.8.x series.

15.68.1 Issues fixed

• gh-4276: Fix mean, var, std methods for object arrays
• gh-4262: remove insecure mktemp usage
• gh-2385: absolute(complex(inf)) raises invalid warning in python3
• gh-4024: Sequence assignment doesn’t raise exception on shape mismatch
• gh-4027: Fix chunked reading of strings longer than BUFFERSIZE
• gh-4109: Fix object scalar return type of 0-d array indices
• gh-4018: fix missing check for memory allocation failure in ufuncs
• gh-4156: high order linalg.norm discards imaginary elements of complex arrays
• gh-4144: linalg: norm fails on longdouble, signed int
• gh-4094: fix NaT handling in _strided_to_strided_string_to_datetime
• gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime
• gh-4093: Loading compressed .npz file fails under Python 2.6.6
• gh-4138: segfault with non-native endian memoryview in python 3.4
• gh-4123: Fix missing NULL check in lexsort
• gh-4170: fix native-only long long check in memoryviews
• gh-4187: Fix large file support on 32 bit
• gh-4152: fromfile: ensure file handle positions are in sync in python3
• gh-4176: clang compatibility: Typos in conversion_utils
• gh-4223: Fetching a non-integer item caused array return
• gh-4197: fix minor memory leak in memoryview failure case
• gh-4206: fix build with single-threaded python
• gh-4220: add versionadded:: 1.8.0 to ufunc.at docstring
• gh-4267: improve handling of memory allocation failure
• gh-4267: fix use of capi without gil in ufunc.at
• gh-4261: Detect vendor versions of GNU Compilers
• gh-4253: IRR was returning nan instead of valid negative answer
• gh-4254: fix unnecessary byte order flag change for byte arrays
• gh-3263: numpy.random.shuffle clobbers mask of a MaskedArray
• gh-4270: np.random.shuffle not work with flexible dtypes
• gh-3173: Segmentation fault when ‘size’ argument to random.multinomial
• gh-2799: allow using unique with lists of complex

486 15. Release notes

NumPy User Guide, Release 1.22.0

• gh-3504: fix linspace truncation for integer array scalar
• gh-4191: get_info(‘openblas’) does not read libraries key
• gh-3348: Access violation in _descriptor_from_pep3118_format
• gh-3175: segmentation fault with numpy.array() from bytearray
• gh-4266: histogramdd - wrong result for entries very close to last boundary
• gh-4408: Fix stride_stricks.as_strided function for object arrays
• gh-4225: fix log1p and exmp1 return for np.inf on windows compiler builds
• gh-4359: Fix infinite recursion in str.format of flex arrays
• gh-4145: Incorrect shape of broadcast result with the exponent operator
• gh-4483: Fix commutativity of {dot,multiply,inner}(scalar, matrix_of_objs)
• gh-4466: Delay npyiter size check when size may change
• gh-4485: Buffered stride was erroneously marked fixed
• gh-4354: byte_bounds fails with datetime dtypes
• gh-4486: segfault/error converting from/to high-precision datetime64 objects
• gh-4428: einsum(None, None, None, None) causes segfault
• gh-4134: uninitialized use for for size 1 object reductions

15.68.2 Changes

NDIter

When NpyIter_RemoveAxis is now called, the iterator range will be reset.
When a multi index is being tracked and an iterator is not buffered, it is possible to use NpyIter_RemoveAxis. In
this case an iterator can shrink in size. Because the total size of an iterator is limited, the iterator may be too large before
these calls. In this case its size will be set to -1 and an error issued not at construction time but when removing the multi
index, setting the iterator range, or getting the next function.
This has no effect on currently working code, but highlights the necessity of checking for an error return if these conditions
can occur. In most cases the arrays being iterated are as large as the iterator so that such a problem cannot occur.

Optional reduced verbosity for np.distutils

Set numpy.distutils.system_info.system_info.verbosity = 0 and then calls to numpy.
distutils.system_info.get_info('blas_opt') will not print anything on the output. This is mostly
for other packages using numpy.distutils.

15.68. NumPy 1.8.1 Release Notes 487

NumPy User Guide, Release 1.22.0

15.68.3 Deprecations

C-API

The utility function npy_PyFile_Dup and npy_PyFile_DupClose are broken by the internal buffering python 3 ap-
plies to its file objects. To fix this two new functions npy_PyFile_Dup2 and npy_PyFile_DupClose2 are declared in
npy_3kcompat.h and the old functions are deprecated. Due to the fragile nature of these functions it is recommended to
instead use the python API when possible.

15.69 NumPy 1.8.0 Release Notes

This release supports Python 2.6 -2.7 and 3.2 - 3.3.

15.69.1 Highlights

• New, no 2to3, Python 2 and Python 3 are supported by a common code base.
• New, gufuncs for linear algebra, enabling operations on stacked arrays.
• New, inplace fancy indexing for ufuncs with the .at method.
• New, partition function, partial sorting via selection for fast median.
• New, nanmean, nanvar, and nanstd functions skipping NaNs.
• New, full and full_like functions to create value initialized arrays.
• New, PyUFunc_RegisterLoopForDescr, better ufunc support for user dtypes.
• Numerous performance improvements in many areas.

15.69.2 Dropped Support

Support for Python versions 2.4 and 2.5 has been dropped,
Support for SCons has been removed.

15.69.3 Future Changes

The Datetime64 type remains experimental in this release. In 1.9 there will probably be some changes to make it more
usable.
The diagonal method currently returns a new array and raises a FutureWarning. In 1.9 it will return a readonly view.
Multiple field selection from an array of structured type currently returns a new array and raises a FutureWarning. In 1.9
it will return a readonly view.
The numpy/oldnumeric and numpy/numarray compatibility modules will be removed in 1.9.

488 15. Release notes

NumPy User Guide, Release 1.22.0

15.69.4 Compatibility notes

The doc/sphinxext content has been moved into its own github repository, and is included in numpy as a submodule. See
the instructions in doc/HOWTO_BUILD_DOCS.rst.txt for how to access the content.
The hash function of numpy.void scalars has been changed. Previously the pointer to the data was hashed as an integer.
Now, the hash function uses the tuple-hash algorithm to combine the hash functions of the elements of the scalar, but
only if the scalar is read-only.
Numpy has switched its build system to using ‘separate compilation’ by default. In previous releases this was supported,
but not default. This should produce the same results as the old system, but if you’re trying to do something compli-
cated like link numpy statically or using an unusual compiler, then it’s possible you will encounter problems. If so,
please file a bug and as a temporary workaround you can re-enable the old build system by exporting the shell variable
NPY_SEPARATE_COMPILATION=0.
For the AdvancedNew iterator the oa_ndim flag should now be -1 to indicate that no op_axes and itershape are
passed in. The oa_ndim == 0 case, now indicates a 0-D iteration and op_axes being NULL and the old usage is
deprecated. This does not effect the NpyIter_New or NpyIter_MultiNew functions.
The functions nanargmin and nanargmax now return np.iinfo[‘intp’].min for the index in all-NaN slices. Previously the
functions would raise a ValueError for array returns and NaN for scalar returns.

NPY_RELAXED_STRIDES_CHECKING

There is a new compile time environment variable NPY_RELAXED_STRIDES_CHECKING. If this variable is set to 1,
then numpy will consider more arrays to be C- or F-contiguous – for example, it becomes possible to have a column vector
which is considered both C- and F-contiguous simultaneously. The new definition is more accurate, allows for faster code
that makes fewer unnecessary copies, and simplifies numpy’s code internally. However, it may also break third-party
libraries that make too-strong assumptions about the stride values of C- and F-contiguous arrays. (It is also currently
known that this breaks Cython code using memoryviews, which will be fixed in Cython.) THIS WILL BECOME THE
DEFAULT IN A FUTURE RELEASE, SO PLEASE TEST YOUR CODE NOW AGAINST NUMPY BUILT WITH:

NPY_RELAXED_STRIDES_CHECKING=1 python setup.py install

You can check whether NPY_RELAXED_STRIDES_CHECKING is in effect by running:

np.ones((10, 1), order="C").flags.f_contiguous

This will be True if relaxed strides checking is enabled, and False otherwise. The typical problem we’ve seen so far is
C code that works with C-contiguous arrays, and assumes that the itemsize can be accessed by looking at the last element
in the PyArray_STRIDES(arr) array. When relaxed strides are in effect, this is not true (and in fact, it never was
true in some corner cases). Instead, use PyArray_ITEMSIZE(arr).
For more information check the “Internal memory layout of an ndarray” section in the documentation.

Binary operations with non-arrays as second argument

Binary operations of the form <array-or-subclass> * <non-array-subclass> where
<non-array-subclass> declares an __array_priority__ higher than that of <array-or-subclass>
will now unconditionally return NotImplemented, giving <non-array-subclass> a chance to handle the operation.
Previously, NotImplemented would only be returned if <non-array-subclass> actually implemented the reversed
operation, and after a (potentially expensive) array conversion of <non-array-subclass> had been attempted.
(bug, pull request)

15.69. NumPy 1.8.0 Release Notes 489

https://github.com/numpy/numpy/issues/3375
https://github.com/numpy/numpy/pull/3501

NumPy User Guide, Release 1.22.0

Function median used with overwrite_input only partially sorts array

If median is used with overwrite_input option the input array will now only be partially sorted instead of fully sorted.

Fix to financial.npv

The npv function had a bug. Contrary to what the documentation stated, it summed from indexes 1 to M instead of from
0 to M - 1. The fix changes the returned value. The mirr function called the npv function, but worked around the
problem, so that was also fixed and the return value of the mirr function remains unchanged.

Runtime warnings when comparing NaN numbers

Comparing NaN floating point numbers now raises the invalid runtime warning. If a NaN is expected the warning
can be ignored using np.errstate. E.g.:

with np.errstate(invalid='ignore'):
operation()

15.69.5 New Features

Support for linear algebra on stacked arrays

The gufunc machinery is now used for np.linalg, allowing operations on stacked arrays and vectors. For example:

>>> a
array([[[1., 1.],

[0., 1.]],

[[1., 1.],
[0., 1.]]])

>>> np.linalg.inv(a)
array([[[1., -1.],

[0., 1.]],

[[1., -1.],
[0., 1.]]])

In place fancy indexing for ufuncs

The function at has been added to ufunc objects to allow in place ufuncs with no buffering when fancy indexing is used.
For example, the following will increment the first and second items in the array, and will increment the third item twice:
numpy.add.at(arr, [0, 1, 2, 2], 1)

This is what many have mistakenly thought arr[[0, 1, 2, 2]] += 1 would do, but that does not work as the
incremented value of arr[2] is simply copied into the third slot in arr twice, not incremented twice.

490 15. Release notes

NumPy User Guide, Release 1.22.0

New functions partition and argpartition

New functions to partially sort arrays via a selection algorithm.
A partition by index kmoves the k smallest element to the front of an array. All elements before k are then smaller
or equal than the value in position k and all elements following k are then greater or equal than the value in position k.
The ordering of the values within these bounds is undefined. A sequence of indices can be provided to sort all of them
into their sorted position at once iterative partitioning. This can be used to efficiently obtain order statistics like median
or percentiles of samples. partition has a linear time complexity of O(n) while a full sort has O(n log(n)).

New functions nanmean, nanvar and nanstd

New nan aware statistical functions are added. In these functions the results are what would be obtained if nan values
were omitted from all computations.

New functions full and full_like

New convenience functions to create arrays filled with a specific value; complementary to the existing zeros and zeros_like
functions.

IO compatibility with large files

Large NPZ files >2GB can be loaded on 64-bit systems.

Building against OpenBLAS

It is now possible to build numpy against OpenBLAS by editing site.cfg.

New constant

Euler’s constant is now exposed in numpy as euler_gamma.

New modes for qr

Newmodes ‘complete’, ‘reduced’, and ‘raw’ have been added to the qr factorization and the old ‘full’ and ‘economic’ modes
are deprecated. The ‘reduced’ mode replaces the old ‘full’ mode and is the default as was the ‘full’ mode, so backward
compatibility can be maintained by not specifying the mode.
The ‘complete’ mode returns a full dimensional factorization, which can be useful for obtaining a basis for the orthogonal
complement of the range space. The ‘raw’ mode returns arrays that contain the Householder reflectors and scaling factors
that can be used in the future to apply q without needing to convert to a matrix. The ‘economic’ mode is simply deprecated,
there isn’t much use for it and it isn’t any more efficient than the ‘raw’ mode.

15.69. NumPy 1.8.0 Release Notes 491

NumPy User Guide, Release 1.22.0

New invert argument to in1d

The function in1d now accepts a invert argument which, when True, causes the returned array to be inverted.

Advanced indexing using np.newaxis

It is now possible to use np.newaxis/None together with index arrays instead of only in simple indices. This means that
array[np.newaxis, [0, 1]] will now work as expected and select the first two rows while prepending a new
axis to the array.

C-API

New ufuncs can now be registered with builtin input types and a custom output type. Before this change, NumPy wouldn’t
be able to find the right ufunc loop function when the ufunc was called from Python, because the ufunc loop signature
matching logic wasn’t looking at the output operand type. Now the correct ufunc loop is found, as long as the user provides
an output argument with the correct output type.

runtests.py

A simple test runner script runtests.py was added. It also builds Numpy via setup.py build and can be used
to run tests easily during development.

15.69.6 Improvements

IO performance improvements

Performance in reading large files was improved by chunking (see also IO compatibility).

Performance improvements to pad

The pad function has a new implementation, greatly improving performance for all inputs except mode= (retained for
backwards compatibility). Scaling with dimensionality is dramatically improved for rank >= 4.

Performance improvements to isnan, isinf, isfinite and byteswap

isnan, isinf, isfinite and byteswap have been improved to take advantage of compiler builtins to avoid expensive calls to
libc. This improves performance of these operations by about a factor of two on gnu libc systems.

Performance improvements via SSE2 vectorization

Several functions have been optimized to make use of SSE2 CPU SIMD instructions.
• Float32 and float64:

– base math (add, subtract, divide, multiply)
– sqrt

– minimum/maximum

– absolute

492 15. Release notes

NumPy User Guide, Release 1.22.0

• Bool:
– logical_or

– logical_and

– logical_not

This improves performance of these operations up to 4x/2x for float32/float64 and up to 10x for bool depending on the
location of the data in the CPU caches. The performance gain is greatest for in-place operations.
In order to use the improved functions the SSE2 instruction set must be enabled at compile time. It is enabled by default
on x86_64 systems. On x86_32 with a capable CPU it must be enabled by passing the appropriate flag to the CFLAGS
build variable (-msse2 with gcc).

Performance improvements to median

median is now implemented in terms of partition instead of sort which reduces its time complexity from O(n log(n)) to
O(n). If used with the overwrite_input option the array will now only be partially sorted instead of fully sorted.

Overridable operand flags in ufunc C-API

When creating a ufunc, the default ufunc operand flags can be overridden via the new op_flags attribute of the ufunc
object. For example, to set the operand flag for the first input to read/write:
PyObject *ufunc = PyUFunc_FromFuncAndData(…); ufunc->op_flags[0] = NPY_ITER_READWRITE;
This allows a ufunc to perform an operation in place. Also, global nditer flags can be overridden via the new iter_flags
attribute of the ufunc object. For example, to set the reduce flag for a ufunc:
ufunc->iter_flags = NPY_ITER_REDUCE_OK;

15.69.7 Changes

General

The function np.take now allows 0-d arrays as indices.
The separate compilation mode is now enabled by default.
Several changes to np.insert and np.delete:

• Previously, negative indices and indices that pointed past the end of the array were simply ignored. Now, this will
raise a Future or DeprecationWarning. In the future they will be treated like normal indexing treats them – negative
indices will wrap around, and out-of-bound indices will generate an error.

• Previously, boolean indices were treated as if they were integers (always referring to either the 0th or 1st item in
the array). In the future, they will be treated as masks. In this release, they raise a FutureWarning warning of this
coming change.

• In Numpy 1.7. np.insert already allowed the syntax np.insert(arr, 3, [1,2,3]) to insert multiple items at a single
position. In Numpy 1.8. this is also possible for np.insert(arr, [3], [1, 2, 3]).

Padded regions from np.pad are now correctly rounded, not truncated.

15.69. NumPy 1.8.0 Release Notes 493

NumPy User Guide, Release 1.22.0

C-API Array Additions

Four new functions have been added to the array C-API.
• PyArray_Partition
• PyArray_ArgPartition
• PyArray_SelectkindConverter
• PyDataMem_NEW_ZEROED

C-API Ufunc Additions

One new function has been added to the ufunc C-API that allows to register an inner loop for user types using the descr.
• PyUFunc_RegisterLoopForDescr

C-API Developer Improvements

The PyArray_Type instance creation function tp_new now uses tp_basicsize to determine how much memory
to allocate. In previous releases only sizeof(PyArrayObject) bytes of memory were allocated, often requiring
C-API subtypes to reimplement tp_new.

15.69.8 Deprecations

The ‘full’ and ‘economic’ modes of qr factorization are deprecated.

General

The use of non-integer for indices and most integer arguments has been deprecated. Previously float indices and function
arguments such as axes or shapes were truncated to integers without warning. For example arr.reshape(3., -1) or arr[0.]
will trigger a deprecation warning in NumPy 1.8., and in some future version of NumPy they will raise an error.

15.69.9 Authors

This release contains work by the following people who contributed at least one patch to this release. The names are in
alphabetical order by first name:

• 87
• Adam Ginsburg +
• Adam Griffiths +
• Alexander Belopolsky +
• Alex Barth +
• Alex Ford +
• Andreas Hilboll +
• Andreas Kloeckner +
• Andreas Schwab +

494 15. Release notes

NumPy User Guide, Release 1.22.0

• Andrew Horton +
• argriffing +
• Arink Verma +
• Bago Amirbekian +
• Bartosz Telenczuk +
• bebert218 +
• Benjamin Root +
• Bill Spotz +
• Bradley M. Froehle
• Carwyn Pelley +
• Charles Harris
• Chris
• Christian Brueffer +
• Christoph Dann +
• Christoph Gohlke
• Dan Hipschman +
• Daniel +
• Dan Miller +
• daveydave400 +
• David Cournapeau
• David Warde-Farley
• Denis Laxalde
• dmuellner +
• Edward Catmur +
• Egor Zindy +
• endolith
• Eric Firing
• Eric Fode
• Eric Moore +
• Eric Price +
• Fazlul Shahriar +
• Félix Hartmann +
• Fernando Perez
• Frank B +
• Frank Breitling +
• Frederic

15.69. NumPy 1.8.0 Release Notes 495

NumPy User Guide, Release 1.22.0

• Gabriel
• GaelVaroquaux
• Guillaume Gay +
• Han Genuit
• HaroldMills +
• hklemm +
• jamestwebber +
• Jason Madden +
• Jay Bourque
• jeromekelleher +
• Jesús Gómez +
• jmozmoz +
• jnothman +
• Johannes Schönberger +
• John Benediktsson +
• John Salvatier +
• John Stechschulte +
• Jonathan Waltman +
• Joon Ro +
• Jos de Kloe +
• Joseph Martinot-Lagarde +
• Josh Warner (Mac) +
• Jostein Bø Fløystad +
• Juan Luis Cano Rodríguez +
• Julian Taylor +
• Julien Phalip +
• K.-Michael Aye +
• Kumar Appaiah +
• Lars Buitinck
• Leon Weber +
• Luis Pedro Coelho
• Marcin Juszkiewicz
• Mark Wiebe
• Marten van Kerkwijk +
• Martin Baeuml +
• Martin Spacek

496 15. Release notes

NumPy User Guide, Release 1.22.0

• Martin Teichmann +
• Matt Davis +
• Matthew Brett
• Maximilian Albert +
• m-d-w +
• Michael Droettboom
• mwtoews +
• Nathaniel J. Smith
• Nicolas Scheffer +
• Nils Werner +
• ochoadavid +
• Ondřej Čertík
• ovillellas +
• Paul Ivanov
• Pauli Virtanen
• peterjc
• Ralf Gommers
• Raul Cota +
• Richard Hattersley +
• Robert Costa +
• Robert Kern
• Rob Ruana +
• Ronan Lamy
• Sandro Tosi
• Sascha Peilicke +
• Sebastian Berg
• Skipper Seabold
• Stefan van der Walt
• Steve +
• Takafumi Arakaki +
• Thomas Robitaille +
• Tomas Tomecek +
• Travis E. Oliphant
• Valentin Haenel
• Vladimir Rutsky +
• Warren Weckesser

15.69. NumPy 1.8.0 Release Notes 497

NumPy User Guide, Release 1.22.0

• Yaroslav Halchenko
• Yury V. Zaytsev +

A total of 119 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

15.70 NumPy 1.7.2 Release Notes

This is a bugfix only release in the 1.7.x series. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that supports
Python 2.4 - 2.5.

15.70.1 Issues fixed

• gh-3153: Do not reuse nditer buffers when not filled enough
• gh-3192: f2py crashes with UnboundLocalError exception
• gh-442: Concatenate with axis=None now requires equal number of array elements
• gh-2485: Fix for astype(‘S’) string truncate issue
• gh-3312: bug in count_nonzero
• gh-2684: numpy.ma.average casts complex to float under certain conditions
• gh-2403: masked array with named components does not behave as expected
• gh-2495: np.ma.compress treated inputs in wrong order
• gh-576: add __len__ method to ma.mvoid
• gh-3364: reduce performance regression of mmap slicing
• gh-3421: fix non-swapping strided copies in GetStridedCopySwap
• gh-3373: fix small leak in datetime metadata initialization
• gh-2791: add platform specific python include directories to search paths
• gh-3168: fix undefined function and add integer divisions
• gh-3301: memmap does not work with TemporaryFile in python3
• gh-3057: distutils.misc_util.get_shared_lib_extension returns wrong debug extension
• gh-3472: add module extensions to load_library search list
• gh-3324: Make comparison function (gt, ge, …) respect __array_priority__
• gh-3497: np.insert behaves incorrectly with argument ‘axis=-1’
• gh-3541: make preprocessor tests consistent in halffloat.c
• gh-3458: array_ass_boolean_subscript() writes ‘non-existent’ data to array
• gh-2892: Regression in ufunc.reduceat with zero-sized index array
• gh-3608: Regression when filling struct from tuple
• gh-3701: add support for Python 3.4 ast.NameConstant
• gh-3712: do not assume that GIL is enabled in xerbla
• gh-3712: fix LAPACK error handling in lapack_litemodule

498 15. Release notes

NumPy User Guide, Release 1.22.0

• gh-3728: f2py fix decref on wrong object
• gh-3743: Hash changed signature in Python 3.3
• gh-3793: scalar int hashing broken on 64 bit python3
• gh-3160: SandboxViolation easyinstalling 1.7.0 on Mac OS X 10.8.3
• gh-3871: npy_math.h has invalid isinf for Solaris with SUNWspro12.2
• gh-2561: Disable check for oldstyle classes in python3
• gh-3900: Ensure NotImplemented is passed on in MaskedArray ufunc’s
• gh-2052: del scalar subscript causes segfault
• gh-3832: fix a few uninitialized uses and memleaks
• gh-3971: f2py changed string.lowercase to string.ascii_lowercase for python3
• gh-3480: numpy.random.binomial raised ValueError for n == 0
• gh-3992: hypot(inf, 0) shouldn’t raise a warning, hypot(inf, inf) wrong result
• gh-4018: Segmentation fault dealing with very large arrays
• gh-4094: fix NaT handling in _strided_to_strided_string_to_datetime
• gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime
• gh-4123: lexsort segfault
• gh-4141: Fix a few issues that show up with python 3.4b1

15.71 NumPy 1.7.1 Release Notes

This is a bugfix only release in the 1.7.x series. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that supports
Python 2.4 - 2.5.

15.71.1 Issues fixed

• gh-2973: Fix 1 is printed during numpy.test()
• gh-2983: BUG: gh-2969: Backport memory leak fix 80b3a34.
• gh-3007: Backport gh-3006
• gh-2984: Backport fix complex polynomial fit
• gh-2982: BUG: Make nansum work with booleans.
• gh-2985: Backport large sort fixes
• gh-3039: Backport object take
• gh-3105: Backport nditer fix op axes initialization
• gh-3108: BUG: npy-pkg-config ini files were missing after Bento build.
• gh-3124: BUG: PyArray_LexSort allocates too much temporary memory.
• gh-3131: BUG: Exported f2py_size symbol prevents linking multiple f2py modules.
• gh-3117: Backport gh-2992

15.71. NumPy 1.7.1 Release Notes 499

NumPy User Guide, Release 1.22.0

• gh-3135: DOC: Add mention of PyArray_SetBaseObject stealing a reference
• gh-3134: DOC: Fix typo in fft docs (the indexing variable is ‘m’, not ‘n’).
• gh-3136: Backport #3128

15.72 NumPy 1.7.0 Release Notes

This release includes several new features as well as numerous bug fixes and refactorings. It supports Python 2.4 - 2.7 and
3.1 - 3.3 and is the last release that supports Python 2.4 - 2.5.

15.72.1 Highlights

• where= parameter to ufuncs (allows the use of boolean arrays to choose where a computation should be done)
• vectorize improvements (added ‘excluded’ and ‘cache’ keyword, general cleanup and bug fixes)
• numpy.random.choice (random sample generating function)

15.72.2 Compatibility notes

In a future version of numpy, the functions np.diag, np.diagonal, and the diagonal method of ndarrays will return a view
onto the original array, instead of producing a copy as they do now. This makes a difference if you write to the array
returned by any of these functions. To facilitate this transition, numpy 1.7 produces a FutureWarning if it detects that
you may be attempting to write to such an array. See the documentation for np.diagonal for details.
Similar to np.diagonal above, in a future version of numpy, indexing a record array by a list of field names will return
a view onto the original array, instead of producing a copy as they do now. As with np.diagonal, numpy 1.7 produces
a FutureWarning if it detects that you may be attempting to write to such an array. See the documentation for array
indexing for details.
In a future version of numpy, the default casting rule for UFunc out= parameters will be changed from ‘unsafe’ to
‘same_kind’. (This also applies to in-place operations like a += b, which is equivalent to np.add(a, b, out=a).) Most usages
which violate the ‘same_kind’ rule are likely bugs, so this change may expose previously undetected errors in projects that
depend on NumPy. In this version of numpy, such usages will continue to succeed, but will raise a DeprecationWarning.
Full-array boolean indexing has been optimized to use a different, optimized code path. This code path should produce
the same results, but any feedback about changes to your code would be appreciated.
Attempting to write to a read-only array (one with arr.flags.writeable set to False) used to raise either a
RuntimeError, ValueError, or TypeError inconsistently, depending on which code path was taken. It now consistently
raises a ValueError.
The <ufunc>.reduce functions evaluate some reductions in a different order than in previous versions of NumPy, generally
providing higher performance. Because of the nature of floating-point arithmetic, this may subtly change some results,
just as linking NumPy to a different BLAS implementations such as MKL can.
If upgrading from 1.5, then generally in 1.6 and 1.7 there have been substantial code added and some code paths altered,
particularly in the areas of type resolution and buffered iteration over universal functions. This might have an impact on
your code particularly if you relied on accidental behavior in the past.

500 15. Release notes

NumPy User Guide, Release 1.22.0

15.72.3 New features

Reduction UFuncs Generalize axis= Parameter

Any ufunc.reduce function call, as well as other reductions like sum, prod, any, all, max and min support the ability to
choose a subset of the axes to reduce over. Previously, one could say axis=None to mean all the axes or axis=# to pick a
single axis. Now, one can also say axis=(#,#) to pick a list of axes for reduction.

Reduction UFuncs New keepdims= Parameter

There is a new keepdims= parameter, which if set to True, doesn’t throw away the reduction axes but instead sets them
to have size one. When this option is set, the reduction result will broadcast correctly to the original operand which was
reduced.

Datetime support

Note: The datetime API is experimental in 1.7.0, and may undergo changes in future versions of NumPy.

There have been a lot of fixes and enhancements to datetime64 compared to NumPy 1.6:
• the parser is quite strict about only accepting ISO 8601 dates, with a few convenience extensions
• converts between units correctly
• datetime arithmetic works correctly
• business day functionality (allows the datetime to be used in contexts where only certain days of the week are valid)

The notes in doc/source/reference/arrays.datetime.rst (also available in the online docs at arrays.datetime.html) should be
consulted for more details.

Custom formatter for printing arrays

See the new formatter parameter of the numpy.set_printoptions function.

New function numpy.random.choice

A generic sampling function has been added which will generate samples from a given array-like. The samples can be
with or without replacement, and with uniform or given non-uniform probabilities.

New function isclose

Returns a boolean array where two arrays are element-wise equal within a tolerance. Both relative and absolute tolerance
can be specified.

15.72. NumPy 1.7.0 Release Notes 501

https://github.com/numpy/numpy/blob/maintenance/1.7.x/doc/source/reference/arrays.datetime.rst
https://docs.scipy.org/doc/numpy/reference/arrays.datetime.html

NumPy User Guide, Release 1.22.0

Preliminary multi-dimensional support in the polynomial package

Axis keywords have been added to the integration and differentiation functions and a tensor keyword was added to the
evaluation functions. These additions allow multi-dimensional coefficient arrays to be used in those functions. New
functions for evaluating 2-D and 3-D coefficient arrays on grids or sets of points were added together with 2-D and 3-D
pseudo-Vandermonde matrices that can be used for fitting.

Ability to pad rank-n arrays

A pad module containing functions for padding n-dimensional arrays has been added. The various private padding func-
tions are exposed as options to a public ‘pad’ function. Example:

pad(a, 5, mode='mean')

Current modes are constant, edge, linear_ramp, maximum, mean, median, minimum, reflect,
symmetric, wrap, and <function>.

New argument to searchsorted

The function searchsorted now accepts a ‘sorter’ argument that is a permutation array that sorts the array to search.

Build system

Added experimental support for the AArch64 architecture.

C API

New function PyArray_RequireWriteable provides a consistent interface for checking array writeability – any
C code which works with arrays whose WRITEABLE flag is not known to be True a priori, should make sure to call this
function before writing.
NumPy C Style Guide added (doc/C_STYLE_GUIDE.rst.txt).

15.72.4 Changes

General

The function np.concatenate tries tomatch the layout of its input arrays. Previously, the layout did not follow any particular
reason, and depended in an undesirable way on the particular axis chosen for concatenation. A bug was also fixed which
silently allowed out of bounds axis arguments.
The ufuncs logical_or, logical_and, and logical_not now follow Python’s behavior with object arrays, instead of try-
ing to call methods on the objects. For example the expression (3 and ‘test’) produces the string ‘test’, and now
np.logical_and(np.array(3, ‘O’), np.array(‘test’, ‘O’)) produces ‘test’ as well.
The .base attribute on ndarrays, which is used on views to ensure that the underlying array owning the memory is not
deallocated prematurely, now collapses out references when you have a view-of-a-view. For example:

a = np.arange(10)
b = a[1:]
c = b[1:]

502 15. Release notes

NumPy User Guide, Release 1.22.0

In numpy 1.6, c.base is b, and c.base.base is a. In numpy 1.7, c.base is a.
To increase backwards compatibility for software which relies on the old behaviour of .base, we only ‘skip over’ objects
which have exactly the same type as the newly created view. This makes a difference if you use ndarray subclasses.
For example, if we have a mix of ndarray and matrix objects which are all views on the same original ndarray:

a = np.arange(10)
b = np.asmatrix(a)
c = b[0, 1:]
d = c[0, 1:]

then d.base will be b. This is because d is a matrix object, and so the collapsing process only continues so long as
it encounters other matrix objects. It considers c, b, and a in that order, and b is the last entry in that list which is a
matrix object.

Casting Rules

Casting rules have undergone some changes in corner cases, due to the NA-related work. In particular for combinations
of scalar+scalar:

• the longlong type (q) now stays longlong for operations with any other number (? b h i l q p B H I), previously it
was cast as int_ (l). The ulonglong type (Q) now stays as ulonglong instead of uint (L).

• the timedelta64 type (m) can now be mixed with any integer type (b h i l q p B H I L Q P), previously it raised
TypeError.

For array + scalar, the above rules just broadcast except the case when the array and scalars are unsigned/signed integers,
then the result gets converted to the array type (of possibly larger size) as illustrated by the following examples:

>>> (np.zeros((2,), dtype=np.uint8) + np.int16(257)).dtype
dtype('uint16')
>>> (np.zeros((2,), dtype=np.int8) + np.uint16(257)).dtype
dtype('int16')
>>> (np.zeros((2,), dtype=np.int16) + np.uint32(2**17)).dtype
dtype('int32')

Whether the size gets increased depends on the size of the scalar, for example:

>>> (np.zeros((2,), dtype=np.uint8) + np.int16(255)).dtype
dtype('uint8')
>>> (np.zeros((2,), dtype=np.uint8) + np.int16(256)).dtype
dtype('uint16')

Also a complex128 scalar + float32 array is cast to complex64.
In NumPy 1.7 the datetime64 type (M) must be constructed by explicitly specifying the type as the second argument (e.g.
np.datetime64(2000, 'Y')).

15.72. NumPy 1.7.0 Release Notes 503

NumPy User Guide, Release 1.22.0

15.72.5 Deprecations

General

Specifying a custom string formatter with a _format array attribute is deprecated. The new formatter keyword in
numpy.set_printoptions or numpy.array2string can be used instead.
The deprecated imports in the polynomial package have been removed.
concatenate now raises DepractionWarning for 1D arrays if axis != 0. Versions of numpy < 1.7.0 ignored axis
argument value for 1D arrays. We allow this for now, but in due course we will raise an error.

C-API

Direct access to the fields of PyArrayObject* has been deprecated. Direct access has been recommended against for
many releases. Expect similar deprecations for PyArray_Descr* and other core objects in the future as preparation for
NumPy 2.0.
The macros in old_defines.h are deprecated and will be removed in the next major release (>= 2.0). The sed script
tools/replace_old_macros.sed can be used to replace these macros with the newer versions.
You can test your code against the deprecated C API by adding a line composed of #define
NPY_NO_DEPRECATED_API and the target version number, such as NPY_1_7_API_VERSION, before in-
cluding any NumPy headers.
The NPY_CHARmember of the NPY_TYPES enum is deprecated and will be removed in NumPy 1.8. See the discussion
at gh-2801 for more details.

15.73 NumPy 1.6.2 Release Notes

This is a bugfix release in the 1.6.x series. Due to the delay of the NumPy 1.7.0 release, this release contains far more
fixes than a regular NumPy bugfix release. It also includes a number of documentation and build improvements.

15.73.1 Issues fixed

numpy.core

• #2063: make unique() return consistent index
• #1138: allow creating arrays from empty buffers or empty slices
• #1446: correct note about correspondence vstack and concatenate
• #1149: make argmin() work for datetime
• #1672: fix allclose() to work for scalar inf
• #1747: make np.median() work for 0-D arrays
• #1776: make complex division by zero to yield inf properly
• #1675: add scalar support for the format() function
• #1905: explicitly check for NaNs in allclose()
• #1952: allow floating ddof in std() and var()

504 15. Release notes

https://github.com/numpy/numpy/issues/2801

NumPy User Guide, Release 1.22.0

• #1948: fix regression for indexing chararrays with empty list
• #2017: fix type hashing
• #2046: deleting array attributes causes segfault
• #2033: a**2.0 has incorrect type
• #2045: make attribute/iterator_element deletions not segfault
• #2021: fix segfault in searchsorted()
• #2073: fix float16 __array_interface__ bug

numpy.lib

• #2048: break reference cycle in NpzFile
• #1573: savetxt() now handles complex arrays
• #1387: allow bincount() to accept empty arrays
• #1899: fixed histogramdd() bug with empty inputs
• #1793: fix failing npyio test under py3k
• #1936: fix extra nesting for subarray dtypes
• #1848: make tril/triu return the same dtype as the original array
• #1918: use Py_TYPE to access ob_type, so it works also on Py3

numpy.distutils

• #1261: change compile flag on AIX from -O5 to -O3
• #1377: update HP compiler flags
• #1383: provide better support for C++ code on HPUX
• #1857: fix build for py3k + pip
• BLD: raise a clearer warning in case of building without cleaning up first
• BLD: follow build_ext coding convention in build_clib
• BLD: fix up detection of Intel CPU on OS X in system_info.py
• BLD: add support for the new X11 directory structure on Ubuntu & co.
• BLD: add ufsparse to the libraries search path.
• BLD: add ‘pgfortran’ as a valid compiler in the Portland Group
• BLD: update version match regexp for IBM AIX Fortran compilers.

15.73. NumPy 1.6.2 Release Notes 505

NumPy User Guide, Release 1.22.0

numpy.random

• BUG: Use npy_intp instead of long in mtrand

15.73.2 Changes

numpy.f2py

• ENH: Introduce new options extra_f77_compiler_args and extra_f90_compiler_args
• BLD: Improve reporting of fcompiler value
• BUG: Fix f2py test_kind.py test

numpy.poly

• ENH: Add some tests for polynomial printing
• ENH: Add companion matrix functions
• DOC: Rearrange the polynomial documents
• BUG: Fix up links to classes
• DOC: Add version added to some of the polynomial package modules
• DOC: Document xxxfit functions in the polynomial package modules
• BUG: The polynomial convenience classes let different types interact
• DOC: Document the use of the polynomial convenience classes
• DOC: Improve numpy reference documentation of polynomial classes
• ENH: Improve the computation of polynomials from roots
• STY: Code cleanup in polynomial [*]fromroots functions
• DOC: Remove references to cast and NA, which were added in 1.7

15.74 NumPy 1.6.1 Release Notes

This is a bugfix only release in the 1.6.x series.

15.74.1 Issues Fixed

• #1834: einsum fails for specific shapes
• #1837: einsum throws nan or freezes python for specific array shapes
• #1838: object <-> structured type arrays regression
• #1851: regression for SWIG based code in 1.6.0
• #1863: Buggy results when operating on array copied with astype()
• #1870: Fix corner case of object array assignment
• #1843: Py3k: fix error with recarray

506 15. Release notes

NumPy User Guide, Release 1.22.0

• #1885: nditer: Error in detecting double reduction loop
• #1874: f2py: fix –include_paths bug
• #1749: Fix ctypes.load_library()
• #1895/1896: iter: writeonly operands weren’t always being buffered correctly

15.75 NumPy 1.6.0 Release Notes

This release includes several new features as well as numerous bug fixes and improved documentation. It is backward
compatible with the 1.5.0 release, and supports Python 2.4 - 2.7 and 3.1 - 3.2.

15.75.1 Highlights

• Re-introduction of datetime dtype support to deal with dates in arrays.
• A new 16-bit floating point type.
• A new iterator, which improves performance of many functions.

15.75.2 New features

New 16-bit floating point type

This release adds support for the IEEE 754-2008 binary16 format, available as the data type numpy.half. Within
Python, the type behaves similarly to float or double, and C extensions can add support for it with the exposed half-float
API.

New iterator

A new iterator has been added, replacing the functionality of the existing iterator and multi-iterator with a single object
and API. This iterator works well with general memory layouts different from C or Fortran contiguous, and handles
both standard NumPy and customized broadcasting. The buffering, automatic data type conversion, and optional output
parameters, offered by ufuncs but difficult to replicate elsewhere, are now exposed by this iterator.

Legendre, Laguerre, Hermite, HermiteE polynomials in numpy.polynomial

Extend the number of polynomials available in the polynomial package. In addition, a new window attribute has been
added to the classes in order to specify the range the domain maps to. This is mostly useful for the Laguerre, Hermite,
and HermiteE polynomials whose natural domains are infinite and provides a more intuitive way to get the correct mapping
of values without playing unnatural tricks with the domain.

15.75. NumPy 1.6.0 Release Notes 507

NumPy User Guide, Release 1.22.0

Fortran assumed shape array and size function support in numpy.f2py

F2py now supports wrapping Fortran 90 routines that use assumed shape arrays. Before such routines could be called
from Python but the corresponding Fortran routines received assumed shape arrays as zero length arrays which caused
unpredicted results. Thanks to Lorenz Hüdepohl for pointing out the correct way to interface routines with assumed shape
arrays.
In addition, f2py supports now automatic wrapping of Fortran routines that use two argument size function in dimension
specifications.

Other new functions

numpy.ravel_multi_index : Converts a multi-index tuple into an array of flat indices, applying boundary modes
to the indices.
numpy.einsum : Evaluate the Einstein summation convention. Using the Einstein summation convention, many com-
mon multi-dimensional array operations can be represented in a simple fashion. This function provides a way compute
such summations.
numpy.count_nonzero : Counts the number of non-zero elements in an array.
numpy.result_type and numpy.min_scalar_type : These functions expose the underlying type promo-
tion used by the ufuncs and other operations to determine the types of outputs. These improve upon the numpy.
common_type and numpy.mintypecode which provide similar functionality but do not match the ufunc imple-
mentation.

15.75.3 Changes

default error handling

The default error handling has been change from print to warn for all except for underflow, which remains as
ignore.

numpy.distutils

Several new compilers are supported for building Numpy: the Portland Group Fortran compiler on OS X, the PathScale
compiler suite and the 64-bit Intel C compiler on Linux.

numpy.testing

The testing framework gained numpy.testing.assert_allclose, which provides a more convenient way to
compare floating point arrays than assert_almost_equal, assert_approx_equal and assert_array_almost_equal.

508 15. Release notes

NumPy User Guide, Release 1.22.0

C API

In addition to the APIs for the new iterator and half data type, a number of other additions have been made
to the C API. The type promotion mechanism used by ufuncs is exposed via PyArray_PromoteTypes,
PyArray_ResultType, and PyArray_MinScalarType. A new enumeration NPY_CASTING has been added
which controls what types of casts are permitted. This is used by the new functions PyArray_CanCastArrayTo
and PyArray_CanCastTypeTo. A more flexible way to handle conversion of arbitrary python objects into arrays is
exposed by PyArray_GetArrayParamsFromObject.

15.75.4 Deprecated features

The “normed” keyword in numpy.histogram is deprecated. Its functionality will be replaced by the new “density”
keyword.

15.75.5 Removed features

numpy.fft

The functions refft, refft2, refftn, irefft, irefft2, irefftn, which were aliases for the same functions without the ‘e’ in the name,
were removed.

numpy.memmap

The sync() and close() methods of memmap were removed. Use flush() and “del memmap” instead.

numpy.lib

The deprecated functions numpy.unique1d, numpy.setmember1d, numpy.intersect1d_nu and numpy.
lib.ufunclike.log2 were removed.

numpy.ma

Several deprecated items were removed from the numpy.ma module:

* ``numpy.ma.MaskedArray`` "raw_data" method
* ``numpy.ma.MaskedArray`` constructor "flag" keyword
* ``numpy.ma.make_mask`` "flag" keyword
* ``numpy.ma.allclose`` "fill_value" keyword

numpy.distutils

The numpy.get_numpy_include function was removed, use numpy.get_include instead.

15.75. NumPy 1.6.0 Release Notes 509

NumPy User Guide, Release 1.22.0

15.76 NumPy 1.5.0 Release Notes

15.76.1 Highlights

Python 3 compatibility

This is the first NumPy release which is compatible with Python 3. Support for Python 3 and Python 2 is done from
a single code base. Extensive notes on changes can be found at https://web.archive.org/web/20100814160313/http:
//projects.scipy.org/numpy/browser/trunk/doc/Py3K.txt.
Note that the Numpy testing framework relies on nose, which does not have a Python 3 compatible release yet. A
working Python 3 branch of nose can be found at https://web.archive.org/web/20100817112505/http://bitbucket.org/
jpellerin/nose3/ however.
Porting of SciPy to Python 3 is expected to be completed soon.

PEP 3118 compatibility

The new buffer protocol described by PEP 3118 is fully supported in this version of Numpy. On Python versions >= 2.6
Numpy arrays expose the buffer interface, and array(), asarray() and other functions accept new-style buffers as input.

15.76.2 New features

Warning on casting complex to real

Numpy now emits a numpy.ComplexWarning when a complex number is cast into a real number. For example:

>>> x = np.array([1,2,3])
>>> x[:2] = np.array([1+2j, 1-2j])
ComplexWarning: Casting complex values to real discards the imaginary part

The cast indeed discards the imaginary part, and this may not be the intended behavior in all cases, hence the warning.
This warning can be turned off in the standard way:

>>> import warnings
>>> warnings.simplefilter("ignore", np.ComplexWarning)

Dot method for ndarrays

Ndarrays now have the dot product also as a method, which allows writing chains of matrix products as

>>> a.dot(b).dot(c)

instead of the longer alternative

>>> np.dot(a, np.dot(b, c))

510 15. Release notes

https://web.archive.org/web/20100814160313/http://projects.scipy.org/numpy/browser/trunk/doc/Py3K.txt
https://web.archive.org/web/20100814160313/http://projects.scipy.org/numpy/browser/trunk/doc/Py3K.txt
https://web.archive.org/web/20100817112505/http://bitbucket.org/jpellerin/nose3/
https://web.archive.org/web/20100817112505/http://bitbucket.org/jpellerin/nose3/

NumPy User Guide, Release 1.22.0

linalg.slogdet function

The slogdet function returns the sign and logarithm of the determinant of a matrix. Because the determinant may involve
the product of many small/large values, the result is often more accurate than that obtained by simple multiplication.

new header

The new header file ndarraytypes.h contains the symbols from ndarrayobject.h that do not depend on the
PY_ARRAY_UNIQUE_SYMBOL and NO_IMPORT/_ARRAY macros. Broadly, these symbols are types, typedefs,
and enumerations; the array function calls are left in ndarrayobject.h. This allows users to include array-related types and
enumerations without needing to concern themselves with the macro expansions and their side- effects.

15.76.3 Changes

polynomial.polynomial

• The polyint and polyder functions now check that the specified number integrations or derivations is a non-negative
integer. The number 0 is a valid value for both functions.

• A degree method has been added to the Polynomial class.
• A trimdeg method has been added to the Polynomial class. It operates like truncate except that the argument is the
desired degree of the result, not the number of coefficients.

• Polynomial.fit now uses None as the default domain for the fit. The default Polynomial domain can be specified by
using [] as the domain value.

• Weights can be used in both polyfit and Polynomial.fit
• A linspace method has been added to the Polynomial class to ease plotting.
• The polymulx function was added.

polynomial.chebyshev

• The chebint and chebder functions now check that the specified number integrations or derivations is a non-negative
integer. The number 0 is a valid value for both functions.

• A degree method has been added to the Chebyshev class.
• A trimdeg method has been added to the Chebyshev class. It operates like truncate except that the argument is the
desired degree of the result, not the number of coefficients.

• Chebyshev.fit now uses None as the default domain for the fit. The default Chebyshev domain can be specified by
using [] as the domain value.

• Weights can be used in both chebfit and Chebyshev.fit
• A linspace method has been added to the Chebyshev class to ease plotting.
• The chebmulx function was added.
• Added functions for the Chebyshev points of the first and second kind.

15.76. NumPy 1.5.0 Release Notes 511

NumPy User Guide, Release 1.22.0

histogram

After a two years transition period, the old behavior of the histogram function has been phased out, and the “new” keyword
has been removed.

correlate

The old behavior of correlate was deprecated in 1.4.0, the new behavior (the usual definition for cross-correlation) is now
the default.

15.77 NumPy 1.4.0 Release Notes

This minor includes numerous bug fixes, as well as a few new features. It is backward compatible with 1.3.0 release.

15.77.1 Highlights

• New datetime dtype support to deal with dates in arrays
• Faster import time
• Extended array wrapping mechanism for ufuncs
• New Neighborhood iterator (C-level only)
• C99-like complex functions in npymath

15.77.2 New features

Extended array wrapping mechanism for ufuncs

An __array_prepare__ method has been added to ndarray to provide subclasses greater flexibility to interact with ufuncs
and ufunc-like functions. ndarray already provided __array_wrap__, which allowed subclasses to set the array type for
the result and populate metadata on the way out of the ufunc (as seen in the implementation of MaskedArray). For some
applications it is necessary to provide checks and populate metadata on the way in. __array_prepare__ is therefore called
just after the ufunc has initialized the output array but before computing the results and populating it. This way, checks
can be made and errors raised before operations which may modify data in place.

Automatic detection of forward incompatibilities

Previously, if an extension was built against a version N of NumPy, and used on a system with NumPy M < N, the
import_array was successful, which could cause crashes because the version M does not have a function in N. Starting
from NumPy 1.4.0, this will cause a failure in import_array, so the error will be caught early on.

512 15. Release notes

NumPy User Guide, Release 1.22.0

New iterators

A new neighborhood iterator has been added to the C API. It can be used to iterate over the items in a neighborhood of
an array, and can handle boundaries conditions automatically. Zero and one padding are available, as well as arbitrary
constant value, mirror and circular padding.

New polynomial support

Newmodules chebyshev and polynomial have been added. The new polynomial module is not compatible with the current
polynomial support in numpy, but is much like the new chebyshev module. The most noticeable difference to most will
be that coefficients are specified from low to high power, that the low level functions do not work with the Chebyshev and
Polynomial classes as arguments, and that the Chebyshev and Polynomial classes include a domain. Mapping between
domains is a linear substitution and the two classes can be converted one to the other, allowing, for instance, a Chebyshev
series in one domain to be expanded as a polynomial in another domain. The new classes should generally be used instead
of the low level functions, the latter are provided for those who wish to build their own classes.
The new modules are not automatically imported into the numpy namespace, they must be explicitly brought in with an
“import numpy.polynomial” statement.

New C API

The following C functions have been added to the C API:
1. PyArray_GetNDArrayCFeatureVersion: return the API version of the loaded numpy.
2. PyArray_Correlate2 - like PyArray_Correlate, but implements the usual definition of correlation. Inputs are not

swapped, and conjugate is taken for complex arrays.
3. PyArray_NeighborhoodIterNew - a new iterator to iterate over a neighborhood of a point, with automatic bound-

aries handling. It is documented in the iterators section of the C-API reference, and you can find some examples
in the multiarray_test.c.src file in numpy.core.

New ufuncs

The following ufuncs have been added to the C API:
1. copysign - return the value of the first argument with the sign copied from the second argument.
2. nextafter - return the next representable floating point value of the first argument toward the second argument.

New defines

The alpha processor is now defined and available in numpy/npy_cpu.h. The failed detection of the PARISC processor
has been fixed. The defines are:

1. NPY_CPU_HPPA: PARISC
2. NPY_CPU_ALPHA: Alpha

15.77. NumPy 1.4.0 Release Notes 513

NumPy User Guide, Release 1.22.0

Testing

1. deprecated decorator: this decorator may be used to avoid cluttering testing output while testing DeprecationWarn-
ing is effectively raised by the decorated test.

2. assert_array_almost_equal_nulps: new method to compare two arrays of floating point values. With this function,
two values are considered close if there are not many representable floating point values in between, thus being
more robust than assert_array_almost_equal when the values fluctuate a lot.

3. assert_array_max_ulp: raise an assertion if there are more than N representable numbers between two floating
point values.

4. assert_warns: raise an AssertionError if a callable does not generate a warning of the appropriate class, without
altering the warning state.

Reusing npymath

In 1.3.0, we started putting portable C math routines in npymath library, so that people can use those to write portable
extensions. Unfortunately, it was not possible to easily link against this library: in 1.4.0, support has been added to
numpy.distutils so that 3rd party can reuse this library. See coremath documentation for more information.

Improved set operations

In previous versions of NumPy some set functions (intersect1d, setxor1d, setdiff1d and setmember1d) could return in-
correct results if the input arrays contained duplicate items. These now work correctly for input arrays with duplicates.
setmember1d has been renamed to in1d, as with the change to accept arrays with duplicates it is no longer a set operation,
and is conceptually similar to an elementwise version of the Python operator ‘in’. All of these functions now accept the
boolean keyword assume_unique. This is False by default, but can be set True if the input arrays are known not to contain
duplicates, which can increase the functions’ execution speed.

15.77.3 Improvements

1. numpy import is noticeably faster (from 20 to 30 % depending on the platform and computer)
2. The sort functions now sort nans to the end.

• Real sort order is [R, nan]
• Complex sort order is [R + Rj, R + nanj, nan + Rj, nan + nanj]

Complex numbers with the same nan placements are sorted according to the non-nan part if it exists.
3. The type comparison functions have been made consistent with the new sort order of nans. Searchsorted now works

with sorted arrays containing nan values.
4. Complex division has been made more resistant to overflow.
5. Complex floor division has been made more resistant to overflow.

514 15. Release notes

NumPy User Guide, Release 1.22.0

15.77.4 Deprecations

The following functions are deprecated:
1. correlate: it takes a new keyword argument old_behavior. When True (the default), it returns the same result as

before. When False, compute the conventional correlation, and take the conjugate for complex arrays. The old
behavior will be removed in NumPy 1.5, and raises a DeprecationWarning in 1.4.

2. unique1d: use unique instead. unique1d raises a deprecation warning in 1.4, and will be removed in 1.5.
3. intersect1d_nu: use intersect1d instead. intersect1d_nu raises a deprecation warning in 1.4, and will be removed

in 1.5.
4. setmember1d: use in1d instead. setmember1d raises a deprecation warning in 1.4, and will be removed in 1.5.

The following raise errors:
1. When operating on 0-d arrays, numpy.max and other functions accept only axis=0, axis=-1 and

axis=None. Using an out-of-bounds axes is an indication of a bug, so Numpy raises an error for these cases
now.

2. Specifying axis > MAX_DIMS is no longer allowed; Numpy raises now an error instead of behaving similarly
as for axis=None.

15.77.5 Internal changes

Use C99 complex functions when available

The numpy complex types are now guaranteed to be ABI compatible with C99 complex type, if available on the platform.
Moreover, the complex ufunc now use the platform C99 functions instead of our own.

split multiarray and umath source code

The source code of multiarray and umath has been split into separate logic compilation units. This should make the source
code more amenable for newcomers.

Separate compilation

By default, every file of multiarray (and umath) is merged into one for compilation as was the case before, but if
NPY_SEPARATE_COMPILATION env variable is set to a non-negative value, experimental individual compilation
of each file is enabled. This makes the compile/debug cycle much faster when working on core numpy.

Separate core math library

New functions which have been added:
• npy_copysign
• npy_nextafter
• npy_cpack
• npy_creal
• npy_cimag
• npy_cabs

15.77. NumPy 1.4.0 Release Notes 515

NumPy User Guide, Release 1.22.0

• npy_cexp
• npy_clog
• npy_cpow
• npy_csqr
• npy_ccos
• npy_csin

15.78 NumPy 1.3.0 Release Notes

This minor includes numerous bug fixes, official python 2.6 support, and several new features such as generalized ufuncs.

15.78.1 Highlights

Python 2.6 support

Python 2.6 is now supported on all previously supported platforms, including windows.
https://www.python.org/dev/peps/pep-0361/

Generalized ufuncs

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays), as
explained on http://scipy.org/scipy/numpy/wiki/GeneralLoopingFunctions. We propose to realize this concept by gen-
eralizing the universal functions (ufuncs), and provide a C implementation that adds ~500 lines to the numpy code base.
In current (specialized) ufuncs, the elementary function is limited to element-by-element operations, whereas the general-
ized version supports “sub-array” by “sub-array” operations. The Perl vector library PDL provides a similar functionality
and its terms are re-used in the following.
Each generalized ufunc has information associated with it that states what the “core” dimensionality of the inputs is, as
well as the corresponding dimensionality of the outputs (the element-wise ufuncs have zero core dimensions). The list
of the core dimensions for all arguments is called the “signature” of a ufunc. For example, the ufunc numpy.add has
signature “(),()->()” defining two scalar inputs and one scalar output.
Another example is (see the GeneralLoopingFunctions page) the function inner1d(a,b) with a signature of “(i),(i)->()”.
This applies the inner product along the last axis of each input, but keeps the remaining indices intact. For example,
where a is of shape (3,5,N) and b is of shape (5,N), this will return an output of shape (3,5). The underlying elementary
function is called 3*5 times. In the signature, we specify one core dimension “(i)” for each input and zero core dimensions
“()” for the output, since it takes two 1-d arrays and returns a scalar. By using the same name “i”, we specify that the two
corresponding dimensions should be of the same size (or one of them is of size 1 and will be broadcasted).
The dimensions beyond the core dimensions are called “loop” dimensions. In the above example, this corresponds to
(3,5).
The usual numpy “broadcasting” rules apply, where the signature determines how the dimensions of each input/output
object are split into core and loop dimensions:
While an input array has a smaller dimensionality than the corresponding number of core dimensions, 1’s are pre-pended
to its shape. The core dimensions are removed from all inputs and the remaining dimensions are broadcasted; defining
the loop dimensions. The output is given by the loop dimensions plus the output core dimensions.

516 15. Release notes

https://www.python.org/dev/peps/pep-0361/
http://scipy.org/scipy/numpy/wiki/GeneralLoopingFunctions

NumPy User Guide, Release 1.22.0

Experimental Windows 64 bits support

Numpy can now be built on windows 64 bits (amd64 only, not IA64), with bothMS compilers and mingw-w64 compilers:
This is highly experimental: DO NOT USE FOR PRODUCTION USE. See INSTALL.txt, Windows 64 bits section for
more information on limitations and how to build it by yourself.

15.78.2 New features

Formatting issues

Float formatting is now handled by numpy instead of the C runtime: this enables locale independent formatting, more
robust fromstring and related methods. Special values (inf and nan) are also more consistent across platforms (nan vs
IND/NaN, etc…), and more consistent with recent python formatting work (in 2.6 and later).

Nan handling in max/min

The maximum/minimum ufuncs now reliably propagate nans. If one of the arguments is a nan, then nan is returned. This
affects np.min/np.max, amin/amax and the array methods max/min. New ufuncs fmax and fmin have been added to deal
with non-propagating nans.

Nan handling in sign

The ufunc sign now returns nan for the sign of anan.

New ufuncs

1. fmax - same as maximum for integer types and non-nan floats. Returns the non-nan argument if one argument is
nan and returns nan if both arguments are nan.

2. fmin - same as minimum for integer types and non-nan floats. Returns the non-nan argument if one argument is
nan and returns nan if both arguments are nan.

3. deg2rad - converts degrees to radians, same as the radians ufunc.
4. rad2deg - converts radians to degrees, same as the degrees ufunc.
5. log2 - base 2 logarithm.
6. exp2 - base 2 exponential.
7. trunc - truncate floats to nearest integer towards zero.
8. logaddexp - add numbers stored as logarithms and return the logarithm of the result.
9. logaddexp2 - add numbers stored as base 2 logarithms and return the base 2 logarithm of the result.

15.78. NumPy 1.3.0 Release Notes 517

NumPy User Guide, Release 1.22.0

Masked arrays

Several new features and bug fixes, including:
• structured arrays should now be fully supported by MaskedArray (r6463, r6324, r6305, r6300, r6294…)
• Minor bug fixes (r6356, r6352, r6335, r6299, r6298)
• Improved support for __iter__ (r6326)
• made baseclass, sharedmask and hardmask accessible to the user (but read-only)
• doc update

gfortran support on windows

Gfortran can now be used as a fortran compiler for numpy on windows, even when the C compiler is Visual Studio (VS
2005 and above; VS 2003 will NOTwork). Gfortran + Visual studio does not work on windows 64 bits (but gcc + gfortran
does). It is unclear whether it will be possible to use gfortran and visual studio at all on x64.

Arch option for windows binary

Automatic arch detection can now be bypassed from the command line for the superpack installed:
numpy-1.3.0-superpack-win32.exe /arch=nosse

will install a numpy which works on any x86, even if the running computer supports SSE set.

15.78.3 Deprecated features

Histogram

The semantics of histogram has been modified to fix long-standing issues with outliers handling. The main changes
concern

1. the definition of the bin edges, now including the rightmost edge, and
2. the handling of upper outliers, now ignored rather than tallied in the rightmost bin.

The previous behavior is still accessible using new=False, but this is deprecated, and will be removed entirely in 1.4.0.

15.78.4 Documentation changes

A lot of documentation has been added. Both user guide and references can be built from sphinx.

518 15. Release notes

NumPy User Guide, Release 1.22.0

15.78.5 New C API

Multiarray API

The following functions have been added to the multiarray C API:
• PyArray_GetEndianness: to get runtime endianness

Ufunc API

The following functions have been added to the ufunc API:
• PyUFunc_FromFuncAndDataAndSignature: to declare a more general ufunc (generalized ufunc).

New defines

New public C defines are available for ARCH specific code through numpy/npy_cpu.h:
• NPY_CPU_X86: x86 arch (32 bits)
• NPY_CPU_AMD64: amd64 arch (x86_64, NOT Itanium)
• NPY_CPU_PPC: 32 bits ppc
• NPY_CPU_PPC64: 64 bits ppc
• NPY_CPU_SPARC: 32 bits sparc
• NPY_CPU_SPARC64: 64 bits sparc
• NPY_CPU_S390: S390
• NPY_CPU_IA64: ia64
• NPY_CPU_PARISC: PARISC

New macros for CPU endianness has been added as well (see internal changes below for details):
• NPY_BYTE_ORDER: integer
• NPY_LITTLE_ENDIAN/NPY_BIG_ENDIAN defines

Those provide portable alternatives to glibc endian.h macros for platforms without it.

Portable NAN, INFINITY, etc…

npy_math.h now makes available several portable macro to get NAN, INFINITY:
• NPY_NAN: equivalent to NAN, which is a GNU extension
• NPY_INFINITY: equivalent to C99 INFINITY
• NPY_PZERO, NPY_NZERO: positive and negative zero respectively

Corresponding single and extended precision macros are available as well. All references to NAN, or home-grown com-
putation of NAN on the fly have been removed for consistency.

15.78. NumPy 1.3.0 Release Notes 519

NumPy User Guide, Release 1.22.0

15.78.6 Internal changes

This should make the porting to new platforms easier, and more robust. In particular, the configuration stage does not
need to execute any code on the target platform, which is a first step toward cross-compilation.
https://www.numpy.org/neps/nep-0003-math_config_clean.html

umath refactor

A lot of code cleanup for umath/ufunc code (charris).

Improvements to build warnings

Numpy can now build with -W -Wall without warnings
https://www.numpy.org/neps/nep-0002-warnfix.html

Separate core math library

The core math functions (sin, cos, etc… for basic C types) have been put into a separate library; it acts as a compatibility
layer, to support most C99 maths functions (real only for now). The library includes platform-specific fixes for various
maths functions, such as using those versions should be more robust than using your platform functions directly. The API
for existing functions is exactly the same as the C99 math functions API; the only difference is the npy prefix (npy_cos
vs cos).
The core library will be made available to any extension in 1.4.0.

CPU arch detection

npy_cpu.h defines numpy specific CPU defines, such as NPY_CPU_X86, etc… Those are portable across OS and
toolchains, and set up when the header is parsed, so that they can be safely used even in the case of cross-compilation
(the values is not set when numpy is built), or for multi-arch binaries (e.g. fat binaries on Max OS X).
npy_endian.h defines numpy specific endianness defines, modeled on the glibc endian.h. NPY_BYTE_ORDER is equiv-
alent to BYTE_ORDER, and one of NPY_LITTLE_ENDIAN or NPY_BIG_ENDIAN is defined. As for CPU archs,
those are set when the header is parsed by the compiler, and as such can be used for cross-compilation and multi-arch
binaries.

520 15. Release notes

https://www.numpy.org/neps/nep-0003-math_config_clean.html
https://www.numpy.org/neps/nep-0002-warnfix.html

CHAPTER

SIXTEEN

NUMPY LICENSE

Copyright (c) 2005-2022, NumPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

521

NumPy User Guide, Release 1.22.0

522 16. NumPy license

PYTHON MODULE INDEX

n
numpy.f2py, 233
numpy.lib.recfunctions, 111

523

NumPy User Guide, Release 1.22.0

524 Python Module Index

INDEX

Non-alphabetical
. . ., 279
(n,), 279
:, 279
<, 280
>, 280
-1, 279
__array_finalize__ (ndarray attribute), 216
__array_priority__ (ndarray attribute), 216
__array_wrap__ (ndarray attribute), 216

A
accumulate

ufunc methods, 296
adding new

dtype, 213, 214
ufunc, 194, 195, 198, 200, 209

advanced indexing, 280
along an axis, 280
append_fields() (in module numpy.lib.recfunctions),

111
apply_along_fields() (in module

numpy.lib.recfunctions), 111
array, 281
array iterator, 210, 212, 290
array scalar, 281
array scalars, 291
array_like, 281
assign_fields_by_name() (in module

numpy.lib.recfunctions), 112
axis, 281

B
.base, 282
big-endian, 282
BLAS, 282
Boost.Python, 194
broadcast, 282
broadcastable, 94
broadcasting, 141, 212, 291
buffers, 143
built-in function

ndpointer(), 189

C
C order, 283
castfunc (C function), 213
casting rules

ufunc, 141
column-major, 283
compile() (in module numpy.f2py), 233
contiguous, 283
copy, 283
ctypes, 187, 192
cython, 184, 187

D
dimension, 283
drop_fields() (in module numpy.lib.recfunctions),

112
dtype, 283, 290

adding new, 213, 214

E
ellipsis, 70
error handling, 143
extension module, 171, 177

F
f2py, 180, 184
fancy indexing, 283
field, 283
find_duplicates() (in module

numpy.lib.recfunctions), 113
flatten_descr() (in module numpy.lib.recfunctions),

114
flattened, 283
Fortran order, 283

G
get_fieldstructure() (in module

numpy.lib.recfunctions), 114
get_include() (in module numpy.f2py), 234
get_names() (in module numpy.lib.recfunctions), 114

525

NumPy User Guide, Release 1.22.0

get_names_flat() (in module
numpy.lib.recfunctions), 115

getitem
ndarray special methods, 70

H
homogeneous, 283

I
indexing, 69, 79, 291
itemsize, 283

J
join_by() (in module numpy.lib.recfunctions), 115

L
little-endian, 284

M
mask, 284
masked array, 284
matrix, 284
memory model

ndarray, 289
merge_arrays() (in module numpy.lib.recfunctions),

116
methods

accumulate, ufunc, 296
reduce, ufunc, 295
reduceat, ufunc, 296

module
numpy.f2py, 233
numpy.lib.recfunctions, 111

N
ndarray, 79, 284

memory model, 289
special methods getitem, 70
special methods setitem, 70
subtyping, 214, 216
view, 71

ndpointer()
built-in function, 189

newaxis, 70
numpy.f2py

module, 233
numpy.lib.recfunctions

module, 111

O
object array, 284

P
PyModule_AddIntConstant (C function), 172

PyModule_AddObject (C function), 172
PyModule_AddStringConstant (C function), 172
Python Enhancement Proposals

PEP 440, 225
PEP 585, 308
PEP 646, 322
PEP 3118, 510

R
ravel, 284
rec_append_fields() (in module

numpy.lib.recfunctions), 117
rec_drop_fields() (in module

numpy.lib.recfunctions), 118
rec_join() (in module numpy.lib.recfunctions), 118
record array, 284
recursive_fill_fields() (in module

numpy.lib.recfunctions), 118
reduce

ufunc methods, 295
reduceat

ufunc methods, 296
reference counting, 174, 175
rename_fields() (in module numpy.lib.recfunctions),

119
repack_fields() (in module numpy.lib.recfunctions),

119
require_fields() (in module

numpy.lib.recfunctions), 120
row-major, 285
run_main() (in module numpy.f2py), 235

S
scalar, 285
setitem

ndarray special methods, 70
shape, 285
SIP, 194
slicing, 69
special methods

getitem, ndarray, 70
setitem, ndarray, 70

stack_arrays() (in module numpy.lib.recfunctions),
121

stride, 285
structured array, 285
structured data type, 285
structured_to_unstructured() (in module

numpy.lib.recfunctions), 121
subarray, 285
subarray data type, 285
subtyping

ndarray, 214, 216
swig, 193

526 Index

NumPy User Guide, Release 1.22.0

T
title, 285
type, 285

U
ufunc, 285, 293, 296

adding new, 194, 195, 198, 200, 209
casting rules, 141
methods accumulate, 296
methods reduce, 295
methods reduceat, 296

unstructured_to_structured() (in module
numpy.lib.recfunctions), 122

V
vectorization, 285
view, 286

ndarray, 71

Index 527

	What is NumPy?
	Why is NumPy Fast?
	Who Else Uses NumPy?

	NumPy quickstart
	Prerequisites
	The Basics
	An example
	Array Creation
	Printing Arrays
	Basic Operations
	Universal Functions
	Indexing, Slicing and Iterating

	Shape Manipulation
	Changing the shape of an array
	Stacking together different arrays
	Splitting one array into several smaller ones

	Copies and Views
	No Copy at All
	View or Shallow Copy
	Deep Copy
	Functions and Methods Overview

	Less Basic
	Broadcasting rules

	Advanced indexing and index tricks
	Indexing with Arrays of Indices
	Indexing with Boolean Arrays
	The ix_() function
	Indexing with strings

	Tricks and Tips
	“Automatic” Reshaping
	Vector Stacking
	Histograms

	Further reading

	NumPy: the absolute basics for beginners
	Welcome to NumPy!
	Installing NumPy
	How to import NumPy
	Reading the example code
	What’s the difference between a Python list and a NumPy array?
	What is an array?
	More information about arrays
	How to create a basic array
	Adding, removing, and sorting elements
	How do you know the shape and size of an array?
	Can you reshape an array?
	How to convert a 1D array into a 2D array (how to add a new axis to an array)
	Indexing and slicing
	How to create an array from existing data
	Basic array operations
	Broadcasting
	More useful array operations
	Creating matrices
	Generating random numbers
	How to get unique items and counts
	Transposing and reshaping a matrix
	How to reverse an array
	Reshaping and flattening multidimensional arrays
	How to access the docstring for more information
	Working with mathematical formulas
	How to save and load NumPy objects
	Importing and exporting a CSV
	Plotting arrays with Matplotlib

	NumPy fundamentals
	Array creation
	Introduction
	1) Converting Python sequences to NumPy Arrays
	2) Intrinsic NumPy array creation functions
	1 - 1D array creation functions
	2 - 2D array creation functions
	3 - general ndarray creation functions

	3) Replicating, joining, or mutating existing arrays
	4) Reading arrays from disk, either from standard or custom formats
	Standard Binary Formats
	Common ASCII Formats

	5) Creating arrays from raw bytes through the use of strings or buffers
	6) Use of special library functions (e.g., SciPy, Pandas, and OpenCV)

	Indexing on ndarrays
	Basic indexing
	Single element indexing
	Slicing and striding
	Dimensional indexing tools

	Advanced indexing
	Integer array indexing
	Boolean array indexing
	Combining advanced and basic indexing

	Field access
	Flat Iterator indexing
	Assigning values to indexed arrays
	Dealing with variable numbers of indices within programs
	Detailed notes

	I/O with NumPy
	Importing data with genfromtxt
	Defining the input
	Splitting the lines into columns
	The delimiter argument
	The autostrip argument
	The comments argument

	Skipping lines and choosing columns
	The skip_header and skip_footer arguments
	The usecols argument

	Choosing the data type
	Setting the names
	The names argument
	The defaultfmt argument
	Validating names

	Tweaking the conversion
	The converters argument
	Using missing and filling values
	missing_values
	filling_values
	usemask

	Shortcut functions

	Data types
	Array types and conversions between types
	Array Scalars
	Overflow Errors
	Extended Precision

	Broadcasting
	General Broadcasting Rules
	Broadcastable arrays
	A Practical Example: Vector Quantization

	Byte-swapping
	Introduction to byte ordering and ndarrays
	Changing byte ordering
	Data and dtype endianness don’t match, change dtype to match data
	Data and type endianness don’t match, change data to match dtype
	Data and dtype endianness match, swap data and dtype

	Structured arrays
	Introduction
	Structured Datatypes
	Structured Datatype Creation
	Manipulating and Displaying Structured Datatypes
	Automatic Byte Offsets and Alignment
	Field Titles
	Union types

	Indexing and Assignment to Structured arrays
	Assigning data to a Structured Array
	Assignment from Python Native Types (Tuples)
	Assignment from Scalars
	Assignment from other Structured Arrays
	Assignment involving subarrays

	Indexing Structured Arrays
	Accessing Individual Fields
	Accessing Multiple Fields
	Indexing with an Integer to get a Structured Scalar

	Viewing Structured Arrays Containing Objects
	Structure Comparison

	Record Arrays
	Recarray Helper Functions

	Writing custom array containers
	Subclassing ndarray
	Introduction
	ndarrays and object creation

	View casting
	Creating new from template
	Relationship of view casting and new-from-template
	Implications for subclassing
	A brief Python primer on __new__ and __init__
	The role of __array_finalize__

	Simple example - adding an extra attribute to ndarray
	Slightly more realistic example - attribute added to existing array
	__array_ufunc__ for ufuncs
	__array_wrap__ for ufuncs and other functions
	Extra gotchas - custom __del__ methods and ndarray.base
	Subclassing and Downstream Compatibility

	Universal functions (ufunc) basics
	Ufunc methods
	Output type determination
	Broadcasting
	Type casting rules
	Use of internal buffers
	Error handling
	Overriding ufunc behavior

	Copies and views
	View
	Copy
	Indexing operations
	Other operations
	How to tell if the array is a view or a copy

	Miscellaneous
	IEEE 754 Floating Point Special Values
	How numpy handles numerical exceptions
	Examples
	Interfacing to C
	Interfacing to Fortran:
	Interfacing to C++:

	NumPy for MATLAB users
	Introduction
	Some key differences
	Rough equivalents
	General purpose equivalents
	Linear algebra equivalents

	Notes
	‘array’ or ‘matrix’? Which should I use?
	Short answer
	Long answer

	Customizing your environment
	Links

	Building from source
	Gitpod
	Building locally
	Prerequisites
	Basic Installation
	Testing
	Parallel builds
	Choosing the fortran compiler
	How to check the ABI of BLAS/LAPACK libraries

	Accelerated BLAS/LAPACK libraries
	BLAS
	LAPACK
	Disabling ATLAS and other accelerated libraries
	64-bit BLAS and LAPACK

	Supplying additional compiler flags

	Using NumPy C-API
	How to extend NumPy
	Writing an extension module
	Required subroutine
	Defining functions
	Functions without keyword arguments
	Functions with keyword arguments
	Reference counting

	Dealing with array objects
	Converting an arbitrary sequence object
	Creating a brand-new ndarray
	Getting at ndarray memory and accessing elements of the ndarray

	Example

	Using Python as glue
	Calling other compiled libraries from Python
	Hand-generated wrappers
	f2py
	Creating source for a basic extension module
	Creating a compiled extension module
	Improving the basic interface
	Inserting directives in Fortran source
	A filtering example
	Calling f2py from Python
	Automatic extension module generation
	Conclusion

	Cython
	Complex addition in Cython
	Image filter in Cython
	Conclusion

	ctypes
	Having a shared library
	Loading the shared library
	Converting arguments
	Calling the function
	Complete example
	Conclusion

	Additional tools you may find useful
	SWIG
	SIP
	Boost Python
	PyFort

	Writing your own ufunc
	Creating a new universal function
	Example Non-ufunc extension
	Example NumPy ufunc for one dtype
	Example NumPy ufunc with multiple dtypes
	Example NumPy ufunc with multiple arguments/return values
	Example NumPy ufunc with structured array dtype arguments

	Beyond the Basics
	Iterating over elements in the array
	Basic Iteration
	Iterating over all but one axis
	Iterating over multiple arrays
	Broadcasting over multiple arrays

	User-defined data-types
	Adding the new data-type
	Registering a casting function
	Registering coercion rules
	Registering a ufunc loop

	Subtyping the ndarray in C
	Creating sub-types
	Specific features of ndarray sub-typing
	The __array_finalize__ method
	The __array_priority__ attribute
	The __array_wrap__ method

	NumPy How Tos
	How to write a NumPy how-to
	A stranger has asked for directions…
	Give a brief but explicit answer
	Delegate
	If the question is broad, narrow and redirect it
	If there are many steps, break them up
	Why write how-tos when there’s Stack Overflow, Reddit, Gitter…?
	Aren’t how-tos and tutorials the same thing?
	Is this page an example of a how-to?

	Reading and writing files
	Reading text and CSV files
	With no missing values
	With missing values
	With non-whitespace delimiters
	Masked-array output
	Array output
	Array output, specified fill-in value

	Whitespace-delimited

	Read a file in .npy or .npz format
	Write to a file to be read back by NumPy
	Binary
	Human-readable
	Large arrays

	Read an arbitrarily formatted binary file (“binary blob”)
	Write or read large arrays
	Write files for reading by other (non-NumPy) tools
	Write or read a JSON file
	Save/restore using a pickle file
	Convert from a pandas DataFrame to a NumPy array
	Save/restore using tofile and fromfile

	For downstream package authors
	Understanding NumPy’s versioning and API/ABI stability
	Testing against the NumPy main branch or pre-releases
	Adding a dependency on NumPy
	Build-time dependency
	Runtime dependency & version ranges

	F2PY user guide and reference manual
	Using F2PY
	Command f2py
	Signature file generation
	Extension module construction
	Building a module
	Other options

	Python module numpy.f2py

	Three ways to wrap - getting started
	The quick way
	The smart way
	The quick and smart way

	Using F2PY bindings in Python
	Scalar arguments
	String arguments
	Array arguments
	Call-back arguments
	Resolving arguments to call-back functions
	Common blocks
	Fortran 90 module data
	Allocatable arrays

	Signature file
	Python module block
	Fortran/C routine signatures
	Type declarations
	Statements
	Attribute statements
	Use statements
	Common block statements
	Other statements
	F2PY statements

	Attributes
	Extensions
	F2PY directives
	C expressions
	Multi-line blocks

	F2PY and Build Systems
	Basic Concepts
	Build Systems
	Using via numpy.distutils
	Extensions to distutils

	Using via meson
	Fibonacci Walkthrough (F77)
	Automating wrapper generation

	Salient points

	Using via cmake
	Fibonacci Walkthrough (F77)

	Using via scikit-build
	Fibonacci Walkthrough (F77)
	CMake modules only
	setuptools replacement

	Advanced F2PY use cases
	Adding user-defined functions to F2PY generated modules
	Adding user-defined variables
	Dealing with KIND specifiers

	Glossary
	Under-the-hood Documentation for developers
	Internal organization of NumPy arrays
	Multidimensional array indexing order issues

	NumPy C code explanations
	Memory model
	Data-type encapsulation
	N-D Iterators
	Broadcasting
	Array Scalars
	Indexing
	Advanced indexing

	Universal functions
	Setup
	Function call
	One loop
	Strided loop
	Buffered loop

	Final output manipulation
	Methods
	Setup
	Reduce
	Accumulate
	Reduceat

	Memory Alignment
	NumPy alignment goals
	Variables in NumPy which control and describe alignment
	Consequences of alignment

	Reporting bugs
	Release notes
	NumPy 1.22.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.22.0 Release Notes
	Expired deprecations
	Deprecated numeric style dtype strings have been removed
	Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

	Deprecations
	Use delimiter rather than delimitor as kwarg in mrecords
	Passing boolean kth values to (arg-)partition has been deprecated
	The np.MachAr class has been deprecated

	Compatibility notes
	Distutils forces strict floating point model on clang
	Removed floor division support for complex types
	numpy.vectorize functions now produce the same output class as the base function
	Python 3.7 is no longer supported
	str/repr of complex dtypes now include space after punctuation
	Corrected advance in PCG64DSXM and PCG64
	Change in generation of random 32 bit floating point variates

	C API changes
	Masked inner-loops cannot be customized anymore
	Experimental exposure of future DType and UFunc API

	New Features
	NEP 49 configurable allocators
	Implementation of the NEP 47 (adopting the array API standard)
	Generate C/C++ API reference documentation from comments blocks is now possible
	Assign the platform-specific c_intp precision via a mypy plugin
	Add NEP 47-compatible dlpack support
	keepdims optional argument added to numpy.argmin, numpy.argmax
	bit_count to compute the number of 1-bits in an integer
	The ndim and axis attributes have been added to numpy.AxisError
	Preliminary support for windows/arm64 target
	Added support for LoongArch
	A .clang-format file has been added
	is_integer is now available to numpy.floating and numpy.integer
	Symbolic parser for Fortran dimension specifications
	ndarray, dtype and number are now runtime-subscriptable

	Improvements
	ctypeslib.load_library can now take any path-like object
	Add smallest_normal and smallest_subnormal attributes to finfo
	numpy.linalg.qr accepts stacked matrices as inputs
	numpy.fromregex now accepts os.PathLike implementations
	Add new methods for quantile and percentile
	Missing parameters have been added to the nan<x> functions
	Annotating the main Numpy namespace
	Vectorize umath module using AVX-512
	OpenBLAS v0.3.18

	NumPy 1.21.4 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.21.3 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.21.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.21.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.21.0 Release Notes
	New functions
	Add PCG64DXSM BitGenerator

	Expired deprecations
	Deprecations
	The .dtype attribute must return a dtype
	Inexact matches for numpy.convolve and numpy.correlate are deprecated
	np.typeDict has been formally deprecated
	Exceptions will be raised during array-like creation
	Four ndarray.ctypes methods have been deprecated

	Expired deprecations
	Remove deprecated PolyBase and unused PolyError and PolyDomainError

	Compatibility notes
	Error type changes in universal functions
	__array_ufunc__ argument validation
	__array_ufunc__ and additional positional arguments
	Validate input values in Generator.uniform
	/usr/include removed from default include paths
	Changes to comparisons with dtype=...
	Changes to dtype and signature arguments in ufuncs
	Ufunc signature=... and dtype= generalization and casting
	Distutils forces strict floating point model on clang

	C API changes
	Use of ufunc->type_resolver and “type tuple”

	New Features
	Added a mypy plugin for handling platform-specific numpy.number precisions
	Let the mypy plugin manage extended-precision numpy.number subclasses
	New min_digits argument for printing float values
	f2py now recognizes Fortran abstract interface blocks
	BLAS and LAPACK configuration via environment variables
	A runtime-subcriptable alias has been added for ndarray
	Examples

	Improvements
	Arbitrary period option for numpy.unwrap
	np.unique now returns single NaN
	Generator.rayleigh and Generator.geometric performance improved
	Placeholder annotations have been improved

	Performance improvements
	Improved performance in integer division of NumPy arrays
	Improve performance of np.save and np.load for small arrays

	Changes
	numpy.piecewise output class now matches the input class
	Enable Accelerate Framework

	NumPy 1.20.3 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.20.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.20.1 Release Notes
	Highlights
	Contributors
	Pull requests merged

	NumPy 1.20.0 Release Notes
	New functions
	The random.Generator class has a new permuted function.
	sliding_window_view provides a sliding window view for numpy arrays
	numpy.broadcast_shapes is a new user-facing function

	Deprecations
	Using the aliases of builtin types like np.int is deprecated
	Passing shape=None to functions with a non-optional shape argument is deprecated
	Indexing errors will be reported even when index result is empty
	Inexact matches for mode and searchside are deprecated
	Deprecation of numpy.dual
	outer and ufunc.outer deprecated for matrix
	Further Numeric Style types Deprecated
	The ndincr method of ndindex is deprecated
	ArrayLike objects which do not define __len__ and __getitem__

	Future Changes
	Arrays cannot be using subarray dtypes

	Expired deprecations
	Financial functions removed

	Compatibility notes
	isinstance(dtype, np.dtype) and not type(dtype) is not np.dtype
	Same kind casting in concatenate with axis=None
	NumPy Scalars are cast when assigned to arrays
	Array coercion changes when Strings and other types are mixed
	Array coercion restructure
	Writing to the result of numpy.broadcast_arrays will export readonly buffers
	Numeric-style type names have been removed from type dictionaries
	The operator.concat function now raises TypeError for array arguments
	nickname attribute removed from ABCPolyBase
	float->timedelta and uint64->timedelta promotion will raise a TypeError
	numpy.genfromtxt now correctly unpacks structured arrays
	mgrid, r_, etc. consistently return correct outputs for non-default precision input
	Boolean array indices with mismatching shapes now properly give IndexError
	Casting errors interrupt Iteration
	f2py generated code may return unicode instead of byte strings
	The first element of the __array_interface__["data"] tuple must be an integer
	poly1d respects the dtype of all-zero argument
	The numpy.i file for swig is Python 3 only.
	Void dtype discovery in np.array

	C API changes
	The PyArray_DescrCheck macro is modified
	Size of np.ndarray and np.void_ changed

	New Features
	where keyword argument for numpy.all and numpy.any functions
	where keyword argument for numpy functions mean, std, var
	norm=backward, forward keyword options for numpy.fft functions
	NumPy is now typed
	numpy.typing is accessible at runtime
	New __f2py_numpy_version__ attribute for f2py generated modules.
	mypy tests can be run via runtests.py
	Negation of user defined BLAS/LAPACK detection order
	Allow passing optimizations arguments to asv build
	The NVIDIA HPC SDK nvfortran compiler is now supported
	dtype option for cov and corrcoef

	Improvements
	Improved string representation for polynomials (__str__)
	Remove the Accelerate library as a candidate LAPACK library
	Object arrays containing multi-line objects have a more readable repr
	Concatenate supports providing an output dtype
	Thread safe f2py callback functions
	numpy.core.records.fromfile now supports file-like objects
	RPATH support on AIX added to distutils
	Use f90 compiler specified by the command line args
	Add NumPy declarations for Cython 3.0 and later
	Make the window functions exactly symmetric

	Performance improvements and changes
	Enable multi-platform SIMD compiler optimizations

	Changes
	Changed behavior of divmod(1., 0.) and related functions
	np.linspace on integers now uses floor

	NumPy 1.19.5 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.19.4 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.19.3 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.19.2 Release Notes
	Improvements
	Add NumPy declarations for Cython 3.0 and later

	Contributors
	Pull requests merged

	NumPy 1.19.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.19.0 Release Notes
	Highlights
	Expired deprecations
	numpy.insert and numpy.delete can no longer be passed an axis on 0d arrays
	numpy.delete no longer ignores out-of-bounds indices
	numpy.insert and numpy.delete no longer accept non-integral indices
	numpy.delete no longer casts boolean indices to integers

	Compatibility notes
	Changed random variate stream from numpy.random.Generator.dirichlet
	Scalar promotion in PyArray_ConvertToCommonType
	Fasttake and fastputmask slots are deprecated and NULL’ed
	np.ediff1d casting behaviour with to_end and to_begin
	Converting of empty array-like objects to NumPy arrays
	Removed multiarray.int_asbuffer
	numpy.distutils.compat has been removed
	issubdtype no longer interprets float as np.floating
	Change output of round on scalars to be consistent with Python
	The numpy.ndarray constructor no longer interprets strides=() as strides=None
	C-Level string to datetime casts changed
	SeedSequence with small seeds no longer conflicts with spawning

	Deprecations
	Deprecate automatic dtype=object for ragged input
	Passing shape=0 to factory functions in numpy.rec is deprecated
	Deprecation of probably unused C-API functions
	Converting certain types to dtypes is Deprecated
	Deprecation of round for np.complexfloating scalars
	numpy.ndarray.tostring() is deprecated in favor of tobytes()

	C API changes
	Better support for const dimensions in API functions
	Const qualify UFunc inner loops

	New Features
	numpy.frompyfunc now accepts an identity argument
	np.str_ scalars now support the buffer protocol
	subok option for numpy.copy
	numpy.linalg.multi_dot now accepts an out argument
	keepdims parameter for numpy.count_nonzero
	equal_nan parameter for numpy.array_equal

	Improvements
	Improve detection of CPU features
	Use 64-bit integer size on 64-bit platforms in fallback lapack_lite
	Use AVX512 intrinsic to implement np.exp when input is np.float64
	Ability to disable madvise hugepages
	numpy.einsum accepts NumPy int64 type in subscript list
	np.logaddexp2.identity changed to -inf

	Changes
	Remove handling of extra argument to __array__
	numpy.random._bit_generator moved to numpy.random.bit_generator
	Cython access to the random distributions is provided via a pxd file
	Fixed eigh and cholesky methods in numpy.random.multivariate_normal
	Fixed the jumping implementation in MT19937.jumped

	NumPy 1.18.5 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.18.4 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.18.3 Release Notes
	Highlights
	Contributors
	Pull requests merged

	NumPy 1.18.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.18.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.18.0 Release Notes
	Highlights
	New functions
	Multivariate hypergeometric distribution added to numpy.random

	Deprecations
	np.fromfile and np.fromstring will error on bad data
	Deprecate non-scalar arrays as fill values in ma.fill_value
	Deprecate PyArray_As1D, PyArray_As2D
	Deprecate np.alen
	Deprecate the financial functions
	The axis argument to numpy.ma.mask_cols and numpy.ma.mask_row is deprecated

	Expired deprecations
	Compatibility notes
	numpy.lib.recfunctions.drop_fields can no longer return None
	numpy.argmin/argmax/min/max returns NaT if it exists in array
	np.can_cast(np.uint64, np.timedelta64, casting='safe') is now False
	Changed random variate stream from numpy.random.Generator.integers
	Add more ufunc loops for datetime64, timedelta64
	Moved modules in numpy.random

	C API changes
	PyDataType_ISUNSIZED(descr) now returns False for structured datatypes

	New Features
	Add our own *.pxd cython import file
	A tuple of axes can now be input to expand_dims
	Support for 64-bit OpenBLAS
	Add --f2cmap option to F2PY

	Improvements
	Different C numeric types of the same size have unique names
	argwhere now produces a consistent result on 0d arrays
	Add axis argument for random.permutation and random.shuffle
	method keyword argument for np.random.multivariate_normal
	Add complex number support for numpy.fromstring
	numpy.unique has consistent axes order when axis is not None
	numpy.matmul with boolean output now converts to boolean values
	numpy.random.randint produced incorrect value when the range was 2**32
	Add complex number support for numpy.fromfile
	std=c99 added if compiler is named gcc

	Changes
	NaT now sorts to the end of arrays
	Incorrect threshold in np.set_printoptions raises TypeError or ValueError
	Warn when saving a dtype with metadata
	numpy.distutils append behavior changed for LDFLAGS and similar
	Remove numpy.random.entropy without a deprecation
	Add options to quiet build configuration and build with -Werror

	NumPy 1.17.5 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.17.4 Release Notes
	Highlights
	Contributors
	Pull requests merged

	NumPy 1.17.3 Release Notes
	Highlights
	Compatibility notes
	Contributors
	Pull requests merged

	NumPy 1.17.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.17.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.17.0 Release Notes
	Highlights
	New functions
	Deprecations
	numpy.polynomial functions warn when passed float in place of int
	Deprecate numpy.distutils.exec_command and temp_file_name
	Writeable flag of C-API wrapped arrays
	numpy.nonzero should no longer be called on 0d arrays
	Writing to the result of numpy.broadcast_arrays will warn

	Future Changes
	Shape-1 fields in dtypes won’t be collapsed to scalars in a future version

	Compatibility notes
	float16 subnormal rounding
	Signed zero when using divmod
	MaskedArray.mask now returns a view of the mask, not the mask itself
	Do not lookup __buffer__ attribute in numpy.frombuffer
	out is buffered for memory overlaps in take, choose, put
	Unpickling while loading requires explicit opt-in
	Potential changes to the random stream in old random module
	i0 now always returns a result with the same shape as the input
	can_cast no longer assumes all unsafe casting is allowed
	ndarray.flags.writeable can be switched to true slightly more often

	C API changes
	dimension or stride input arguments are now passed by npy_intp const*

	New Features
	New extensible numpy.random module with selectable random number generators
	libFLAME
	User-defined BLAS detection order
	User-defined LAPACK detection order
	ufunc.reduce and related functions now accept a where mask
	Timsort and radix sort have replaced mergesort for stable sorting
	packbits and unpackbits accept an order keyword
	unpackbits now accepts a count parameter
	linalg.svd and linalg.pinv can be faster on hermitian inputs
	divmod operation is now supported for two timedelta64 operands
	fromfile now takes an offset argument
	New mode “empty” for pad
	empty_like and related functions now accept a shape argument
	Floating point scalars implement as_integer_ratio to match the builtin float
	Structured dtype objects can be indexed with multiple fields names
	.npy files support unicode field names

	Improvements
	Array comparison assertions include maximum differences
	Replacement of the fftpack based fft module by the pocketfft library
	Further improvements to ctypes support in numpy.ctypeslib
	numpy.errstate is now also a function decorator
	numpy.exp and numpy.log speed up for float32 implementation
	Improve performance of numpy.pad
	numpy.interp handles infinities more robustly
	Pathlib support for fromfile, tofile and ndarray.dump
	Specialized isnan, isinf, and isfinite ufuncs for bool and int types
	isfinite supports datetime64 and timedelta64 types
	New keywords added to nan_to_num
	MemoryErrors caused by allocated overly large arrays are more descriptive
	floor, ceil, and trunc now respect builtin magic methods
	quantile now works on fraction.Fraction and decimal.Decimal objects
	Support of object arrays in matmul

	Changes
	median and percentile family of functions no longer warn about nan
	timedelta64 % 0 behavior adjusted to return NaT
	NumPy functions now always support overrides with __array_function__
	lib.recfunctions.structured_to_unstructured does not squeeze single-field views
	clip now uses a ufunc under the hood
	__array_interface__ offset now works as documented
	Pickle protocol in savez set to 3 for force zip64 flag
	Structured arrays indexed with non-existent fields raise KeyError not ValueError

	NumPy 1.16.6 Release Notes
	Highlights
	New functions
	Allow matmul (@ operator) to work with object arrays.

	Compatibility notes
	Fix regression in matmul (@ operator) for boolean types

	Improvements
	Array comparison assertions include maximum differences

	Contributors
	Pull requests merged

	NumPy 1.16.5 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.16.4 Release Notes
	New deprecations
	Writeable flag of C-API wrapped arrays

	Compatibility notes
	Potential changes to the random stream

	Changes
	numpy.lib.recfunctions.structured_to_unstructured does not squeeze single-field views

	Contributors
	Pull requests merged

	NumPy 1.16.3 Release Notes
	Compatibility notes
	Unpickling while loading requires explicit opt-in

	Improvements
	Covariance in random.mvnormal cast to double

	Changes
	__array_interface__ offset now works as documented

	NumPy 1.16.2 Release Notes
	Compatibility notes
	Signed zero when using divmod

	Contributors
	Pull requests merged

	NumPy 1.16.1 Release Notes
	Contributors
	Enhancements
	Compatibility notes
	New Features
	divmod operation is now supported for two timedelta64 operands

	Improvements
	Further improvements to ctypes support in np.ctypeslib
	Array comparison assertions include maximum differences

	Changes
	timedelta64 % 0 behavior adjusted to return NaT

	NumPy 1.16.0 Release Notes
	Highlights
	New functions
	New deprecations
	Expired deprecations
	Future changes
	Compatibility notes
	f2py script on Windows
	NaT comparisons
	complex64/128 alignment has changed
	nd_grid __len__ removal
	np.unravel_index now accepts shape keyword argument
	multi-field views return a view instead of a copy

	C API changes
	New Features
	Integrated squared error (ISE) estimator added to histogram
	max_rows keyword added for np.loadtxt
	modulus operator support added for np.timedelta64 operands

	Improvements
	no-copy pickling of numpy arrays
	build shell independence
	np.polynomial.Polynomial classes render in LaTeX in Jupyter notebooks
	randint and choice now work on empty distributions
	linalg.lstsq, linalg.qr, and linalg.svd now work with empty arrays
	Chain exceptions to give better error messages for invalid PEP3118 format strings
	Einsum optimization path updates and efficiency improvements
	numpy.angle and numpy.expand_dims now work on ndarray subclasses
	NPY_NO_DEPRECATED_API compiler warning suppression
	np.diff Added kwargs prepend and append
	ARM support updated
	Appending to build flags
	Generalized ufunc signatures now allow fixed-size dimensions
	Generalized ufunc signatures now allow flexible dimensions
	np.clip and the clip method check for memory overlap
	New value unscaled for option cov in np.polyfit
	Detailed docstrings for scalar numeric types
	__module__ attribute now points to public modules
	Large allocations marked as suitable for transparent hugepages
	Alpine Linux (and other musl c library distros) support
	Speedup np.block for large arrays
	arr.ctypes.data_as(...) holds a reference to arr

	Speedup np.take for read-only arrays
	Support path-like objects for more functions
	Better behaviour of ufunc identities during reductions
	Improved conversion from ctypes objects
	A new ndpointer.contents member
	matmul is now a ufunc
	Start and stop arrays for linspace, logspace and geomspace
	CI extended with additional services

	Changes
	Comparison ufuncs will now error rather than return NotImplemented
	Positive will now raise a deprecation warning for non-numerical arrays
	NDArrayOperatorsMixin now implements matrix multiplication
	The scaling of the covariance matrix in np.polyfit is different
	maximum and minimum no longer emit warnings
	Umath and multiarray c-extension modules merged into a single module
	getfield validity checks extended
	NumPy functions now support overrides with __array_function__
	Arrays based off readonly buffers cannot be set writeable

	NumPy 1.15.4 Release Notes
	Compatibility Note
	Contributors
	Pull requests merged

	NumPy 1.15.3 Release Notes
	Compatibility Note
	Contributors
	Pull requests merged

	NumPy 1.15.2 Release Notes
	Compatibility Note
	Contributors
	Pull requests merged

	NumPy 1.15.1 Release Notes
	Compatibility Note
	Contributors
	Pull requests merged

	NumPy 1.15.0 Release Notes
	Highlights
	New functions
	Deprecations
	Future Changes
	Compatibility notes
	Compiled testing modules renamed and made private
	The NpzFile returned by np.savez is now a collections.abc.Mapping
	Under certain conditions, nditer must be used in a context manager
	Numpy has switched to using pytest instead of nose for testing
	Numpy no longer monkey-patches ctypes with __array_interface__
	np.ma.notmasked_contiguous and np.ma.flatnotmasked_contiguous always return lists
	np.squeeze restores old behavior of objects that cannot handle an axis argument
	unstructured void array’s .item method now returns a bytes object
	copy.copy and copy.deepcopy no longer turn masked into an array
	Multifield Indexing of Structured Arrays will still return a copy

	C API changes
	New functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier
	Changes to PyArray_GetDTypeTransferFunction

	New Features
	np.gcd and np.lcm ufuncs added for integer and objects types
	Support for cross-platform builds for iOS
	return_indices keyword added for np.intersect1d
	np.quantile and np.nanquantile
	Build system

	Improvements
	np.einsum updates
	np.ufunc.reduce and related functions now accept an initial value
	np.flip can operate over multiple axes
	histogram and histogramdd functions have moved to np.lib.histograms
	histogram will accept NaN values when explicit bins are given
	histogram works on datetime types, when explicit bin edges are given
	histogram “auto” estimator handles limited variance better
	The edges returned by histogram` and histogramdd now match the data float type
	histogramdd allows explicit ranges to be given in a subset of axes
	The normed arguments of histogramdd and histogram2d have been renamed
	np.r_ works with 0d arrays, and np.ma.mr_ works with np.ma.masked
	np.ptp accepts a keepdims argument, and extended axis tuples
	MaskedArray.astype now is identical to ndarray.astype
	Enable AVX2/AVX512 at compile time
	nan_to_num always returns scalars when receiving scalar or 0d inputs
	np.flatnonzero works on numpy-convertible types
	np.interp returns numpy scalars rather than builtin scalars
	Allow dtype field names to be unicode in Python 2
	Comparison ufuncs accept dtype=object, overriding the default bool
	sort functions accept kind='stable'
	Do not make temporary copies for in-place accumulation
	linalg.matrix_power can now handle stacks of matrices
	Increased performance in random.permutation for multidimensional arrays
	Generalized ufuncs now accept axes, axis and keepdims arguments
	float128 values now print correctly on ppc systems
	New np.take_along_axis and np.put_along_axis functions

	NumPy 1.14.6 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.5 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.4 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.3 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.1 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.14.0 Release Notes
	Highlights
	New functions
	Deprecations
	Future Changes
	Compatibility notes
	The mask of a masked array view is also a view rather than a copy
	np.ma.masked is no longer writeable
	np.ma functions producing fill_value s have changed
	a.flat.__array__() returns non-writeable arrays when a is non-contiguous
	np.tensordot now returns zero array when contracting over 0-length dimension
	numpy.testing reorganized
	np.asfarray no longer accepts non-dtypes through the dtype argument
	1D np.linalg.norm preserves float input types, even for arbitrary orders
	count_nonzero(arr, axis=()) now counts over no axes, not all axes
	__init__.py files added to test directories
	.astype(bool) on unstructured void arrays now calls bool on each element
	MaskedArray.squeeze never returns np.ma.masked
	Renamed first parameter of can_cast from from to from_
	isnat raises TypeError when passed wrong type
	dtype.__getitem__ raises TypeError when passed wrong type
	User-defined types now need to implement __str__ and __repr__
	Many changes to array printing, disableable with the new “legacy” printing mode

	C API changes
	PyPy compatible alternative to UPDATEIFCOPY arrays

	New Features
	Encoding argument for text IO functions
	External nose plugins are usable by numpy.testing.Tester
	parametrize decorator added to numpy.testing
	chebinterpolate function added to numpy.polynomial.chebyshev
	Support for reading lzma compressed text files in Python 3
	sign option added to np.setprintoptions and np.array2string
	hermitian option added to``np.linalg.matrix_rank``
	threshold and edgeitems options added to np.array2string
	concatenate and stack gained an out argument
	Support for PGI flang compiler on Windows

	Improvements
	Numerator degrees of freedom in random.noncentral_f need only be positive.
	The GIL is released for all np.einsum variations
	The np.einsum function will use BLAS when possible and optimize by default
	f2py now handles arrays of dimension 0
	numpy.distutils supports using MSVC and mingw64-gfortran together
	np.linalg.pinv now works on stacked matrices
	numpy.save aligns data to 64 bytes instead of 16
	NPZ files now can be written without using temporary files
	Better support for empty structured and string types
	Support for decimal.Decimal in np.lib.financial
	Float printing now uses “dragon4” algorithm for shortest decimal representation
	void datatype elements are now printed in hex notation
	printing style for void datatypes is now independently customizable
	Reduced memory usage of np.loadtxt

	Changes
	Multiple-field indexing/assignment of structured arrays
	Integer and Void scalars are now unaffected by np.set_string_function
	0d array printing changed, style arg of array2string deprecated
	Seeding RandomState using an array requires a 1-d array
	MaskedArray objects show a more useful repr
	The repr of np.polynomial classes is more explicit

	NumPy 1.13.3 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.13.2 Release Notes
	Contributors
	Pull requests merged

	NumPy 1.13.1 Release Notes
	Pull requests merged
	Contributors

	NumPy 1.13.0 Release Notes
	Highlights
	New functions
	Deprecations
	Future Changes
	Build System Changes
	Compatibility notes
	Error type changes
	Tuple object dtypes
	DeprecationWarning to error
	FutureWarning to changed behavior
	dtypes are now always true
	__getslice__ and __setslice__ are no longer needed in ndarray subclasses
	Indexing MaskedArrays/Constants with ... (ellipsis) now returns MaskedArray

	C API changes
	GUfuncs on empty arrays and NpyIter axis removal
	PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API

	New Features
	__array_ufunc__ added
	New positive ufunc
	New divmod ufunc
	np.isnat ufunc tests for NaT special datetime and timedelta values
	np.heaviside ufunc computes the Heaviside function
	np.block function for creating blocked arrays
	isin function, improving on in1d
	Temporary elision
	axes argument for unique
	np.gradient now supports unevenly spaced data
	Support for returning arrays of arbitrary dimensions in apply_along_axis
	.ndim property added to dtype to complement .shape
	Support for tracemalloc in Python 3.6
	NumPy may be built with relaxed stride checking debugging

	Improvements
	Ufunc behavior for overlapping inputs
	Partial support for 64-bit f2py extensions with MinGW
	Performance improvements for packbits and unpackbits
	Fix for PPC long double floating point information
	Better default repr for ndarray subclasses
	More reliable comparisons of masked arrays
	np.matrix with booleans elements can now be created using the string syntax
	More linalg operations now accept empty vectors and matrices
	Bundled version of LAPACK is now 3.2.2
	reduce of np.hypot.reduce and np.logical_xor allowed in more cases
	Better repr of object arrays

	Changes
	argsort on masked arrays takes the same default arguments as sort
	average now preserves subclasses
	array == None and array != None do element-wise comparison
	np.equal, np.not_equal for object arrays ignores object identity
	Boolean indexing changes
	np.random.multivariate_normal behavior with bad covariance matrix
	assert_array_less compares np.inf and -np.inf now
	assert_array_ and masked arrays assert_equal hide less warnings
	offset attribute value in memmap objects
	np.real and np.imag return scalars for scalar inputs
	The polynomial convenience classes cannot be passed to ufuncs
	Output arguments to ufuncs can be tuples also for ufunc methods

	NumPy 1.12.1 Release Notes
	Bugs Fixed

	NumPy 1.12.0 Release Notes
	Highlights
	Dropped Support
	Added Support
	Build System Changes
	Deprecations
	Assignment of ndarray object’s data attribute
	Unsafe int casting of the num attribute in linspace
	Insufficient bit width parameter to binary_repr

	Future Changes
	Multiple-field manipulation of structured arrays

	Compatibility notes
	DeprecationWarning to error
	FutureWarning to changed behavior
	power and ** raise errors for integer to negative integer powers
	Relaxed stride checking is the default
	The np.percentile ‘midpoint’ interpolation method fixed for exact indices
	keepdims kwarg is passed through to user-class methods
	bitwise_and identity changed
	ma.median warns and returns nan when unmasked invalid values are encountered
	Greater consistency in assert_almost_equal
	NoseTester behaviour of warnings during testing
	assert_warns and deprecated decorator more specific
	C API

	New Features
	Writeable keyword argument for as_strided
	axes keyword argument for rot90
	Generalized flip
	BLIS support in numpy.distutils
	Hook in numpy/__init__.py to run distribution-specific checks
	New nanfunctions nancumsum and nancumprod added
	np.interp can now interpolate complex values
	New polynomial evaluation function polyvalfromroots added
	New array creation function geomspace added
	New context manager for testing warnings
	New masked array functions ma.convolve and ma.correlate added
	New float_power ufunc
	np.loadtxt now supports a single integer as usecol argument
	Improved automated bin estimators for histogram
	np.roll can now roll multiple axes at the same time
	The __complex__ method has been implemented for the ndarrays
	pathlib.Path objects now supported
	New bits attribute for np.finfo
	New signature argument to np.vectorize
	Emit py3kwarnings for division of integer arrays

	Improvements
	bitwise_and identity changed
	Generalized Ufuncs will now unlock the GIL
	Caches in np.fft are now bounded in total size and item count
	Improved handling of zero-width string/unicode dtypes
	Integer ufuncs vectorized with AVX2
	Order of operations optimization in np.einsum
	quicksort has been changed to an introsort
	ediff1d improved performance and subclass handling
	Improved precision of ndarray.mean for float16 arrays

	Changes
	All array-like methods are now called with keyword arguments in fromnumeric.py
	Operations on np.memmap objects return numpy arrays in most cases
	stacklevel of warnings increased

	NumPy 1.11.3 Release Notes
	Contributors to maintenance/1.11.3
	Pull Requests Merged

	NumPy 1.11.2 Release Notes
	Pull Requests Merged

	NumPy 1.11.1 Release Notes
	Fixes Merged

	NumPy 1.11.0 Release Notes
	Highlights
	Build System Changes
	Future Changes
	Compatibility notes
	datetime64 changes
	linalg.norm return type changes
	polynomial fit changes
	np.dot now raises TypeError instead of ValueError
	FutureWarning to changed behavior
	% and // operators
	C API
	object dtype detection for old-style classes

	New Features
	Improvements
	np.gradient now supports an axis argument
	np.lexsort now supports arrays with object data-type
	np.ma.core.MaskedArray now supports an order argument
	Memory and speed improvements for masked arrays
	ndarray.tofile now uses fallocate on linux
	Optimizations for operations of the form A.T @ A and A @ A.T
	np.testing.assert_warns can now be used as a context manager
	Speed improvement for np.random.shuffle

	Changes
	Pyrex support was removed from numpy.distutils
	np.broadcast can now be called with a single argument
	np.trace now respects array subclasses
	np.dot now raises TypeError instead of ValueError
	linalg.norm return type changes

	Deprecations
	Views of arrays in Fortran order
	Invalid arguments for array ordering
	Random number generator in the testing namespace
	Random integer generation on a closed interval

	FutureWarnings
	Assigning to slices/views of MaskedArray

	NumPy 1.10.4 Release Notes
	Compatibility notes
	Issues Fixed
	Merged PRs

	NumPy 1.10.3 Release Notes
	NumPy 1.10.2 Release Notes
	Compatibility notes
	Relaxed stride checking is no longer the default
	Fix swig bug in numpy.i
	Deprecate views changing dimensions in fortran order

	Issues Fixed
	Merged PRs
	Notes

	NumPy 1.10.1 Release Notes
	NumPy 1.10.0 Release Notes
	Highlights
	Dropped Support
	Future Changes
	Compatibility notes
	Default casting rule change
	numpy version string
	relaxed stride checking
	Concatenation of 1d arrays along any but axis=0 raises IndexError
	np.ravel, np.diagonal and np.diag now preserve subtypes
	rollaxis and swapaxes always return a view
	nonzero now returns base ndarrays
	C API
	recarray field return types
	recarray views
	‘out’ keyword argument of ufuncs now accepts tuples of arrays
	byte-array indices now raises an IndexError
	Masked arrays containing objects with arrays
	Median warns and returns nan when invalid values are encountered
	Functions available from numpy.ma.testutils have changed

	New Features
	Reading extra flags from site.cfg
	np.cbrt to compute cube root for real floats
	genfromtxt has a new max_rows argument
	New function np.broadcast_to for invoking array broadcasting
	New context manager clear_and_catch_warnings for testing warnings
	cov has new fweights and aweights arguments
	Support for the ‘@’ operator in Python 3.5+
	New argument norm to fft functions

	Improvements
	np.digitize using binary search
	np.poly now casts integer inputs to float
	np.interp can now be used with periodic functions
	np.pad supports more input types for pad_width and constant_values
	np.argmax and np.argmin now support an out argument
	More system C99 complex functions detected and used
	np.loadtxt support for the strings produced by the float.hex method
	np.isclose properly handles minimal values of integer dtypes
	np.allclose uses np.isclose internally.
	np.genfromtxt now handles large integers correctly
	np.load, np.save have pickle backward compatibility flags
	MaskedArray support for more complicated base classes

	Changes
	dotblas functionality moved to multiarray
	stricter check of gufunc signature compliance
	views returned from np.einsum are writeable
	np.argmin skips NaT values

	Deprecations
	Array comparisons involving strings or structured dtypes
	SafeEval
	alterdot, restoredot
	pkgload, PackageLoader
	bias, ddof arguments to corrcoef
	dtype string representation changes

	NumPy 1.9.2 Release Notes
	Issues fixed

	NumPy 1.9.1 Release Notes
	Issues fixed

	NumPy 1.9.0 Release Notes
	Highlights
	Dropped Support
	Future Changes
	Compatibility notes
	The diagonal and diag functions return readonly views.
	Special scalar float values don’t cause upcast to double anymore
	Percentile output changes
	ndarray.tofile exception type
	Invalid fill value exceptions
	Polynomial Classes no longer derived from PolyBase
	Using numpy.random.binomial may change the RNG state vs. numpy < 1.9
	Random seed enforced to be a 32 bit unsigned integer
	Argmin and argmax out argument
	Einsum
	Indexing
	Non-integer reduction axis indexes are deprecated
	promote_types and string dtype
	can_cast and string dtype
	astype and string dtype
	npyio.recfromcsv keyword arguments change
	The doc/swig directory moved
	The npy_3kcompat.h header changed
	Negative indices in C-Api sq_item and sq_ass_item sequence methods
	NDIter
	zeros_like for string dtypes now returns empty strings

	New Features
	Percentile supports more interpolation options
	Generalized axis support for median and percentile
	Dtype parameter added to np.linspace and np.logspace
	More general np.triu and np.tril broadcasting
	tobytes alias for tostring method
	Build system
	Compatibility to python numbers module
	increasing parameter added to np.vander
	unique_counts parameter added to np.unique
	Support for median and percentile in nanfunctions
	NumpyVersion class added
	Allow saving arrays with large number of named columns
	Full broadcasting support for np.cross

	Improvements
	Better numerical stability for sum in some cases
	Percentile implemented in terms of np.partition
	Performance improvement for np.array
	Performance improvement for np.searchsorted
	Optional reduced verbosity for np.distutils
	Covariance check in np.random.multivariate_normal
	Polynomial Classes no longer template based
	More GIL releases
	MaskedArray support for more complicated base classes
	C-API

	Deprecations
	Non-integer scalars for sequence repetition
	select input deprecations
	rank function
	Object array equality comparisons
	C-API

	NumPy 1.8.2 Release Notes
	Issues fixed

	NumPy 1.8.1 Release Notes
	Issues fixed
	Changes
	NDIter
	Optional reduced verbosity for np.distutils

	Deprecations
	C-API

	NumPy 1.8.0 Release Notes
	Highlights
	Dropped Support
	Future Changes
	Compatibility notes
	NPY_RELAXED_STRIDES_CHECKING
	Binary operations with non-arrays as second argument
	Function median used with overwrite_input only partially sorts array
	Fix to financial.npv
	Runtime warnings when comparing NaN numbers

	New Features
	Support for linear algebra on stacked arrays
	In place fancy indexing for ufuncs
	New functions partition and argpartition
	New functions nanmean, nanvar and nanstd
	New functions full and full_like
	IO compatibility with large files
	Building against OpenBLAS
	New constant
	New modes for qr
	New invert argument to in1d
	Advanced indexing using np.newaxis
	C-API
	runtests.py

	Improvements
	IO performance improvements
	Performance improvements to pad
	Performance improvements to isnan, isinf, isfinite and byteswap
	Performance improvements via SSE2 vectorization
	Performance improvements to median
	Overridable operand flags in ufunc C-API

	Changes
	General
	C-API Array Additions
	C-API Ufunc Additions
	C-API Developer Improvements

	Deprecations
	General

	Authors

	NumPy 1.7.2 Release Notes
	Issues fixed

	NumPy 1.7.1 Release Notes
	Issues fixed

	NumPy 1.7.0 Release Notes
	Highlights
	Compatibility notes
	New features
	Reduction UFuncs Generalize axis= Parameter
	Reduction UFuncs New keepdims= Parameter
	Datetime support
	Custom formatter for printing arrays
	New function numpy.random.choice
	New function isclose
	Preliminary multi-dimensional support in the polynomial package
	Ability to pad rank-n arrays
	New argument to searchsorted
	Build system
	C API

	Changes
	General
	Casting Rules

	Deprecations
	General
	C-API

	NumPy 1.6.2 Release Notes
	Issues fixed
	numpy.core
	numpy.lib
	numpy.distutils
	numpy.random

	Changes
	numpy.f2py
	numpy.poly

	NumPy 1.6.1 Release Notes
	Issues Fixed

	NumPy 1.6.0 Release Notes
	Highlights
	New features
	New 16-bit floating point type
	New iterator
	Legendre, Laguerre, Hermite, HermiteE polynomials in numpy.polynomial
	Fortran assumed shape array and size function support in numpy.f2py
	Other new functions

	Changes
	default error handling
	numpy.distutils
	numpy.testing
	C API

	Deprecated features
	Removed features
	numpy.fft
	numpy.memmap
	numpy.lib
	numpy.ma
	numpy.distutils

	NumPy 1.5.0 Release Notes
	Highlights
	Python 3 compatibility
	PEP 3118 compatibility

	New features
	Warning on casting complex to real
	Dot method for ndarrays
	linalg.slogdet function
	new header

	Changes
	polynomial.polynomial
	polynomial.chebyshev
	histogram
	correlate

	NumPy 1.4.0 Release Notes
	Highlights
	New features
	Extended array wrapping mechanism for ufuncs
	Automatic detection of forward incompatibilities
	New iterators
	New polynomial support
	New C API
	New ufuncs
	New defines
	Testing
	Reusing npymath
	Improved set operations

	Improvements
	Deprecations
	Internal changes
	Use C99 complex functions when available
	split multiarray and umath source code
	Separate compilation
	Separate core math library

	NumPy 1.3.0 Release Notes
	Highlights
	Python 2.6 support
	Generalized ufuncs
	Experimental Windows 64 bits support

	New features
	Formatting issues
	Nan handling in max/min
	Nan handling in sign
	New ufuncs
	Masked arrays
	gfortran support on windows
	Arch option for windows binary

	Deprecated features
	Histogram

	Documentation changes
	New C API
	Multiarray API
	Ufunc API
	New defines
	Portable NAN, INFINITY, etc…

	Internal changes
	umath refactor
	Improvements to build warnings
	Separate core math library
	CPU arch detection

	NumPy license
	Python Module Index
	Index

